Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Витамины и разделение

    Н2С(00Я )—НС(ООН")—Н2С(ООК"0- в этой формуле символами R Я" и К " обозначаются углеродные цепи из 8—22 атомов насыщенного или ненасыщенного характера. В сырых продуктах находятся еще и другие соединения, но в небольших количествах, как-то свободные жирные кислоты, фосфатиды, стиролы, протеины, витамины, токоферол и др. В зависимости от назначения жиры и масла подвергаются соответствующей обработке, цель которой—разделение сырой смеси на разные группы соединений (насыщенных и ненасыщенных глицеридов), отвечающие по своим свойствам требованиям потребителей особенно ценной является фракция витаминов. Экстракция является одним из методов разделения, обеспечивающих наибольший выход и высшее качество продуктов по сравнению с другими методами, например химическими, что объясняет ее широкое применение. Растворителями служат преимущественно жидкости полярного строения нитропарафины, ЗОз, сульфоналы, фурфурол [139, 151, 153, 157], метанол с этанолом [144], пропан [148], ацетон [156], изопропанол с этанолом [141] идр. [154]. В промышленных установках применяются пропан и фур- [c.406]


    При работе с пропаном в первую очередь выделяются загрязнения—красящие вещества и свободные жирные кислоты. Затем идет разделение сырца на фракции с разным содержанием ненасыщенных соединений и на витаминные концентраты. Разделение достигается путем изменения температуры пропана. С ее повышением уменьшается растворимость тяжелых соединений, благодаря чему они выделяются из пропанового раствора. [c.407]

    Полная сепарация заключается в нагревании или применении вакуума. При первом способе воздействие может оказываться на чувствительные к нагреву материалы, особенно органические экстракты (витамины, пахучие вещества, лекарства). Второй способ, особенно в его экстремальной форме (молекулярная дистилляция), весьма дорогой. Наиболее простые методы извлечения, заменяющие молекулярную дистилляцию, главным образом при крупных масштабах производства, разработаны с целью упрощения процесса разделения растворителя от теплочувствительных экстрагированных материалов и основаны на применении СНГ или их компонентов. [c.359]

    Основными задачами нефтеперерабатывающей промышленности являются наиболее полное удовлетворение потребностей народного хозяйства в высококачественных нефтепродуктах и обеспечение сырьем смежных производств (нефтехимических, белково-витаминных концентратов и т. д.). Дальнейшее улучшение качества нефтепродуктов — требование десятой пятилетки. Продукты, получаемые прямой перегонкой или деструктивными процессами переработки нефти, не являются, как правило, товарными, поскольку без дополнительной обработки они не удовлетворяют требованиям эксплуатации двигателей внутреннего сгорания и других машин и механизмов. Для приготовления товарных нефтепродуктов дистилляты и остатки, получаемые в различных процессах, подвергают очистке, разделению, компаундированию и облагораживанию путем добавления присадок. Изучению упомянутых процессов посвящена третья часть курса Технология переработки нефти и газа . [c.10]

    Молекулярная дистилляция является относительно дорогим способом разделения. Ее применяют в производствах некоторых пластмасс, витаминов, масел и смазок, жирных кислот, эфиров и др. [c.517]

    Молекулярная адсорбционная хроматография. Этот вид хроматографии имеет большое значение для аналитического и технологического разделения смесей органических веществ сложного состава, например растительных пигментов, витаминов, антибиотиков, аминокислот. Известны также примеры использования метода молекулярной адсорбционной хроматографии для разделения редкоземельных и радиоактивных элементов, хотя для этих целей чаще применяют методы ионообменной хроматографии. [c.69]


    Хроматография получила очень широкое применение при разделении и очистке лекарственных веществ, витаминов, пигментов, энзимов, протеинов и алкалоидов. [c.145]

    Обнаружение зон. Для обнаружения соединений, флуоресцирующих при облучении светом, применяют физические, но чаще всего химические методы обрабатывают хроматограмму после разделения веществ газами аммиаком, бромом, иодом — или опрыскивают реагентами, которые применяют в бумажной хроматографии. Для обнаружения биологически активных соединений (витаминов, анти [c.358]

    Электрофорез применяют для очистки различных фармацевтических препаратов. В Фармакопее СССР (изд. 10) предусмотрено установление степени чистоты по электрофоретической однородности ряда антибиотиков, витаминов и других веществ. Электрофорез (ионофорез) является одним из методов введения лечебных препаратов в организм человека. Широкое применение как аналитический и препаративный метод разделения и выделения различных лекарственных веществ и биологически активных соединений нашел электрофорез на бумаге, а также в агаровом или крахмальном геле. Эти методы применяют также при диагностике ряда заболеваний путем сравнения фракционного состава (по числу и интенсивности зон на электрофореграмме) нормальных и патологических биологических жидкостей. [c.408]

    Разделение веществ. Современная промышленность работает со смесями (например, газы пиролиза) и использует рассеянные примеси (например, в производстве витаминов). Поэтому задача анализа и разделения смесей — одна из ведущих в современной технике. Особое значение проблема разделения имеет в атомной промышленности (разделение изотопов, продуктов деления и др.). [c.8]

    В заключение отметим, что реакции ионного обмена нашли широкое применение в различных областях науки и техники для очистки и получения солей, извлечения ценных металлов из природных и сточных вод, для разделения и открытия катионов й анионов, для концентрации и очистки витаминов, умягчения и обессоливания воды, получения (путем гидролиза) глюкозы, ксилозы, этилового спирта, многоатомных спиртов, пищевых органических кислот и других веществ. [c.47]

    Наибольшее применение, как уже отмечалось, тонкослойная хроматография нашла в анализе органических соединений природного и синтетического происхождения. В настоящее время разработано большое количество методик разделения и определения различных классов органических веществ — от простейших углеводородов до витаминов, антибиотиков и нуклеиновых кислот. [c.140]

    При колоночном варианте с использованием обращенных фаз в качестве носителей применяют кизельгур, стеклянный порошок, полиэтилен. Этот способ используют для разделения липопротеидов, водонерастворимых витаминов и др. [42—43]. [c.87]

    Каротиноиды, которые делятся на каротины и ксантофиллы, содержат систему сопряженных связей С=С и встречаются как в растениях (например, в помидорах, кукурузе, моркови, перце, плодах цитрусовых, шиповнике), так и в животных (например, в омарах, крабах, форели, лососе, в яичном желтке или в перьях некоторых птиц — канареек, фламинго, попугаев и др.). К наиболее известным каротиноидам относятся красные каротины из моркови. Хроматографическим разделением этих углеводородов занимался в начале нашего столетия основоположник хроматографии русский ботаник М. С. Цвет. Известны три изомера каротинов — а, р и 7. В моркови содержится больше всего р-каротина. Из каротинов легко получаются витамины А, поэтому они являются источником этих витаминов для организма человека и называются провитаминами А. [c.234]

    Небольшие органические молекулы, находящиеся в живых тканях, можно разделить на две большие группы. Одна из них включает водорастворимые вещества, такие, как аминокислоты и сахара, нерастворимые в апротонных растворителях (хлороформе или эфире). Другая группа охватывает жирорастворимые вещества, которые растворяются в хлороформе, эфире или других органических растворителях, но обычно не растворяются в воде. Эти соединения носят общее название липиды. Ясно, что такое грубое разделение, основанное на способности к растворению в определенных типах растворителей, не учитывает общие специфические структурные особенности соединений. Внутри каждой обширной группы веществ можно выделить ряды соединений с общими функциональными группами и характерными структурными особенностями. Низкая растворимость в воде предполагает, что в липидах преобладают неполярные (т. е. углеводородные) фрагменты, а высокополярные группы и группы, обладающие способностью образовывать водородные связи, или вообще отсутствуют, или составляют незначительную часть молекулы. Среди соединений, входящих в класс липидов, встречается немало таких, которые имеют чрезвычайно большое значение для биологии. К ним относятся витамины А и О (разд. 22.2) и стероидные гормоны (разд. 22.2), находящиеся в следовых количествах и все вместе составляющие лишь очень малую часть от общего содержания липидов в любой живой системе. [c.329]


    Иониты применяют в биологии для разделения органических кислот, аминокислот и углеводов, для выделения витаминов, алкалоидов и антибиотиков, для очистки ферментов и других веществ. Ионный обмен приобретает все большее значение в агропочвоведении и в агрохимическом анализе. А на промышленных предприятиях и электрических станциях иониты используют для умягчения или деминерализации воды. [c.302]

    В настоящее время этот метод используют в промышленности для очистки витаминов, гормонов, антибиотиков и кислот от примесей, а также для разделения и концентрирования различных катионов и анионов. Различают несколько разновидностей хроматографического метода адсорбционную, ионообменную, распределительную, газожидкостную, тонкослойную хроматографию. [c.322]

    В биологии ионный обмен используют для разделения органических кислот, аминокислот и углеводов или выделения витаминов и антибиотиков, для очистки ферментов и других веществ. [c.142]

    Хроматография очень широко применяется для разделения витаминов, аминокислот, ферментов, лекарственных и других веществ. [c.177]

    Метод М. С. Цвета широко используется для разделения смесей веществ, которые невозможно отделить другим путем. При помощи этого метода выделены и изучены разнообразные вещества, встречающиеся в весьма малых количествах в растениях и организмах животных пигменты плодов и цветов, витамины, пигменты крыльев бабочек (птерины), алкалоиды и многие другие вещества. [c.591]

    Если экстракты наряду с жирами и другими сопутствуюш ими веш ествами содержат лишь небольшие количества витаминов, разделение удается осуш е-ствить при нанесении относительно больших количеств экстракта (0,1—1 мл) в виде полос (стр. 22) на более толстых слоях (0,4—3 мм). Эти слои можно получить очень равномерными, используя приспособление для нанесения слоев с регулируемой толш иной (см., например, раздел Витамин В ). [c.213]

    Штурм и др. [46] определяли наличие, а-, у- и б-токоферолов в арахисовом масле, элюируя пробы масла хлороформом на силикагеле G. Количественные определения они проводили, элюируя эти соединения после разделения с пластинки и обрабатывая элюаты реактивом Эммери—Энгеля. Эти операции следует выполнять при слабом искусственном свете. Лавледи [47] испытал семь различных элюирующих систем в сочетании с силикагелем G и нашел, что наилучшее разделение р- и -токо-феролов дает смесь циклогексан—н-гексан—изопропиловый эфир—аммиак (20 20 10 1). При опрыскивании реактивом,, представляющим собой смесь 1,6 г фосфомолибденовой кислоты и 0,092 г 2,7-дихлорфлуоресцеина в 60 мл этанола, к которой добавляют 7,6 мл аммиака и затем разбавляют до 100 мл деионизованной дистиллированной водой, можно выделить и обнаружить витамины при их содержании 0,08 мкг/мкл. Полученные пятна не обесцвечиваются несколько месяцев. Этим методом определяли содержание индивидуальных токоферолов в плазме крови и красных кровяных тельцах [48], С тем чтобы количественно оценить содержание витаминов, разделенные вещества элюируют с пластинки, получают их триметилсилильные производные и затем анализируют методом газовой хроматографии. Предел обнаружения при использовании водородного пламенного детектора составляет 0,03 мкг. Уиттл и Пеннок [49] разделяли а-, р-, у- и б-токоферолы методом двумерного хроматографирования на силикагеле G, элюируя пробу в одном направлении хлороформом, и в другом смесью петролейный эфир (40—60°С)—диизопропиловый эфир (5 1). Далее зоны элюировали с пластин и обрабатывали реактивом Эммери—Энгеля (Т-108). Выход составлял около 92%. Pao и др. [50] разделяли эти соединения на силикагеле посредством одномернога элюирования смесью петролейный эфир (60—80°С)—диэтиловый эфир—диизопропиловый эфир—ацетон—уксусная кислота (254 3 32 12 3), используя затем ту же методику количественного определения. В этом случае выход разделяемых продуктов составлял 97—98 %. С помощью этой же системы элюентов Стоу [51] разделял р- и -токоферолы. [c.411]

    В области исследования витаминов К нашли применение методы тонкослойной хроматографии [606—609], однако ни одна из хроматографических систем не позволяет разделить все соединения, относящиеся к этой группе витаминов. Разделение витаминов К проводилось на слоях оксида алюминия, пропитанного раствором р,Р -оксидипропионитрила, силикагеля и силикагеля, пропитанного полиэтиленгликолем 200 [607], кизельгура, пропитанного парафином [608], сорбентов, содержащих нитрат серебра [608, 610], и сорбентов с привитыми октадециальными остатками, [609]. Наиболее селективным является, по-видимому, обращенно-фазовая распределительная ТСХ (см. табл. 5.5). [c.268]

    Другим направлением утилизации ВПП является их вакуумное фракционирование с последующим квалифицированным использованием полученных фракций в соответствии с их составом и свойствами. Так, проработан вариант разделения технического продукта на пять фракций (в порядке возрастания температуры перегонки) 1—преддиольная 2 — диольная 3 — диоксановые спирты 4 — пластификаторы и 5 — флотореагенты. Первая фракция может подвергаться каталитическому расщеплению (см. ниже). Вторая, в основном содержащая МБД, может быть использована для получения изоамиленовых спиртов — ценных полупродуктов для получения синтетических витаминов и душистых веществ. Путем гидрирования третьей фракции — диоксановых спиртов — легко могут быть получены соответствующие диолы, представляющие большой интерес в качестве сырья для получения полиэфирных волокон, антифризов, тормозных жидкостей н т. д. Четвертая фракция может быть использована для пластификации ПХВ. Наконец, высококипящий остаток является даже несколько более эффективным флотореагентом, чем продукт Т-66. [c.708]

    В другом случае ВПП подвергают вакуумному фракционированию с последующим использованием полученных фракций в соответствии с их составом и свойствами. Так, разработан вариант разделения технического продукта на пять фракций (в порядке возрастания температуры перегонки) 1 — преддиольная 2 — диольная 3 — диоксановых спиртов 4 — пластификаторов и 5 — флотореагентов. Первая фракция может подвергаться каталитическому расщеплению (см. ниже). Из второй фракции, в основном содержащей МВД, получают изоамиленовые спирты — ценные полупродукты для производства синтетических витаминов и душистых веществ. Диоксановые спирты применяются для синтеза пластификатора оксопласт. Путем гидрирования диоксановых спиртов легко могут быть синтезированы соответствующие диолЬг, представляющие большой интерес в качестве сырья для получения полиэфирных волокон, антифризов, тормозных жидкостей и т. д. Четвертая фракция может быть рекомендована для пластификации ПВХ. [c.374]

    Трудность разделения гибридных структур высокомолекулярных углеводородов и отсутствие достаточно специфических реакций предельных (парафино-циклопарафиновых) углеводородов гибридного строения являются причиной слабой изученности химической природы этой группы высокомолекулярных углеводородов нефти. До сих пор почти отсутствуют данные о соотношении пента- и гексаметиленовых колец в составе предельной высокомолекулярпой углеводородной части сырых нефтей и нефтепродуктов. В бензино-керосиновых фракциях нефтей для решения этой задачи успешно была использована открытая Зелинским [74] реакция избирательной дегидрогенизации гексаметиленов в присутствии платинового катализатора. За последнее время появились сообщения об использовании этой реакции и при изучении строения таких сложных органических соединений, как политерпены, стерины, желчные кислоты, витамины, гормоны и др. [75]. Однако в литературе не встречалось указаний об использовании метода избирательной каталитической дегидрогенизации нри изучении строения предельных высокомолекулярных углеводородов нефти. Нам представлялась весьма заманчивой и перспективной возможность использования этого метода в комбинации с хроматографией и спектроскопией (инфракрасной и ультрафиолетовой) для более глубокого познания химического строения предельной части высокомолекулярных углеводородов нефти гибридного характера. Но прежде чем воспользоваться этим методом, нада было доказать его применимость для решения указанной выше задачи и проверить экспериментально надежность и воспроизводимость получаемых при этом результатов, показать пределы точности метода. [c.213]

    ВОДОЙ поступает в отстойник 2, снизу которого дренируется вода IV. Сгущенная эмульсия ( нефтяные сливки ) VII обрабатыва ется раствором АСК-2 X и поступает в сепаратор 3. где происходит их разделение на депарафинизат VIII (верхний слой), биомассу X (средний слой) и оду IV (нижний слой). Депарафинизат VIII направляют на промывку в отстойник 4 и затем в сборник готового продукта 5. Биомасса IX проходит специальную очистку и сушку (на схеме не показано), после чего направляется в сборник для белково витаминного концентрата 6. [c.234]

    О. Самуэльсон. Применение ионного обмена в аналитической химии. Издатинлит, 1955, (296 стр.). В книге изложены методы хроматографического анализа, основанные в значительной части на собственных исследованиях автора и его сотрудников. Приведен краткий исторический обзор применения неорганических и органических ионитов, описаны основные свойства ионообменных смол, рассмотрены теории ионного обмена и техника его применения в аналитической химии. Описаны примеры разделения и открытия ионов различных металлов, анионов, углеводородов, алкалоидов, ан гибио-тиков, витаминов и ряда других органических веществ. Описано применение метода для исследования растворов комплексных соединений. [c.489]

    HOHHJOBblE СИТА - природные и синтетические минеральные иониты, например алюмосиликаты, слабо набухают в воде к имеют регулярную кристаллическую решетку, образуемую ионами кремния или алюминия. Ионы щелочных или щелочноземельных металлов мигрируют в узких каналах кристаллической решетки и могут обмениваться с ионами, находящимися в растворе, но только в том случае, если диаметр этих гидратированных ионов столь мал, что они могут проникнуть в каналы кристаллической решетки. Этим пользуются для извлечения из раствора малых ионов и отсеивания более крупных. Полимерные И. с. применяются для отделенйя антибиотиков или витаминов от минеральных солей, для разделения на фракции полимерных ионов й т. д. (см. Молекулярные сита). [c.111]

    ИОНИТЫ — твердые, практически нерастворимые в воде и органических растворителях вещества, способные обце-нивать свои ионы на ионы раствора. Sto природные или синтетические материалы минерального или органического происхождения. Подавляющее большинство современных И.— высокомолекулярные соединения с сетчатой или пространственной структурой. И. делят на катиониты (способные обменивать катионы) и аниониты (обменивают анионы). Катиониты содержат сульфогруппы, остатки фосфорных кислот, карбоксильные, оксифениль-ные группы, аниониты — аммониевые или сульфониевые основания и амины. Обменную емкость И. выражают в миллиграмм-эквивалентах поглощенного иона на единицу объема или на 1 г И. Природные или синтетические И.— катиониты — относятся преимущественно к группе алюмосиликатов. Аниониты — апатиты, гидроксиапатиты и т. д. Метод ионного обмена очень широко используется в промышленности и в лабораторной практике для умягчения или обессоливания воды, сахарных сиропов, молока, вин, растворов фруктозы, отходов различных производств, удаления кальция из крови перед консервированием, для очистки сточных вод, витаминов, алкалоидов, разделения металлов и концентрирования ионов. И. применяют как высокоактивные катализаторы в непрерывных процессах и т. п. [c.111]

    Большинство крупных НПЗ в той или другой форме связано с нефтехимическими процессами. Эта связь иногда основана на том, что сырье для нефтехимического синтеза получается в качестве побочного продукта например, при депарафинизации дизельных фракций с целью снижения их температуры застывания одновременно получают мягкие парафины — ценное сырье для производства белково-витаминных концентоатов (БВК) или синтетических жирных спиртов (СЖС). В других случаях сырье для нефтехимии является целевым продуктом например, на заводах большой мощности со значительными ресурсами бензиновых фракций предусмотрен риформинг фракции 140—180 °С с целью получения высокооктанового бен1зина, а фракцию 62—140°С подвергают риформингу для получения ароматических углеводородов Се— Са. Обычно на этом же НПЗ бывает организован и сложный комплекс разделения изомеров ксилола четкой ректификацией, фракционной кристаллизацией или адсорбцией на цеолитах. Однако последующие синтезы с использованием полученных чистых ароматических углеводородов (например, на основе ксилолов — производство фталевого ангидрида, терефталевой кислоты и далее волокон, смол и т. д.) чаще ведут на отдельном химическом предприятии. [c.307]

    Полиамидный характер цианокобаламина установлен по выделению 6 мол. аммиака при кислотном гидролизе. При кислотном гидролизе витамина В12 горячим раствором соляной кислоты обнаружен красный аморфный осадок, содержащий кобальт, представляющий собой смесь кислот, содержащих от одной до семи карбоксильных групп, разделенных электрофорезом. То обстоятельство, что отщепление -1-аминопропанола-2 происходит после отщепления нуклеотида (I), а также отсутствие основных групп в красном кобальтосодержащем продукте гидролиза позволило заключить, что аминопропиловый спирт этерифицирован фосфорной кислотой и соединен амидной связью с остальной молекулой. [c.682]

    Хш, Xin и XiK — содержание в них компонента г. Обычную Д. применяют для очистки жидкостей от малолетучих примесей п для разделения смесей компонентов, силыго различающихся по относит, летучести вдлекуляр-ную Д.— для разделения и очистки смесей малолетучих и термически нестойких в-в, напр, при выделении витаминов пэ рыбьего жира, растит, масел, и в произ-ве вакуумных масел. См. также Дистилляция нефти. [c.182]

    Идентификацию компонентов смеси проводят по величинам Rf. Количеств, определение в-в в зонах мож.но.осуществлять непосредственно на слое сорбента по площади хроматографич. зоны, интенсивности флуоресценции компонента или его соед. с подходящим реагентом, радиохим. методами. Использ. также автоматич. сканирующие приборы, измеряющие поглощение, пропускание, отражение света или радиоактивность хроматографич. зон. Разделенные зоны можно снять с пластин вместе со слоем, десорбировать компонент в р-ритель и анализировать р-р спектрофотометрически. С помощью ТСХ можно определить в-ва в кол-вах от Ю до 10 г ошибка определения не менее 5—10% число определяемых компонентов не более 20—30. ТСХ широко использ. для разделения и анализа как неорг.,,так и орг. в-в, в т. ч. синтетических полимеров, лек. ср-в, пестицидов, аминокислот, липидов, ПАВ, витаминов, стероидов. [c.584]

    Молекулярную Д. применяют для разделения и очнстки смесей малолетучих и термически нестойких в-в, напр, при выделении витаминов из рыбьего жира, растит, масел и в произ-ве вакуумных масел. См. также Дистилляция нефти, Ректификация. [c.87]


Смотреть страницы где упоминается термин Витамины и разделение: [c.530]    [c.398]    [c.398]    [c.530]    [c.899]    [c.55]    [c.72]    [c.365]    [c.226]    [c.25]    [c.246]    [c.388]   
Газо-жидкостная хроматография (1966) -- [ c.400 ]




ПОИСК







© 2025 chem21.info Реклама на сайте