Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жидкостная хроматография адсорбат

    Как и в газо-жидкостной хроматографии, в ГАХ селективность адсорбента определяется электростатическими и специфическими силами взаимодействия адсорбата с поверхностью адсорбента. Эти силы имеют ту же природу, что и в газо-жидкостной хроматографии, т. е. это силы ориентационного, индукционного, дисперсионного эффектов, эффектов водородной связи и комплексообра-зования, подробно рассмотренные в гл. VHI. [c.129]


    В адсорбционной газовой и особенно жидкостной хроматографии обнаруживаются самые разнообразные виды межмолекулярных взаимодействий адсорбат — адсорбент — от универсальных неспецифических межмолекулярных взаимодействий, которые проявляются в той или иной степени во всех случаях, до различных специфических взаимодействий, в которых наблюдаются ориентационные электростатические взаимодействия, водородная связь, образование комплексов с переносом заряда и лигандообменных комплексов. Поэтому при хроматографировании разных ио природе веществ используются разные виды межмолекулярных взаимодействий с другой стороны, хроматография позволяет изучать сами межмолекулярные взаимодействия. [c.10]

    Приведенное подразделение межмолекулярных взаимодействий помогает в выборе подходящих партнеров для использования разных видов межмолекулярных взаимодействий, что увеличивает селективность при решении практических задач. В этом отношении полезна следующая, в известной степени условная, классификация адсорбатов и адсорбентов по их способности к различным видам межмолекулярного взаимодействия в условиях газовой и молекулярной жидкостной хроматографии. [c.11]

    В жидкостной хроматографии на полярном адсорбенте наблюдается высокая селективность разделения полярных изомеров и других соединений, отличающихся как пространственным строением, так и распределением электронной плотности в молекуле. Например, жидкостно-адсорбционная хроматография на силикагеле с гидроксилированной поверхностью из неполярного или слабо-полярного элюента позволяет хорошо разделять о-, м- и -изомеры ароматических соединений, содержащих полярные группы в этих положениях. Селективность к таким изомерам в жидкостной хроматографии значительно выше селективности в газовой хроматографии на том же силикагеле. Это связано с тем, что в жидкостной хроматографии разделение происходит преимущественно за счет различий в специфических межмолекулярных взаимодействиях между полярными группами дозируемого вещества (адсорбата) и полярными группами пли ионами адсорбента, так как неспецифические межмолекулярные взаимодействия молекул ад- [c.293]

    В жидкостной хроматографии на полярном адсорбенте (например, на силикагеле с гидроксилированной поверхностью) из неполярного углеводородного или слабополярного элюента удерживание полярных молекул, не имеющих длинных углеводородных цепей, преимущественно определяется специфическим межмолекулярным взаимодействием вещество — адсорбент. Неспецифическое взаимодействие с адсорбентом метильных и метиленовых групп адсорбата в этом случае не играет существенной роли, так как эти группы имеются и в углеводородном элюенте. Вклад неснецифического взаимодействия вещество — элюент в этом случае также мал по сравнению с вкладом специфического взаимодействия адсорбент — вещество. [c.219]


    Поскольку метод газо-адсорбционной хроматографии имеет определенные преимущества перед жидкостной хроматографией, применение в качестве адсорбатов паров органических веществ в токе газа-носителя привело к более удовлетворительным результатам [3—5]. [c.101]

    На чистой поверхности высокодисперсной канальной сажи, обработанной при 3 000° С, углеводороды дают хроматограммы с растянутой задней границей, что свидетельствует об остаточной неоднородности этой сажи. Покрытие поверхности сажи даже небольщим количество полиэтиленгликоля сильно уменьшает времена удерживания всех веществ и увеличивает симметричность пиков. Характерно то, что при нанесении на поверхность сажи в среднем около трех монослоев полиэтиленгликоля величины удельных удерживаемых объемов У на 1 г жидкой фазы начинают возрастать. Очевидно, что при таких количествах жидкой фазы уже начинается растворение адсорбатов на этой поверхности и имеет место обычная газо-жидкостная хроматография. [c.496]

    Выше было отмечено, что в жидкостной хроматографии, кроме межмолекулярного взаимодействия адсорбат — адсорбент надо учитывать межмолекулярные взаимодействия элюента с адсорбентом и веществом в соответствии с закономерностями адсорбции из растворов, поэтому в ЖАХ селективность разделения [c.213]

    В жидкостной хроматографии имеются исключительно большие возможности управления селективностью разделения. В газовой хроматографии с практически неадсорбирующимся газом-носителем вещества разделяются за счет различий только неспецифических (в основном дисперсионных) межмолекулярных взаимодействий или суммы специфических и неспецифических межмолекулярных взаимодействий адсорбат — адсорбент. В жидкостной же хроматографии за счет влияния подвижной фазы удерживание веществ и селективность разделения может определяться значительно большим разнообразием различных видов межмолекулярных взаимодействий. Здесь можно реализовать случай, когда удерживание определяется преимущественно специфическим взаимодействием с адсорбентом при применении неполярного или слабополярного элюента (так называемый прямой вариант жидкостной хроматографии) или преимущественно неспецифическим взаимодействием с адсорбентом при применении полярного элюента (так называемый обращенно-фазовый вариант жидкостной хроматографии), а также их различными комбинациями. [c.217]

    На рис. 14.18 приведено разделение соответствующих пар изомеров алкилбензолов и полиметилбензолов. Из рисунка видно, что селективность а для этих пар соединений непрерывно возрастает (главным образом, за счет возрастания специфического межмолекулярного взаимодействия адсорбат — элюент в ряду полиметилбензолов). Из измерений А (ДО) в этом ряду оценен вклад одной группы СНг в увеличение специфического взаимодействия адсорбат — элюент. Установление вкладов, вносимых в термодинамические характеристики удерживания отдельными звеньями и функциональными группами молекул и олигомеров, весьма важно, поскольку они, как уже отмечалось выше, должны составить экспериментальную основу развития полуэмпирической теории удерживания в жидкостной хроматографии. Отметим, что определение таких вкладов в случае белковых аминокислот позволило предсказывать времена удерживания (при определенных оН) ряда пептидов. [c.244]

    Одна из главных трудностей, возникающих при анализе таких веществ, — малые скорости движения по слою, т. е. длительное время анализа. Для уменьшения времени анализа необходимо увеличивать скорость потока, однако при этом, согласно уравнению ван Деемтера, возрастает высота тарелки и, следовательно, размывание полосы. При этом в основном играет роль внешняя массопередача, так как внутренняя для высококипящих веществ протекает быстро. Следовательно, увеличение скорости потока требует мер для ускорения внешней массопередачи. Наиболее радикальным является уменьшение давления в десятки и сотни раз, так как коэффициент диффузии обратно пропорционален давлению. Это обстоятельство определило развитие вакуумной хроматографии, позволяющей увеличить скорость потока и сократить время анализа высококипящих веществ без заметного увеличения высоты тарелки. Другим путем ускорения анализа высококипящих веществ, как это ни парадоксально, является увеличение давления до сотен атмосфер. При этом как бы делается шаг в сторону жидкостной хроматографии, так как при высоких давлениях газ-носитель имеет большое сродство к адсорбату, коэффициент распределения уменьшается и, следовательно, время анализа тоже уменьшается. В последнее время появилось несколько исследований по хроматографии в условиях высокого давления. [c.47]

    Эти предварительные замечания помогают разобраться в общем характере изотермы адсорбции из растворов и во влиянии на нее химии поверхности адсорбента и природы адсорбата и растворителя. При достаточно высоких концентрациях подразделение компонентов раствора на растворенное вещество и растворитель теряет смысл. В случае бинарных растворов ради удобства будем называть адсорбатом преимущественно адсорбирующийся компонент раствора. Как и при адсорбции газов, значительную помощь при изучении адсорбции из растворов, в особенности из разбавленных растворов, оказывает хроматография, в данном случае открытая М. С. Цветом жидкостная адсорбционная хроматография. [c.249]


    По мере того как развивалась теория газовой хроматографии и выяснялись зависимости хроматографических характеристик анализируемых веществ, адсорбентов и жидких неподвижных фаз от их физико-химических свойств, стало возможно не только предсказывать параметры хроматографического разделения на основе термодинамических и кинетических характеристик, но и подойти к решению обратных задач — определению физико-химических параметров по данным, получаемым при помощи газовой хроматографии [I—3]. Наибольшее значение газовая хроматография приобрела для определения термодинамических характеристик. Газо-адсорбционную хроматографию широко используют для измерения изотерм адсорбции. Из данных по изменению величин удерживания с температурой можно вычислять также энтропию и свободную энергию адсорбции. На основе хроматографического изучения адсорбции удается исследовать характер взаимодействия молекул адсорбата и адсорбента. Газо-жидкостная хромато рафия позволяет путем определения величин удерживания вычислять растворимость, теплоту и энтропию процесса растворения, а также измерять давление пара и температуру кипения анализируемых веществ, рассчитывать константы равновесия реакций в растворах и в газовой фазе и определять коэффициенты адсорбции на межфазных границах (жидкость—газ, жидкость—жидкость, жидкость—твердое тело). [c.223]

    В главе XVIII показано, что теплота адсорбции зависит от геометрической и электронной структуры молекулы адсорбата и адсорбента. Следовательно, изменяя природу адсорбента (или неподвижной жидкости в газо-жидкостной хроматографии), мояс-но изменить времена удерживания и даже последовательность выхода компонентов. Для -алканов теплота адсорбции является линейной функцией числа атомов углерода (п) в молекуле (см. стр. 492, 493), поэтому при одной и той же температуре колонки [c.564]

    Из теории жидкостной хроматографии уже известно, что форма элюируемого ника определяется изотермой распределения или — в случае адсорбционной хроматографии—изотермой адсорбции. Уилсон (1940) первым обсудил количественные зависимости. Он предполагал, что в колонке мгновенно устанавливается сорбционное равновесие между твердым телом и растворенным веществом, и применил материальный баланс для граничных слоев веществ, движущихся вдоль колонки. Было показано, что если рассматривать баланс растворенного вещества на узком участке хроматографической колонки, то его увеличение (или уменьшение) характеризуется разностью входящего и выходящего количеств. Дальнейшее развитие этих положений проведено Вейссом (1943), де Во (1943) и Глюкауфом (1947), и была показана возможность расчета формы хроматограммы но виду изотермы почти для всех типов изотерм в классификации БЭТ и, наоборот, возможность расчета изотерм по форме хроматограммы (Грегг и Сток, 1958). Если g — концентрация адсорбата [c.465]

    Рассмотрим пример использования жидкостных хроматографов серии Милихром максимальное давление, которое может создать шприцевой насос хроматографа, - 7 МПа. Реально давление не должно превышать 5.5 МПа, оптимальным давлением является 3 МПа. Такое давление создается при прокачке колонки 80x2, заполненной адсорбентом с диаметром частиц 5 мкм, с объемной скоростью 100 мкл/мин. Расход в 100 мкл/мин. является предпочтительным и с точки зрения минимальной высоты Н ВЭТТ. Колонки среднего качества имеют высоту //ВЭТТ порядка 3,5 ёр, т.е. эффективность колонки должна быть 80 мм / 5x3,5 = 4560 тт. Таким образом, длина колонки, ее эффективность и объемная скорость подачи элюента уже заданы. Нетрудно определить и длительность среднего анализа. Наилучшая эффективность хроматографической колонки обеспечивается для адсорбатов с К = 7-9, что для колонок 80x2 составляет удерживаемый объем 1000 - 1300 мкл. Количество элюента, необходимого для проведения всего анализа, обычно берут в 1,3 раза больше оптимального, т.е. 1700 мкл. При расходе 100 мкл/мин. время анализа составляет 17 мин. При большом количестве достаточно жестко заданных хроматографических и аппаратурных параметров химик-аналитик реально оптимизирует лишь [c.29]

    Вопрос о природе селективности разделения есть основной вопрос любого физико-химического исследования в хроматографии, особенно в жидкостной хроматографии, где селективность во многом определяется структурой раствора элюента и взаимодействием элюента с адсорбатом и адсорбентом. В общем случае принято говорить, что селективность есть конечный результат действия межмолекулярных взаимодействий типа "адсорбат-элюент", "элюент-адсорбент", "адсорбат- адсорбент" и "адсорбат-элюент-адсорбент". Проблему регулирования селективности при разработке хроматографических методик можно обозначить очень просто каким образом составить оптимальную хроматографическую систему, используя 2-3 коммерческих адсорбента н набор стандартных для ВЭЖХ растворителей. [c.30]

    Однако на основе этой физической теории имеется возможность классифицировать молекулы адсорбата и адсорбенты по определенным тинам взаимодействий. Подобная классификация, качественно связывающая энергию взаимодействия с электронной структурой молекул адсорбата и поверхпости адсорбента, предлон епа Киселевым [15—17]. Она основана на термодинамических исследованиях многих систем в условиях малого занолиения поверхности адсорбента и изучении их физическими методами (ИК-спектроскопия, ЭПР) и позволяет топко классифицировать большое разнообразие типов межмолекулярных взаимодействий, возникающих в практических условиях, в том числе и при жидкостной хроматографии (ТСХ). [c.146]

    Жидкостная хроматография может быть использована для изучения адсорбции из растворов и определения константы Генри и изотермы адсорбции из растворов тремя путями. Во-первых, константа Генри и изотерма адсорбции из растворов, особенно в области весьма малых концентраций, могут быть определены из самнх хроматограмм адсорбата (положительно адсорбирующееся вещество из разбавленных растворов) при элюировании из колонны, заполненной исследуемым адсорбентом, растворителем. Во-вторых, изотерма адсорбции из растворов может быть определена методом фронтальной жидкостной хроматографии [3]. В-третьих, жидкостная хроматография на аналитических колоннах (с тем же или другим адсорбентом) может быть использована в качестве вспомогательного аналитического метода для определения концентраций равновесных растворов над изучаемым адсорбентом при статических определениях изотермы адсорбции, когда равновесие заведомо достигается. Ранее для этих целей, в частности для изучения адсорбции из [c.171]

    Этот метод, предложенный Глюкауфом для варианта жидкостно-адсорбционной хроматографии, был в значительной степени усовершенствован и применен для газо-адсорбционной хроматографии. Если определение изотермы адсорбции проводят по десорбционной (тыльной) ветви элюционного пика, то задача сводится к установлению зависимости между площадями полос (ограниченных слева ординатой, проведенной из точки максимума пика несорбирующегося газа, и справа — десорбционной ветвью пика сорбата) и их высотами. В этом случае при количестве адсорбента g и определенной температуре вводят различные объемы пробы адсорбата. при заданной температуре и точно измеренной скорости газа-носителя [2]. Расчет ведут по следующим формулам  [c.189]


Смотреть страницы где упоминается термин Жидкостная хроматография адсорбат: [c.81]    [c.529]    [c.6]    [c.13]    [c.86]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.2 , c.28 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.2 , c.28 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбат

Жидкостная хроматография хроматографы

Хроматография жидкостная

Хроматография жидкостно-жидкостная

Хроматографы жидкостные



© 2025 chem21.info Реклама на сайте