Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перенапряжение и скорость коррозии

    Для второго из выбранных объектов, т. е. для железа, стандартный электродный потенциал равен —0,44 В. Поэтому здесь, так же как и в случае цинка, следует считаться с реакцией выделения водорода, и, следовательно, условия стационарности будут заданы уравнением (24.2). Однако в отличие от цинка здесь совершенно иное соотношение токов обмена металла и водорода. Ток обмена железа имеет порядок 10 з А-см- , а для водорода на железном электроде в кислых растворах он достигает А-см 2. Можно ожидать поэтому, что стационарный потенциал железа в условиях кислотной коррозии должен заметно отличаться от его обратимого потенциала он будет смещен в сторону положительных значений, г. е. в направлении равновесного потенциала водородного электрода. Этот вывод согласуется с экспериментальными данными и находит дополнительное подтверждение в том, что железо ведет себя в некоторых интервалах pH подобно водородному электроду. Скорость коррозии железа также можно вычислить, если только известны его стационарный потенциал и перенапряжение водорода на нем. [c.493]


    Таким образом, присутствие в пинке примесей свинца — металла с более высоким перенапряжением водорода — не увеличивает, а несколько снижает скорость коррозии. Иные соотношения получаются, если в качестве примеси присутствует серебро. В этом случае скорость выделения водорода при одной и той же величине перенапряжения выше на серебре, чем на цинке, и отношение скоростей составляет здесь = Отсюда легко найти изменение скорости коррозии при переходе от идеально чистого цинка к техническому, содержащему 1% серебра  [c.495]

    Смешанный диффузионно-кинетический контроль протекания катодного процесса, т. е. соизмеримое влияние на скорость катодного процесса перенапряжения ионизации и замедленности диффузии кислорода, по-видимому, наиболее распространенный случай коррозии металлов с кислородной деполяризацией, и довольно часто замедленность обеих стадий катодного процесса определяет скорость коррозии металлов. Зтот случай коррозии металлов, [c.244]

    Движение морской воды влияет на скорость диффузии кислорода, что приводит к росту скорости коррозии металлов до некоторого предела с увеличением скорости движения воды (см. рис. 250). Одновременно с ростом скорости движения морской воды увеличивается доля кинетического контроля процесса, т. е. роль перенапряжения ионизации кислорода. [c.399]

    При контакте магния с другими металлами скорость коррозии магния определяется величиной перенапряжения водорода иа этих металлах. Такие металлы, как железо, никель, медь, имеющие низкое перенапряжение водорода, сильно понижают коррозионную стойкость магния менее опасны контакты магния с металлами, имеющими высокое перенапряжение водорода (свинец, цинк, кадмий). [c.274]

    При анодном процессе (кривая аз ) коррозия идете водородной деполяризацией, так как протекает при потенциалах более отрицательных нормального водородного потенциала Янг А , з> Д аз, т. е. наблюдается катодный контроль. Скорость коррозии может быть понижена при наличии (В сплаве включений, повышающих перенапряжение водорода. [c.7]

    Основным фактором, определяющим скорость коррозии многих металлов в деаэрированной воде или неокисляющих кислотах, является водородное перенапряжение на катодных участках металла. В соответствии с определением поляризации, водородное перенапряжение — это разность потенциалов между катодом, на котором выделяется водород, и водородным электродом, находящимся в равновесии в том же растворе, т. е. разность измер — (—0,059 pH). Таким образом, водородное перенапряжение измеряют точно так же, как и поляризацию. Обычно считают, что водородное перенапряжение включает лишь активационную поляризацию, соответственно реакции 2Н" - -На — ё, но часто полученные значения содержат еще и омическое перенапряжение, а иногда и концентрационную поляризацию. [c.56]


    Увеличение водородного перенапряжения обычно приводит к уменьшению скорости коррозии стали в кислотах, но присутствие в стали серы или фосфора увеличивает скорость ее коррозии. Возможно, это происходит из-за низкого водородного перенапряжения на сульфидах или фосфидах железа, существующих в стали или образовавшихся на поверхности в результате реакции железа с НаЗ или соединениями фосфора в растворе. Возможно также [7], что эти соединения инициируют реакцию анодного растворения железа Ре -> Ре+ - - 2ё (понижая активационную поляризацию) или изменяют соотношение площадей анодов и катодов. Решение этого вопроса требует дальнейших исследований. [c.58]

    Эта реакци я быстро протекает в кислой , но медленно в щелочной или нейтральной водной среде. Например, скорость коррозии железа в деаэрированной воде при комнатной температуре менее 0,005 мм/год. Скорость выделения водорода в этом случае зависит от наличия в металле примесей с низким водородным перенапряжением. На поверхности чистого железа также может выделяться водород, поэтому железо высокой чистоты корродирует в кислотах, но значительно медленнее, чем техническое. [c.100]

    Легирование серой и фосфором заметно интенсифицирует растворение в кислотах. Эги элементы образуют соединения с низким водородным перенапряжением к тому же они уменьшают анодную поляризацию, так что коррозия железа увеличивается вследствие ускорения и катодного, и анодного процессов. Скорости коррозии сплавов в растворах кислот представлены в табл. 6.4. [c.125]

    Согласно сказанному выше, сталь, прошедшая холодную механическую обработку, корродирует в природных водах с той же скоростью, что и отожженная [1]. Однако в кислотах скорость коррозии нагартованной стали увеличивается в несколько раз (рис. 7.1). Традиционно многие авторы приписывали этот эффект остаточному напряжению в металле, которое увеличивает склонность к коррозии. Но эта интуитивная концепция, вероятно, неверна, так как остаточная энергия, приобретенная в результате холодной деформации (по калориметрическим данным обычно <7 кал/г), недостаточна, чтобы обусловить значительное изменение энергии Гиббса [3]. Вероятно, наблюдаемое увеличение скорости коррозии обусловлено скорее сегрегациями атомов углерода или азота по дефектным местам, образовавшимся вследствие пластической деформации (рис. 7.2), чем влиянием самих дефектов (рис. 7.3). На этих участках водородное перенапряжение ниже, чем на цементите или на железе [2], и это, возможно, наиболее важный фактор. Второстепенными факторами являются [c.130]

    Существенно на скорость выделения водорода влияет природа катодных участков. Некоторые металлы, например платина, кобальт, никель и др., катализируют выделение водорода, и катодный процесс на них протекает с высокими скоростями. Поэтому, если в составе металла или сплава находятся металлы, катализирующие выделение водорода, то коррозия с выделением водорода может ускоряться за счет этих компонентов в сплаве. Другие металлы, например, ртуть, свинец, кадмий, цинк, не катализируют или слабо катализируют катодное выделение водорода, и катодный процесс на них протекает медленно. Поэтому присутствие в составе сплава таких компонентов или не меняет скорости коррозии основного металла, или снижает ее из-за уменьшения площади поверхности, занимаемой основным металлом, на которой происходят и растворение металла и выделение водорода. Влияние природы металла на скорость выделения водорода количественно можно оценить по перенапряжению водорода на различных металлах (см. табл. 22). Чем ниже перенапряжение водорода, тем большей каталитической активностью к реакции выделения водорода обладает металл и тем выше скорость выделения водорода при данном потенциале катодного участка, а следовательно, и больше скорость коррозии. Чем выше перенапряжение, тем меньше и скорость выделения водорода при данном потенциале катодного участка, тем ниже скорость коррозии металла. Таким образом, скорость коррозии с выделением водорода может быть замедлена снижением температуры и уменьшением концентрации ионов Н , очисткой металла от примесей, катализирующих выделение водорода, а также изоляцией поверхности металла. Перемешивание раствора практически не влияет на скорость выделения водорода. [c.216]

    На рис. 11.4 видно, что скорость коррозии зависит от разности между равновесным потенциалом металла фр и окислительно-восстановительным потенциалом окислителя фр. Если повысить перенапряжение водорода на металле (например, добавить к кислоте ПАВ), то катодная поляризационная кривая сместится в отрицательную сторону (кривая 1). Допуская при этом, что анодная кривая а не сдвигается, а наклон поляризационных кривых сохраняется тот же самый, получим значение потенциала металла ф , , при котором =1 . и, [c.469]


    Растворение цинка и переход его в раствор в виде ионов происходят на месте, которое приобретает отрицательный потенциал. На месте выделения водорода потенциал положительный. Возникает местный короткозамкнутый элемент. Однако перенапряжение выделения водорода на цинке велико, и скорость коррозии ограничена замедленностью стадии разряда ионов водорода. В случае примеси меди с низким перенапряжением выделения водорода скорость растворения увеличивается за счет ускорения разряда ионов водорода. [c.38]

    Скорость коррозии металла можно определить по уравнениям поляризационных кривых, связывающих перенапряжение т с плотностью поляризующего тока 1  [c.140]

    Контактно выделившийся металл не образует сплошного покрытия, а присутствует на поверхности в виде отдельных островков типа коралловых атоллов с просветами между ними, частично заполненными единичными адатомами. Подобная картина наблюдается и при контактном выделении ряда других металлов — кадмия, свинца, таллия. Такой осадок не создает замкнутых препятствий анодному растворению основного металла, повышая в то же время перенапряжение водорода. В соответствии с этим падает и скорость коррозии [c.85]

    Включе1[ия инородного металла не столь малы, Потенциал таких включений отличен от потенциала основного металла. В этом случае, помимо величины перенапряжения окислительной полуреакции на металле включения, на скорость коррозии может повлиять поляризующее действие (см. 104) металла включения на основной металл. Если металл включения имеет больший потенциал, чем основной металл, то последний поляризуется анодно и скорость его коррозии возрастает. Например, алюминий, содержащий включения железа или меди, корродирует значительно быстрее, чем алюминий высокой чистоты. [c.556]

    При отсутствии пассивности скорость коррозии металлов в условиях сильной аэрации определяется в основном перенапряжением ионизации кислорода. В этом случае скорость коррозии металлов сильно зависит от природы и содержания катодных примесей или структурных составляющих чем ниже перенапряжение ионизации кислорода на микрокатодах и чем выше содержание этих микрокатодов, тем больше скорость катодной реакции [см. уравнения (488а) и (4886)], а следовательно, и коррозионного процесса. [c.243]

    А8С1з, 812(804)3), катионы которых восстанавливаются на микрокатодах и повышают перенапряжение водорода. Эффект действия небольшой добавки мышьяковистого ангидрида (0,045% в пересчете на мышьяк) на скорость коррозии углеродистой стали в серной кислоте представлен на рис. 211. Эти замедлители неэффективны в процессах коррозии металлов с кислородной деполяризацией. [c.314]

    Следует различать коррозию идеально чистого металла и технического металла. Для идеально чистого металла скорость коррозии определяется перенапряжением и скоростью выделения водорода на этом же металле. Например, для чистого цинка, погруженного в раствор кислоты, стационарный потенциал почти совпадает с равновесным потенциалом цинка и значительно (более 0,5 в) отличается от равновесного потенциала водорода. Поэтому процесс разряда водорода можно считать полностью необратимым и скоростью ионизации водорода в уравнении (VIII, 368) пренебречь  [c.402]

    Согласно адсорбционной теории, критический потенциал объясняют с точки зрения конкуренции адсорбции С1" и кислорода на пассивной пленке [32, 37]. Металл имеет большее сродство к кислороду, чем к ионам С1 , но если значение потенциала повышается, концентрация С1 возрастает, так что в конце концов ионы С1 могут заместить адсорбированный кислород. Наблюдаемый индукционный период — это время, которое требуется для успешной конкурирующей адсорбции на благоприятных участках поверхности металла, а также время проникновения С1" в пассивную пленку. Как было показано выше, в отличие от кислорода, адсорбция ионов С1" снижает анодное перенапряжение для растворения металла, чем объясняется более высокая скорость коррозии на участках, где произошло замещение. Другие анионы (например, ЫОз или 80 ), не разрушающие пассивную пленку и не вызывающие питттинг, конкурируют с С1" за места на пассивной поверхности. В связи с этим необходимо сдвигать потенциал до еще более высоких значений, чтобы увеличить концен- [c.87]

    В кислой среде (pH < 4) диффузия кислорода перестает быть лимитирующим фактором и коррозионный процесс частично определяется скоростью выделения водорода, которая, в свою очередь, зависит от водородного перенапряжения на различных примесях и включениях, присутствующих в специальных сталях и чугунах. Скорость коррозии в этом диапазоне pH становится достаточно высокой, и анодная поляризация способствует этому (анодный контроль). Низкоуглеродистые стали корродируют в кислотах G меньшей скоростью, чем высокоуглеродистые, так как для цементита Feg характерно низкое водородное перенапряжение. Поэтому термическая обработка, влияющая на количество и размер частиц цементита, может значительно изменить скорость коррозии. Более того, холоднокатаная сталь корродирует в кислотах интенсивнее, чем отожженная или сталь со снятыми напряжениями, так как в результате механической обработки образуются участки мелкодисперсной структуры с низким водородным перенапряжением, содержащие углерод и азот. Обычно железо не используют в сильнокислой среде, поэтому для практических нужд важнее знать закономерности его коррозии в почвах и природных водах, чем в кислотах. Тем не менее существуют области [c.107]

    Действие большинства ингибиторов травления связано с образованием на поверхности металла адсорбционных слоеб, по-видимому, не толще одного монослоя. Они существенно препятствуют разряду ионов Н+ и переходу в раствор ионов металла. В частности, иодиды и хинолин именно таким образом ингибируют коррозию железа в соляной кислоте [31 ]. Некоторые ингибиторы затрудняют в большей степени протекание катодной реакции (увеличивают водородное перенапряжение), чем анодной, другие— наоборот, однако в обоих случаях адсорбция происходит, вероятно, по всей поверхности, а не на отдельных анодных или катодных участках, и в какой-то степени тормозятся обе реакции. Следовательно, при введении ингибитора в кислоту не происходит значительного изменения коррозионного потенциала стали (<0,1 В), в же время скорость коррозии может существенно уменьшаться (рис. 16.3). [c.269]

    На рис. 132 представлен типичный ход катодной кривой для этого случая (катодная кривая 1). Здесь, как легко видеть, перенапряжение анодного и катодного нроцеосов практически не влияет 1на скорость коррозии. Зато она может сильно расти под 27  [c.419]

    Таким образом, скорость коррозии с водородной деполяризацией определяется в основном перенапряжени- [c.298]

    Анализ зависимости поляризуемости цинковьгх покрытий от содержания в них железа показывает влияние структурных составляющих сплавов. В однофазной области твердого раствора процесс коррозионного разрушения контролируется скоростями анодной и катодной реакций, и скорость коррозии составляет 0,05 г/(м ч). Наибольшая коррозионная стойкость приходится на область диаграммы железо — цинк, содержащей 8-17 % цинка, что связано, по-видимому, с появлением Г-фазы, являющейся химическим соединением на базе твердого раствора, стехиометрический состав которого соответствует формуле Резгпю- Наличие химического соединения вызьшает увеличение перенапряжения катодного процесса более значительное, чем для чистого цинка. Скорость коррозии сплава при содержании 8,5 % цинка составляет 0,02 г/ (м ч), а при 17,3 % - 0,01 г/ (м ч). Дальнейшее увеличение [c.55]

    В активных средах для анодного покрытия скорость коррозии определяется разностью потенциалов контактирующих электродов (покрытие - основа), а длительность защиты - скоростью растворения покрытия и его толщиной. Поэтому повышение коррозионной стойкости самого покрытия способствует увеличению долговечности системы покрытие — основа. В активных средах анодное растворение металлов протекает при поляризации анодного процесса менее значительной, чем для катодного. Контактный ток пары в этом случае определяется в основном перенапряжением катодного процесса и связан со вторичными явлениями, изменяющими поведение контактных пар. Методы, повышающие катодный контроль например, повышение перенапряжения водорода для сред с водородной деполяризацией или уменьшение эффективности работы катодов, в том числе за счет вторичных явлений, будут способствовать снижению скорости саморастворения покрытия и, наоборот, катодные включения с низким перенапряжением восстановления окислителя стимулируют коррозионное разрушеше системы. [c.71]

    На силу тока в активном, пассивном и перепассивном состоянии металла оказывает влияние pH и температура. Если молекулы воды участвуют в процессе растворения, то с ростом pH области основных состояний металла смещаются в сторону более отрицательных значений потенциала. При этом перенапряжение анодного растворения металла в активном состоянии и состоянии перепассивации уменьшается. Скорость коррозии металла в пассивном состоянии в большинстве случаев уменьшается с ростом [c.29]


Смотреть страницы где упоминается термин Перенапряжение и скорость коррозии: [c.494]    [c.505]    [c.261]    [c.261]    [c.331]    [c.49]    [c.78]    [c.519]    [c.55]    [c.64]    [c.112]    [c.118]    [c.132]    [c.362]    [c.389]    [c.24]    [c.24]    [c.7]    [c.55]    [c.37]    [c.519]   
Коррозия пассивность и защита металлов (1941) -- [ c.338 , c.341 , c.344 , c.445 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозия перенапряжения

Перенапряжение

Скорость коррозии



© 2025 chem21.info Реклама на сайте