Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ван-дер-Ваальса скорость

    Наиболее важным из этих факторов является удельное сопротивление частиц, которое определяет возможность применения электростатического осаждения для каждого конкретного случая, связанного с проблемой пылеудаления. Когда частицы или капли попадают на осадительный электрод, они частично разряжаются и прилипают к нему под воздействием молекулярных адгезионных сил типа Лондона-Ван-дер-Ваальса, сил поверхностного натяжения вследствие присутствия влаги и электростатических сил. Степень электростатической адгезии зависит от скорости, с которой [c.463]


    Исследование проводится в сферической системе координат, связанной с центром большой капли (рис. 11.2). В этой системе координат поток внешней жидкости движется относительно большой капли, причем вдали от капли скорость можно считать постоянной, равной скорости осаждения рассматриваемой капли. Другая капля меньшего размера движется вместе с потоком относительно большой капли, обтекает ее и либо коснется ее, либо пройдет мимо. Движение капель из-за малости их размеров можно считать безынерционным. Поэтому траектория маленькой капли относительно большой на больших по сравнению с радиусом большой капли расстояниях совпадает с линией тока внешней жидкости, а на малых расстояниях заметно отклоняется от линии тока, что вызвано как силой взаимодействия капли с внешней жидкостью, так и силами взаимодействия капель. Силы взаимодействия представляют собой гидродинамические, молекулярные и электростатические силы. Гидродинамические силы являются силами сопротивления движению капли, они неограниченно возрастают при уменьшении зазора между поверхностями капель. Молекулярные силы — силы притяжения Ван-дер-Ваальса — Лондона, действующие на малых расстояниях. Электростатические силы — это силы отталкивания, обусловленные двойны- [c.253]

    Результаты, полученные Б. Б. Кудрявцевым [16], показывают, что измерение скорости звука в жидкостях может служить методом изучения силового поля молекул. Кудрявцев [15, 16] показал, что, измеряя зависимость между скоростью звука и молекулярным объемом жидкости при постоянной температуре, можно определить внутреннее давление жидкости. Автор отмечает, что приближенно те же вычисления можно произвести, если известны зависимость скорости звука и плотности жидкости от температуры. Акустические измерения в жидкостях, но мнению Б. Б. Кудрявцева, можно использовать для вычисления постоянной а в уравнении Ван-дер-Ваальса и зависимости этой величины от температуры. [c.452]

    Полимерцементные материалы относятся к композиционным вяжущим, получаемым на основе неорганической составляющей (портландцемент, глиноземистый цемент, гипс и др.) в сочетании с органическим компонентом [20]. В качестве органического компонента используются водорастворимые материалы (эпоксидные, карбамидные и фура-новые смолы, производные целлюлозы и др.) и водные дисперсии полимеров (поливинилацетат, латексы, эмульсии кремнийорганических полимеров). Применяются также мономерные и олигомерные соединения, которые полимеризуются при гидратации вяжущего материала под действием отвер-дителей и инициаторов, температуры, рН-среды и т. п. Полимерный компонент вводится либо в воду затворения, а затем используется при приготовлении растворной или бетонной смеси, либо вводится в виде порошкообразного компонента в состав сухой смеси на основе вяжущего вещества, а затем при затворении растворной или бетонной смеси водой диспергируется в водной среде, а при твердении растворов полимеризуется [10]. Свойства получаемых материалов зависят от многих факторов вида и качества цемента, вида полимера, полимерцемент-ного отношения (П/Ц), водоцементного отношения (В/Ц) и др. Полимерцементное отношение определяется как отношение массовой доли полимера (в расчете на сухое вещество) и цемента в композиционном вяжущем. Для полимерцементных материалов характерно отношение П/Ц > 0,2-0,4, когда полимерная фаза образует в цементном камне органическую структуру. При П/Ц = 0,2-0,25 кристаллизационно-коагуляционная структура цементного камня в местах дефектов (полы, трещины) укрепляется полимерной составляющей, что и обусловливает формирование более прочной и эластичной структуры. При П/Ц > 0,25 полимер образует непрерывную полимерную сетку. В полимерцементных композициях не наблюдается взаимодействие между органической и неорганической фазами [20]. Органические фазы взаимодействуют с гид-ратными фазами только за счет ионных и водородных связей и сил Ван-дер-Ваальса. В присутствии полимерных добавок изменяется кинетика гидратации портландцемента, причем с ростом П/Ц наблюдается замедление скорости взаимодействия цемента с водой. [c.295]


    Высвобождение из комплекса при его дроблении некоторой части входящих В него молекул также подтверждает физическую природу комплексообразования. Некоторые исследователи [5, 15] считают, что взаимодействие карбамида с н-алканами аналогично взаимодействию их с цеолитами. Однако точка зрения на структуру комплекса как на физическое явление не подтверждается величиной энергии связи углеводорода с карбамидом, приходящейся на каждую группу СН2. Установлено [I, 15], что она равна 6,7 - 11,76 кДж, в то время как силы Ван-дер-Ваальса равны всего 4,19 кДж на каждую СН2. Другие исследователи [25, 2б] относят кристаллические комплексы углеводородов и их производных с карбамидом к чисто химическим соединениям, поскольку реакция комплексообразования подчиняется общим законам течения химических реакций, в частности закону действующих масс. Изменение условий комплексообразования оказывает влияние на равновесие, скорость образования комплекса, эффективность разделения и на другие пока- [c.36]

    Различают следующие виды сорбции 1) абсорбция—проникновение газа в массу сорбента (абсорбента), что в результате дает твердый раствор абсорбция характеризуется малой скоростью и длительным временем для завершения 2) адсорбция—поверхностная сорбция или уплотнение газа (пара) на поверхности сорбента (адсорбента) за счет сил притяжения (силы Ван-дер-Ваальса). Скорость адсорбции зависит от характера поверхности на гладких поверхностях она протекает с очень большой скоростью, на пористых—замедляется (диффузия в тонкие поры), но весь процесс в том и другом случаях протекает в несколько секунд или минут 3) капиллярная конденсация—сорбция пара или газа с конденсацией в порах адсорбента, которая протекает очень быстро 4) хемосорбция—адсорбция паров или газов на поверхностях силами остаточных валентностей с образованием химического соединения в виде мономолеку-лярного слоя сюда же относятся, по существу, и процессы активированной адсорбции (стр. 116). [c.93]

    Впервые сечение захвата для сильно различающихся по размерам частиц с учетом гидродинамического взаимодействия между ними было определено в работе [106]. Задача решалась в следующей постановке. Пусть и Я 2 — радиусы сближающихся частиц и пусть Относительная скорость движения частиц, пока они находятся на большом расстоянии друг от друга, равна V. При сближении частиц между ними начинают действовать гидродинамические силы, возникающие вследствие выдавливания разделяющей их пленки жидкости, и силы Ван-дер-Ваальса. При сближении капель на расстояние между их поверхностями б сумму этих сил можно записать в виде [c.86]

    Энтропия (37, 38)—термодинамическая координата состояния, отвечающая теплообмену. Неизмеряемая функция состояния системы, определяемая вторым началом термодинамики. Мате.матичсский аппарат термодинамики фактически построен на использовании свойсти внутренней энергии и энтропии. Особое значение в химии имеет в связи с вычислением химических потенциалов и констант равновесия химических реакций. Вычисление (62) идеального газа (75, 83) газа Ван-дер-Ваальса (77) статистические расчеты (207, 220, 221). Возрастание энтропии при необратимых процессах связано с дополнительным источником теплоты — некомпенсированной теплоты Клаузиуса (284) — переходом в теплоту потерянной части работы. Важным разделом линейной термодинамики необратимых процессов является вычисление скорости возрастания энтропии (источник энтропии). [c.317]

    Определяя Ua, можно вычислить скорость коагуляции, а также, пользуясь уравнением Ван-дер-Ваальса, оценить границы области, в которой частицы золя находятся в равновесии с агрегатами даже в отсутствие сил отталкивания — дезагрегация идет за счет энтропии смешения. Такие системы оказываются агрегативно-равновесными даже в присутствии большого избытка электролита. В этом случае потенциальный барьер исчезает и два минимума сливаются в один, причем глубина его в реальных условиях (с учетом того, что 2/г ф 0) может быть небольшой. Согласно расчетам Мартынова и Муллера, область нечувствительности гидрофобных коллоидов достаточно широка, увеличиваясь с уменьшением константы Гамакера А, концентрации частиц V, их радиуса, а также с увеличением толщины прослойки Я. [c.254]

    Абсорбция и адсорбция газов зависят от переноса молекул газа из общей массы к поверхности жидкости или твердого тела. В случае жидкости молекулы газа в дальнейшем диффундируют во всем объеме жидкости, тогда как на поверхности твердого тела они удерживаются физическими (Ван-дер-Ваальса) или химическими (хемосорбция) силами. Когда поверхность жидкости или твердого тела вступает в контакт с покоящимся газом, диффузия молекул газа протекает по законам молекулярной диффузии, и скорость ее зависит от температуры и давления газа и типа газовых молекул. Скорость переноса молекул Na в мольных единицах на единицу площади за единицу времени описывается законом Фика  [c.103]

    Таким образом, под влиянием сил Ван-дер-Ваальса скорость коагуляции возрастает на фактор (см. стр. 163) [c.159]


    Перед коалесценцией масляных шариков водные пленки становятся настолько тонкими, что разрываются, вызывая разрушения адсорбционного слоя эмульгатора. Скорость утончения водных пленок можно контролировать по вытеканию жидкости или по вязкости потока внутри пленок. Однако эти экспериментальные методы не всегда точны. Известно (см. гл. И), что толщина пленки онределяется расклинивающим давлением при взаимодействии электрических двойных слоев, а сжатие происходит благодаря центробежному полю и силам притяжения Ван-дер-Ваальса в тонких пленках. Поэтому, если электростатическое отталкивание уравновешивается центробежным давлением, толщина пленки должна составить —8,4 А. [c.131]

    Для ускорения процесса очистки воды от взвеси ее фильтруют через слой зернистой загрузки (песка, керамзита, антрацита и других материалов). В зависимости от скорости фильтрования наблюдается различное распределение взвеси в теле фильтра. При медленной скорости взвесь задерживается верхними слоями фильтра, а при больших скоростях взвешенные вещества адсорбируются в толще фильтрующего слоя, так как в этих условиях гидравлические силы препятствуют образованию пленки. При фильтровании через зернистую загрузку происходит физическая адсорбция загрязнений на зернах фильтра за счет нескомпенсированных сил Ван-дер-Ваальса. Практика показала, что чем крупнее зерна загрузки и чем больше скорость фильтрования, тем на большую глу бину проникают загрязнения. Это явление объясняется тем, что у крупной загрузки меньше удельная поверхность, чем у мелкой, поэтому у нее слабее поверхностная энергия, способная удерживать загрязнения. [c.141]

    Коксообразование идет по реакции второго порядка по концентрации асфальтенов в растворе. Энергия активации в этом случае близка нулю, так как является, по существу, константой скорости диффузии ( 1 5 ккал/моль), — константа скорости выделения ассоциатов из раствора —очень мало зависит от температуры ( 2 0), а энергия активации Е- распада ассоциатов асфальтенов на дискретные молекулы, определяемая силами Ван-дер-Ваальса между молекулами асфальтенов (точнее, разностью энергий взанмодействня молекул асфальтенов между собой и молекулами растворителя), также невелика (видимо, 2—5 ккал/моль). Прн дальнейшем повышении температуры растворяющая способность растворителя по отношению к асфальтенам понижается настолько, что асфальтены с большой скоростью выделяются из раствора в виде микрокапель второй жидкой фазы и образование кокса происходит в основном в результате закоксрвывания этих [c.121]

    При фильтровании мелкие частицы соприкасаются с зернами песка или осадка так близко, что между ними проявляются силы Ван-дер-Ваальса, обусловливающие физическую адсорбцию. Это подтверждается скоростью осветления воды за 5—10 с — время, характерное для физической адсорбции, вместо 20—40 мин нри коагулировании в обычных условиях. [c.145]

    Адсорбция является чисто поверхностным процессом, который заключается во взаимодействии молекул или ионов адсорбата (газа или растворенного вещества) с поверхностью адсорбента за счет сил Ван-дер-Ваальса, водородных связей, электростатических сил. Скорость такого процесса велика, и адсорбция протекает мгновенно, если поверхность адсорбента легкодоступна для молекул адсорбата. В пористых адсорбентах адсорбция протекает медленнее и с тем меньшей скоростью, чем тоньше поры адсорбента. Для физической адсорбции характерны такие признаки, как большая скорость, обратимость, уменьшение количества поглощенного адсорбата с повышением температуры. [c.326]

    С и давлениях до 25,3 МПа и сравним найденные из опыта значения константы скорости реакции с вычисленными по методу активных соударений. Число активных соударений будем подсчитывать с учетом того, что свойства реакционной смеси отображаются уравнением Ван-дер-Ваальса, т. е. применим уравнение (61). [c.179]

    Изменение скорости реакции, вычисленное указанным способом, оказывается в полном согласии с опытными данными при всех давлениях, за исключением наивысшего, т. е. 25,3 МПа здесь, очевидно, поправка Ван-дер-Ваальса уже не является достаточной. [c.180]

    Pg МОЖНО считать мерой отклонения объемных соотношений для растворов от идеального случая, поскольку было показано что относительные отклонения от простого закона смесей для сжимаемостей ряда растворов также прямо пропорциональны произведению с с . Из уравнения (1276) следует, что Pg обратно пропорционально квадрату объема. В этом проявляется аналогия между Pg и внутренним давлением в газах, которое соответствует члену а/ в уравнении Ван-дер-Ваальса. Поскольку Р зависит от объема, то эта величина является также функцией давления. Это обстоятельство может оказаться весьма важным при изучении жидкостей, у которых величины сжимаемости сравнительно велики. При условиях, в которых применяют уравнения (123) и (124), Р рассматривается в качестве постоянной величины для данной системы при постоянном составе и температуре. Такое упрощение оправдано тем, что эти уравнения описывают данные по сжимаемости во всей изученной области давлений и позволяют проводить экстраполяцию до атмосферного давления. В табл. 55 приведены некоторые значения сжимаемости, вычисленные для давления в 1 бар с помощью уравнения (124) из величин Р , полученных из данных по сжимаемости при 1000 бар, а также значения, полученные из данных по скорости звука [111] в растворах при 1 атм. Совпадение результатов не оставляет желать ничего лучшего. [c.262]

    Активированная адсорбция, или хемосорбция, имеет большое значение при высоких температурах. В этом случае силы притяжения молекул газа к поверхности адсорбента являются силами химическими, аналогичными силам валентности. На это указывает высокое значение теплоты адсорбции—от 20 до 100 ккал/моль. Связи, возникающие между поверхностью и молекулами газа, столь же сильны, как связи в молекулах стойких химических соединений. Энергия активации имеет в этом случае значительно большую величину (5—20 ккал/моль), в связи с чем скорость хемосорбции в тех же самых условиях значительно меньше скорости адсорбции по Ван-дер-Ваальсу. Хемосорбция происходит только тогда, когда возможно химическое взаимодействие газа с поверхностью часто она бывает необратима. [c.49]

    Валентно насыщенные газовые молекулы (КНд, СО2,1, или атомы инертных газов) взаимодействуют между собой. Это проявляется хотя бы в том, что при их сближении в результате повышения давления и при снижении их скорости в результате понижения температуры все газы переходят в конденсированное состояние жидкое или твердое. При умеренных давлениях взаимное притяжение молекул сказывается также в повышенной сжимаемости газов по сравнению с рассчитанной по уравнению идеальных газов. Об отталкивании молекул свидетельствует то, что, начиная с определенного предела при очень высоких давлениях, сжимаемость газов становится меньше рассчитанной по уравнению идеальных газов. Поскольку первое уравнение состояния газов, учитывающее эти факты, было предложено голландским физи-ко-химиком Ван-дер-Ваальсом, межмолекулярным силам было присвоено его имя. [c.275]

    Изоэнтропийное сжатие моноксида углерода от 300 К и 10 атм до 50 атм протекает со скоростью 1 моль/с. Параметры уравнения Ван-дер-Ваальса, выраженные в атм. К, л/моль, имеют следующие значения а = 1,485, b = 0,03985. Теплоемкость идеального газа [c.538]

    Скорость адсорбции молекул вещества зависит от механизма адсорбционного процесса. Молекулы газа могут удерживаться на поверхности слабыми ван-дер-ваальсовы-ми силами притяжения, которые действуют между вседхи молекулами, или же более сильными связями химического типа (хемисорбция), зависящими от химических характеристик адсорбированной молекулы и поверхности. Хотя адсорбция, обусловленная силами Ван-дер-Ваальса может способствовать протеканию реакций, так как адсорбированные молекулы проводят в непосредственной близости друг от друга более долгое время, чем при столкновениях внутри газа, хемисорбция обычно более эффективно влияет на скорость реакций, что связано с изменением химической структуры адсорбированной молекулы. Для некоторых хемисорбционных процессов разумно предположить, что наличие химической связи приводит к появлению по крайней мере мономолекулярного слоя, адсорбированного на поверхности. Приведенный ниже анализ скорости адсорбции для этих процессов был впервые выполнен Лэнгмюром. [c.513]

    Прямое крашение. Этот метод крашения из водных растворов является классическим методом крашения. Краситель или лейкосоединение (см. далее) вместе с другими добавками (уксусная кислота, раствор щелочи или солей) помещают в красильную ванну. Текстильную ткань вносят в красильную ванну и все ее содержимое нагревают 1—2 ч до 60—100 °С. В зависимости от типа волокна, его предварительной обработки протравами (пропитками) и типа красителя образуется связь или между волокном и красителем, или между красителями и протравой. Волокно извлекает краситель из раствора. При этом желательно, чтобы краситель возможно более глубоко продиффундировал в глубь волокна и связался также и внутри волокна. Интенсивность окраски регулируют количеством взятого красителя. Затем ткань извлекают из красильной ванны, промывают и высушивают. Для приготовления красильного раствора вместо воды могут быть использованы органические растворители — прежде всего спирты и тетрахлорэтилен. Красители, которые нерастворимы в воде или органических растворителях дисперсные красители) очень тонко измельчают й суспендируют в воде, получая дисперсию. Этим методом окрашивают преимущественно ацетатный шелк и полиэфирные волокна. Волокно действует в этом случае как твердый растворитель, который экстрагирует краситель из ванны и удерживает его за счет сил ван-дер-Ваальса. Более экономичны непрерывные способы крашения. В этих случаях ткань нроц скают по системе валов через красильную и промывочную ванны, а затем через сушильные камеры. Особенно интересен термозольный метод крашения, используемый прежде всего для крашения синтетических волокон. Окрашиваемый материал сначала с достаточно высокой скоростью пропускают через концентрированный раствор или суспензию красителя, так называемую плюсовочную ванну, где он пропитывается (плюсуется) раствором красителя. После отжима избыточного раствора красителя ткань через сушильную камеру поступает в камеру с горячим воздухом. Там в течение одной — двух минут при 200 °С происходит фиксация красителя, причем он не должен ни возгоняться, ни разлагаться. В заключение ткань промывают и высушивают. [c.738]

    Устойчивость дисперсных систем или, иначе говоря, скорость их коагуляции зависит от знака и величины суммарной энергии взаимодействия, обусловленной сложением ионно-электростатической энергии отталкивания и энергии притяжения Ван-дер-Ваальса — Лондона. [c.44]

    Внутри агрегатов капли удерживаются вместе силами притяжения Лондона — Ван-дер-Ваальса, так что структура агрегатов, очевидно, будет очень сильно ощущать влияние сдвига. Если скорость сдвига возрастает, вязкость будет йадать, потому что вслед за первоначальным сжатием структуры при очень малом сдвиге агрегаты разрушаются и жидкость непрерывной фазы высвобождается. Таким образом, отношение эффективных объемов постепенно уменьшается до тех пор, пока не будет соответствовать теоретическому отношению, если только не будут затронуты эффекты растворения. [c.265]

    Для членов данного гомологического ряда молекулярная скорость звука связана линейной зависимостью с другими аддитивными свойствами вещества, например парахором, постоянной Ъ в уравнении Вап-дер-Ваальса, молекулярным магнитным вращзнием, критическим объемом и некоторыми другими физико-химическими свойствами, [c.454]

    Механизм действия флокулянтов основан на следующих явлениях адсорбции молекул флокулянта на поверхности коллоидных частиц ретикуладии (образование сетчатой структуры) молекул флокулянта слипании коллоидных частиц за счет сил Ван-дер-Ваальса. При действии флокулянтов между коллоидными частицами образуются трехмерные струюуры, способные к более быстрому и полному отделению от жидкой фазы. Причиной возникновения таких структ)ф является адсорбция макромолекул флокулянта на нескольких частицах с образованием между ними полимерных мостиков. Коллоидные частицы заряжены отрицательно, что способствует процессу взаимной коагуляции с гидроксидом алюминия или железа. При добавлении активированного силиката увеличивается в 2-3 раза скорость осаждения и повышается эффект осветления. [c.75]

    По ряду основных признаков физическая адсорбция имеет определенное схо,1ство с конденсацией газов (паров) обратимость и сравнительно большая скорость достижения равновесия, близкие энтальпии процессов. Это объясняется общностью природы межмо-лекулярных взаимодействий, приводящих к конденсации и к физической адсорбции — в обоих случаях главную роль играют нековалентные по природе силы Ван-дер-Ваальса и в некоторых случаях— водородные связи. Природа этих сил определяет еще одну очень важную особенность физической адсорбции — неспецифич-ность. Один и тот же газ практически одинаково адсорбируется на поверхности различных веществ, при этом он практически никак не влияет на структуру поверхностного слоя твердого адсорбента, а сами молекулы адсорбата сохраняют свою индивидуальность и десорбируются неизменными. [c.317]

    Физическая адсорбция, или адсорбция Ван-дёр-Ваальса, характеризуется сравнительно малым тепловым эффектом (около 5 ккал1моль), т. е. величиной того же порядка, что и теплота испарения, а также высокой скоростью установления равновесия. Это указывает на то, что энергия активации процесса очень мала (около I ккал1моль). Адсорбция такого рода обусловлена межмолекулярными силами Ван-дер-Ваальса, действующими между молекулами газа и поверхностью адсорбента. [c.49]

    Радиальная гидродинамическая компонента силы обозначена через Гидродинамическая сила представляет собой сумму внешней силы, действующей на частицу со стороны обтекающего потока жидкости, который может как приближать частицу к поверхности, так и удалять частицу от нее, и силы вязкого сопротивления слоя жидкости, разделяющего поверхности частицы и цилиндра. Заметим, что сила вязкого сопротивления отрицательна. Через Р обозначена молекулярная сила притяжения Ван-дер-Ваальса. Эта сила направлена по линии, соединяющей центры частицы и кругового сечения цилиндра (линия центров). Поскольку уравнения Навье — Стокса в приближении Озеена линейны, то силы и поля скоростей от этих сил аддитивны. [c.227]

    При отсутствии внепгних сил (гравитационных, центробежных, электрических) незаряженные частицы, диспергированные в покоящейся жидкости, должны быть распределены однородно. В действительности между частицами всегда есть взаимодействие электростатическое отталкивание (для заряженных частиц, окруженных двойными электрическими слоями), молекулярное притяжение (силы Ван-дер-Ваальса), гидродинамические силы (силы, возникающие при взаимном влиянии полей скоростей жидкости и частиц). [c.207]

    Рассмотрим движение пузырьков в ламинарном потоке. Их взаимодействие обусловлено, с одной стороны, разностью скоростей движения относительно жидкости за счет различных размеров, а с другой — молекулярными силами взаимодействия. За счет различных размеров происходит их сближение на относительно больших по сравнению с радиусами пузырьков расстояниях. На малых расстояниях возникают силы сопротивления, которые препятствуют сближению. На этих же расстояниях начинает действовать сила притяжения Ван-дер-Ваальса, которая обеспечивает эффективный захват пузырьков. Заметим, что если происходит сближение пузырьков с полностью заторможенной поверхностью, то сила гидродинамического сопротивления при малых зазорах 5 между поверхностями пузьгрьков сингулярна Ff, 8 , поэтому столкновение пузырьков невозможно без учета силы Ван-дер-Ваальса. При сближении пузырьков со свободной поверхностью В отличие от первого случая эта особенность [c.605]


Смотреть страницы где упоминается термин Ван-дер-Ваальса скорость: [c.116]    [c.115]    [c.251]    [c.296]    [c.264]    [c.294]    [c.49]    [c.97]    [c.268]    [c.142]   
Процессы химической технологии (1958) -- [ c.0 , c.34 , c.49 , c.147 , c.399 ]




ПОИСК





Смотрите так же термины и статьи:

Ван-дер-Ваальса



© 2025 chem21.info Реклама на сайте