Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматограф жидкостной особенности работы

    Жидкостная адсорбционная хроматография (ЖАХ) наиболее часто используется для разделения нефтяных систем и концентрирования сернистых соединений. Различные варианты ЖАХ описаны, например, в работах [22—28]. Она имеет особенности, которые вытекают из многообразия в составе нефтей и нефтепродуктов, в частности широкий градиент функционального и концентрационного распределения отдельных групп соединений, различающихся по адсорбционной активности неудовлетворительную селективность практически отсутствие вероятности выделения узких групп соединений. [c.82]


    Как правило, в хромато-масс-спектрометрах используются серийный газовый (ГХ) или жидкостной (ЖХ) хроматографы, условия их работы идентичны вид газа-наполнителя, его расход, параметры хроматографических колонок, выбор неподвижных фаз, параметры температурных программ. В ХМС применяются насадочные, но чаще более чувствительные капиллярные колонки, особенно когда анализируются следовые количества определяемых соединений. [c.885]

    Возникновение новых методов разделения и их применение для решения важных проблем каждый раз способствовали развитию химической науки. Так произошло в начале 1970-х гг., когда профессор Роберт Б. Вудвард из Гарвардского университета впервые использовал новый в то время метод современной жидкостной хроматографии (ЖХ) в работах по синтезу витамина В,2 [2]. В то время даже наиболее опытные химики-синтетики столкнулись с необходимостью решения проблемы разделения. Профессор Вудвард так описывал сложившееся положение ...в настоящее время перед нами возникла опасность потерять стереохимические особенности наших веществ в упомянутых трех центрах. И это ставит перед нами сложную задачу разделения... Если на стадии гептаметилбисноркобиринатов оставить неопределенной стереохимию трех упомянутых центров, то затем все равно возникнет проблема стереохимии, и конечно, связанная с ней проблема разделения очень близких по свойствам молекул [3]. Решение возникших проблем разделения стало возможным при использовании ЖХ. Процитируем опять слова Вудварда Здесь я должен сказать, что решающую роль во всей нашей дальнейшей работе имело использование жидкостной хроматографии высокого давления для очень трудных разделений, с которыми мы столкнулись, начиная с этого момента. Возможности метода жидкостной хроматографии высокого давления с трудом может оценить химик, который не использовал этот метод этот метод является относительно простым, и, я уверен, он станет необходимым в каждой лаборатории органической химии в очень недалеком будущем [4]. Очень скоро метод ЖХ стал основным в исследованиях профессора Вудварда. Степень его использования как стандартного метода видна из следующего высказывания Данная кобириновая кислота была [c.9]

    В работах [16] описано применение жидкостной хроматографии высокого давления для определения полициклических ароматических углеводородов в дыме и воде, в выхлопных газах автомашин и табачном дыме. Метод особенно эффективен для анализа каменноугольных смол, продуктов углехимии и нефтехимии [17]. [c.324]


    В дальнейшем химики всего мира приобрели в газо-жидкостной хроматографии мощный и вместе с тем простой универсальный метод разделения и анализа сложнейших смесей самых разнообразных, в основном органических, веществ. Для анализа нужно, чтобы компоненты смеси были летучи и стойки при температуре разделительной колонки летучесть может быть минимальная и лишь достаточная для обнаружения детектором паров, выходящих вместе с газом-носителем из колонки. Детекторы в настоящее время обладают настолько высокой чувствительностью, что отмечают концентрацию паров 10 объемн, % и менее, например пламенно-ионизационный детектор. Это позволяет, с одной стороны, разделять и анализировать высококипящие вещества (при условии, если неподвижные жидкие фазы практически нелетучи), с другой стороны, работать с микрограммовыми количествами анализируемой смеси. Это особенно выгодно, когда компоненты смеси термически мало устойчивы, а исследователь располагает лишь весьма малыми количествами анализируемого материала. [c.104]

    Итак, масс-спектрометрия — чрезвычайно информативный метод установления строения. Но для нее, конечно, нужно иметь индивидуальное веш ество, т. е. произвести предварительное разделение смеси, в которой веш е-ство находится. Такой результат достигается непросто и часто (особенно при работе с метилированными сахарами) требует сложной (и в экспериментальном, и в приборном отношении) хроматографической техники. Наивысшее современное достижение в этой области — объединение газо-жидкостного хроматографа и масс-спектрометра в одном приборе, т. е. анализ смесей методом, получившим название хромато-масс-спектрометрии. [c.74]

    Хроматографист, начинающий работать в области высокоэффективной жидкостной хроматографии, должен ознакомиться с основами качественного анализа. Качественный анализ применяют для идентификации известного продукта, полученного новым путем или находящегося в смеси с другими продуктами. Он необходим при выделении из сложных биологических, химических смесей различных компонентов, что особенно важно в медицине, криминалистике, экологии, для контроля за нахождением некоторых лекарств и химических продуктов и их метаболитов в биоматериалах. Знакомство с основами качественного анализа поможет избежать типичных ошибок, например, отличить примеси в образце от примесей в растворителе или проверять чистоту вещества не на одной длине волны спектрофотометра, а на разных и т.д. [c.168]

    Трудности могут возрастать в зависимости от сложности образца, числа компонентов, которые должны быть выделены из-за несоизмеримости концентраций необходимых компонентов и особенно в случае близости свойств соединений. Трудные разделения более дороги, требуют большего времени и могут накладывать ограничения на количества материала, которые могут быть переработаны, а также на степень чистоты выделяемых продуктов. В случае сложных разделений лучше всего разбить разделение на несколько простых стадий и затратить время на оптимизацию условий для наиболее трудных ступеней разделения. Жидкостную хроматографию следует рассматривать только как одно из многих средств разделения, которое имеется в распоряжении химиков при работе с трудными образцами. [c.16]

    Разделение с помощью жидкостной хроматографии обычно требует значительных затрат времени. Особенно длительное время приходится затрачивать при работе с классическим вариантом хроматографии, в котором жидкость протекает через колонку под действием силы тяжести. Много времени требует также проведение препаративного разделения. Однако с помощью таких вариантов метода, как хроматография в сухих колонках (разд. 7.4.3) и [c.432]

    К сожалению, работы, в которых содержались бы детальные кинетические данные по изомеризации алканов, особенно на гетерогенных катализаторах, пока еще немногочисленны. По-видимому, это связано отчасти и с недостаточной точностью методов анализа смесей изомеров. Надо надеяться, что разработанные в последнее время такие методы, как масс-спектроскопия и газо-жидкостная хроматография, смогут устранить этот недостаток, так как, несомненно, что подробный кинетический анализ изомеризационных процессов во многом способствовал бы пониманию их механизма.  [c.99]

    Особенно широкое распространение получил новый метод исследования— газо-жидкостная хроматография, явившийся результатом последовательного развития идеи хроматографического разделения М. С. Цвета. Благодаря таким особенностям, как высокая степень разделения, большая чувствительность, относительная простота оборудования и главным образом небольшое время, требующееся для проведения анализа, этот метод должен сыграть значительную роль в расширении знаний о составе нефтей. Со времени появления в печати работы А. Джеймса и А. Мартина в 1952 г. газо-жидкостная хроматография находит г.се растущее применение в исследовательской практике, в основном для разделения сложных органических смесей, успешно конкурируя с общепринятым методом разделения путем аналитической дистилляции [52]. [c.113]


    Многие исследователи, начинающие работать с высокоскоростной жидкостной хроматографией, имеют опыт работы с газовой хроматографией. Хотя этот опыт и может быть использован, необходимо помнить, что между этими методами имеется ряд существенных различий. Например, в ГХ межколоночными эффектами, такими, как влияние медле1Нного ввода пробы и мертвого объема, часто пренебрегают, в то время как в ЖХ (особенно прп использовании высокоэффективных колонок) этого делать нельзя. Далее будут особо отмечены основные различия между газовой и жидкостной хроматографией. [c.11]

    В книге подробно изложена теория работы капиллярных газохроматографических колонок и обоснованы их преимущества перед наполненными колонками при осуществлении анализа сложных многокомпонентных смесей (нефтяные фракции, продукты метаболизма, загрязнения окружающей среды). Детально описана техника приготовления капиллярных колонок для газо-жидкостной и газоадсорбционной хроматографии, специфические приемы работы с ними и особенности интерпретации результатов. Особое внимание [c.3]

    В жидкостной хроматографии наблюдение за ходом разделения производится измерением концентрации раствора, выходящего из колонки. Изучаемый раствор наливают в специальный сосуд, из которого его передавливают в колонку с адсорбентом, а наблюдают за изменениями концентрации раствора, вытекающего из колонки в кювету. Кювета должна иметь очень малую емкость для быстрой смены раствора, что исключает возможную конвекцию. Измеренные концентрации изображают графически—как функцию объема раствора, прошедшего через фильтр. Полученная характерная кривая позволяет определять качественный и количественный состав изучаемого раствора смеси компонентов. Этот метод имеет ряд преимуществ по сравнению с обыкновенной хроматографией он особенно удобен для анализа смесей бесцветных веществ, при работе с окрашенными адсорбентами, например с активированным углем разделение различных компоне 1-тов в растворе, вытекающем из фильтра, в ряде случаев значительно полнее, чем в колонке. Этот же метод особенно пригодсч для количественной оценки адсорбционных процессов в колонке его можно применять почти для всех смесей различных компонентов, встречающихся на практике. [c.95]

    Широко распространен в газо-жидкостной хроматографии пламенно-ионизационный детектор. При работе этого детектора происходит ионизация анализируемых веществ в процессе вх сгорания в пламени водорода. Образовавшиеся ионы рекомбинируют на электродах. Возникающий при этом ионный ток пропорционален концентрации ионов и напряжению, приложенному к электродам. Механизм образования ионов в пламени водорода вклрочает стадию термодеструкции (С последующим окислением, в результате которого и происходит образование ионов. Чувствительность пламенно-ионизационных детекторов примерно пропорциональна числу атомов углерода в молекуле. Особенно четко эта пропорциональность наблюдается в ряду углеводородов. Чувствительность детектора снижается при анализе кислородсодержащих соединений. Детектор удобен для анализа проб, содержащих пары воды, но мало пригоден для анализа неорганических соединений. Пламенно-ионизационные детекторы имеют высокую чувствительность, которая сильно снижается при наличии паров органических веществ в потоке водорода и газа-носителя. Ионизационные токи чистого пламени водорода порядка —10 А, поэтому даже одна капля малолетучего оргаиическог-о соединения, лопавшая в линию водорода, может вызвать большой фоновый ток в течение длительного времени, что проявится в дрейфе нулевой линии. Чувствительность детектора можно понизить и неправильно выбранной температурой анализа, приводящей к испарению жидкой стационарной фазы. [c.299]

    В жидкостной хроматографии применяют селею-ивные детекторы (амперометрический, флуориметрический и др.), способные детектировать очень малое количество вещества. Очистка образца до ввода в жидкостной хроматограф минимальна, Циередко его вводят без предварительной обработки, и без получения производных, что часто невозможно при применении других методов анализа. Наконец, в жидкостной хроматографии возможно создание уникального диапазона селективных взаимодействий за счет изменения подвижной фазы, что значительно улучшает разрешающую способность всей хроматографической системы. Работа с микропримесями налагает ряд требований на весь процесс разделения. Особенное значение имеет разрешающая способность колонки, выбор детектора, предварительная обработка образца и построение калибровочного графика. Правильный выбор условий хроматографирования позволяет повысить чувствительность, надежность и воспроизводимость результатов, что очень актуально при работе с микропримесями. [c.84]

    Автомобили с дизельными двигателями становятся все более популярными, что повышает вероятность появления еще одного источника загрязнения. Конгресс США поручил Управлению по охране окружающей среды изучить особенности выхлопных газов дизелей и их воздействие на здоровье человека ( Закон о чистоте воздуха , август 1977 г.). Результаты этого исследования легли в основу требований к выхлопным газам дизелей, обязательных для всех моделей автомобилей, выпускаемых с 1982 г. Соответственно исследователи интенсифицировали усилия, направленные на разработку методов, позволяющих охарактеризовать выхлопные газы дизелей [10—14]. Многокомпо-нентность образцов и необходимость их возможно более полной характеристики явились причиной использования таких чрезвычайно сложных аналитических систем, как газо-жидкостная хроматография — масс-спектрометрия (ГЖХ—-МС), газо-жидкостная хроматография с пламенно-ионизационным детектированием (ГЖХ — ПИД), высокоэффективная жидкостная хроматография (ВЭЖХ), газо-жидкостная хроматография — фурье-спектроскопия в инфракрасной области (ГЖХ — ИК—ФС). Для фракций, обладавших мутагенными свойствами, применялись также биологические методы анализа. Ряд компонентов удалось идентифицировать только благодаря применению взаимно дополняющих методов анализа, например ГЖХ —МС, ГЖХ —ПИД и ГЖХ —ИК —ФС. Методом ГЖХ —МС можно легко определить молекулярную массу компонента и получить данные о его структуре, но этот метод менее информативен при идентификации функциональных групп напротив, такая информация легко может быть получена методом ГЖХ — ИК — ФС. В то же время последний метод не позволяет различать гомологичные соединения [15]. Этот пример наглядно демонстрирует необходимость применения в ряде случаев наиболее совершенных и информативных инструментальных методов анализа, как бы дороги они ни были. Стоимость работ должна соответствовать важности объекта изучения. В частности, если объект связан с контролем загрязнения окружающей среды, которое может иметь очень серьезные экологические последствия, то при- [c.23]

    В ВЭЖХ пробу вводят в дозатор при помощи микрошприцов. Шприцы, применяемые для ввода в петлевые краны-дозаторы, в принципе аналогичны используемым в газовой хроматографии, но снабжены иглой, кончик которой обрезан перпендикулярно оси. Шприцы различаются по способу крепления иглы (вклеенная или сменная) и по уплотнению рабочей пары (притертый металлический плунжер или шток с фторопластовым уплотнением). Самые простые и дешевые шприцы имеют вклеенную иглу и металлический плунжер. Шприцы с фторопластовым уплотнением (Gas Tight) характеризуются повышенной коррозионной стойкостью и герметичностью через уплотнение не происходит утечки газа при его давлении до 0,8—1,5 МПа. Кроме того, они гораздо лете отмываются, а изношенный уплотняющий элемент достаточно просто заменить. Эти шприцы особенно рекомендуются для работы с высокополярными и коррозионно-активными веществами и с подвижной фазами, представляющими собой солевые и буферные растворы. Практически все шприцы со сменной иглой можно применять как в газовой, так и в жидкостной хроматографии нужно только установить в них соответствующую иглу. [c.163]

    Современный хроматограф для ВЭЖХ является прибором, материалы которого в процессе работы подвергаются сильным химическим и механическим воздействиям. Жидкостный тракт хроматографа подвергается воздействию воды, водных растворов кислот, щелочей и солей, при этом нередко при повышенной температуре, а также воздействию разнообразных органических растворителей, окислителей и восстановителей, при этом такое воздействие проводится при самых неблагоприятных условиях— при высоком давлении и на детали, подвергающиеся сильным механическим нагрузкам. Это предъявляет к конструкционным материалам приборов и оборудования чрезвычайно высокие требования, которым не все приборы отвечают, особенно для наиболее сложных условий работы. [c.165]

    Наличие примесей в прпмепяелгых для исследования веществах влияет на условия равновесия и чрезвычайно усложняет анализ смесей. Поэтому исходные вещества должны подвергаться возможно более тщательной очистке. Способ очистки должен выбираться в зависимости от свойств вещества и содержащихся в нем примесей. Применяются физические методы очистки — перегонка, кристаллизация и др., а также химические методы удаления примесей (например, удаление воды с помощью водоотнимающих средств). Для очистки жидких веществ чаще всего используется ректификация, проводимая на обычных лабораторных колонках. Для работы отбирается средняя фракция, которая при необходимости может быть подвергнута повторной перегонке. Критерием чистоты продукта, отбираемого в процессе перегонки, является постоянство физических свойств дистиллата, прежде всего температуры кипения, которую легко контролировать по ходу разгонки. Помимо температуры кипения контролируются чаще всего показатель преломления и удельный вес. Могут, разумеется, контролироваться и другие свойства (например, электропроводность, вязкость). Для оценки степени чистоты следует выбирать такое свойство, которое в наибольшей степени изменяется с изменением содержания примесей и поддается контролю с наибольшей точностью. Помимо измерения физических свойств, следует во всех случаях, когда это возможно, использовать химические и физико-химические методы анализа. Особенно большое распространение для определения чистоты органических веществ получил в последнее время метод газо-жидкостной хроматографии. [c.8]

    Несмотря на то что первые исследователи (Стокс и др.) проделали огромную работу, результаты которой были подтверждены новейшими данными, все же многие из ранних исследований были проведены с неразделенными смесями и нечистыми веществами, что часто приводило к ошибочным выводам относительно структуры и свойств фосфазенов. В течение последних пяти-восьми лет исследования в этой области претерпели быстрый, почти взрывной рост, обусловленный широким интересом к строению фосфазенов и к технологии их получения. В настояш ее время по интенсивности исследовательских работ область фосфазеновых соединений уступает только силиконам. В последние годы фосфазеновые соединения стали предметом ряда обзоров [2—5]. Прогресс облегчался наличием новых взглядов на структуру, химическую связь, механизм реакций и стереохимию, а также разработкой новых эффективных методик разделения, особенно газо-жидкостной и тонкослойной хроматографии, и применением рентгеновского и спектроскопического методов анализа при решении вопросов структуры. [c.5]

    После проведения гидролиза белка полученную смесь аминокислот необходимо разделить и количественно проанализировать. Метод газо-жидкостной хроматографии привлекает своей быстротой и чувствительностью, в особенности метод хромато-масс-спек-трометрии [10]. Разумеется, необходимо перевести свободные аминокислоты в более летучие для ГЖХ производные и в этом состоит трудность. Большинство известных методов включает две реакции образование сложного эфира по карбоксильной группе и ацилирование аминогруппы. Крайне важно, чтобы обе реакции протекали практически нацело, а образовавшиеся производные можно быЛ о бы разделить. Несколько сотен опубликованных за последние 25 лет работ свидетельствуют о трудностях, которые при этом возникают. Карбоксильную группу обычно переводят в сложноэфирную, используя простые радикалы от метила до пентила, в то время как для защиты амино- или иминогруппы популярны iV-трифтораце-тильная и JV-гептафтормасляная группы, так как они позволяют проводить ГЖХ-анализ с высокой чувствительностью при использовании детектора электронного захвата. Трудности связаны с ацилированием гуанидиновой группировки аргинина и термолабильностью производных цистеина из-за реакций -элиминации. Обсуждаемая техника и соответствующая литература коротко изложены в обзоре [11]. [c.260]

    Что касается сорбента и растворителя, то факторы, ответственные за разделение в плоскостной жидкостной хроматографии под давлением, точно те же, что и для обычного варианта тонкослойной хроматографии (под действием капиллярных сил). Различия лищь в постоянных и оптимизированных скоростях потока, а так же возможности использовать длинные пути разделения в случае разделений под давлением. В сочетании эти отличительные особенности дают возможность прогнозируемым образом повышать разрешающую способность на всех участках пластинки без каких-то изменений селективности. Поэтому не представляется слишком целесообразным и осмысленным пытаться воспроизвести какие-то разделения, получавшиеся ранее с использованием обычного варианта ТСХ, или попытаться получить какие-то необычные данные при работе с камерой под давлением лишь затем, чтобы посмотреть, что из этого выйдет и впоследствии опубликовать результаты. Если обнаружатся разительные изменения (а подобные изменения могут быть направлены и в худшую сторону), они не будут (и совершенно точно, что не будут) обусловлены созданием потока под давлением, а будут объяснимы применением сложной подвижной фазы, которая способна разлагаться в ненасыщенной сэндвич-камере (работающей под давлением) и приводить к таким последствиям, при которых получаемая в системе селективность выходит из-под контроля результат оказывается случайным и не заслуживающим публикации. Подобные эффекты расслоения подвижной фазы могут наблюдаться в любой ненасыщенной сэндвич-камере (при давлении или без давления). Не стоит пытаться пользоваться рассмотреннЬ1м Снайдером треуголь- [c.272]

    Основы тонкослойной хроматографии (ТСХ) заложены в 1938 г. сотрудниками ГНЦЛС Н.А. Измайловым и М.С. Шрайбер [37]. Последующие работы Шталя [38] показали универсальную применимость данного метода. В настоящее время ТСХ пока еще по-прежнему остается самым простым, надежным, эффективным и распространенным хроматографическим методом контроля примесей в ЛС (особенно в рамках британского подхода), хотя ее интенсивно потесттола высокоэффективная жидкостная хроматография (ВЭЖХ). [c.464]

    В предлагаемой монографии изложены основы теории и практики метода высокоэффективной жидкостной хроматографии (ВЭЖХ), а также примеры решения наиболее распространенных хроматографических задач при использовании жидкостньк хроматографов серии Милихром . Особое внимание уделено рассмотрению способов подбора хроматографических условий. Книга предназначена для студентов, аспирантов, преподавателей, специалистов в области аналитической химии, а также широкого круга исследователей, применяющих жидкостные хроматографы (особенно жидкостные хроматографы серии Милихром ) для аналитической работы. [c.2]

    Для препаративного разделения веществ и сбора разделенных фракций особенно полезной является жидкостная хроматография высокого разрешения. Этот процесс превосходит традиционные варианты газовой и жидкостной хроматографии по скорости разделения и удобству работы. Кроме того, при использовании этого метода снижается возможность разрушения пробы, так как она не подвергается воздействию высоких температур. Типичный прибор для препаративной жидкостной хроматографии высокого разрешения показан на рис. 7.27. [c.470]

    Фирма Лахема производит твердые носители для га-зо-жидкостной хроматографии — Хезасорб и Хроматон Ы, Хроматон К-супер, Хроматон М-супер, инертон и инертон-супер. Указанные носители по своим основным параметрам (пористая структура, химический состав, эффективность) близки к американским Хромосорбам XV и Р [2, 10], Хроматон N обладает у ким распределением пор и не содержит микропор, снижающих эффективность разделения. Низкое содержание каталитически активньгх оксидов типа КгОз, прежде всего РегОз, позволяет работать при высоких температурах и низкой степени смачивания, не опасаясь каталитического разложения разделяемых веществ. Высокая химическая чистота и малая удельная поверхность обуславливают адсорбционную инертность носителя, которая очень важна, особенно при разделении сильнополярных веществ на носителе с низкой степенью смачивания. [c.276]

    Наиб, распространены динамич. пиролизеры со след, типами нагреват. элементов 1) проводник (филамент) в форме нити, спирали, ленты, чашечки и т. д., нагреваемый электрич. током время разогрева образца в зависимости от электрич. схемы — от неск. секунд до тысячных долей секунды 2) проволока из ферромагн. материала, разогреваемая высокочастотным электромагн. полем до точки Кюри данного материала. В зависимости от материала проволоки т-ру пиролиза можно менять в интервале 300— 1000 °С время разогрева определяется диаметром проволоки в мощностью высокочастотного генератора и составляет обычно 0,01—0,1 сек 3) трубчатая печь, к-рую заранее нагревают время разогрева образца — неск. секунд. В пиролизерах первых двух типов исследуемое в-во наносят на нагреват. элемент, гл. обр. в виде р-ра. Пиролизер типа печи особенно удобен для работы с тв. образцами. Использ. также пиролиз по действием луча лазера. Для получ. воспроизводимых результатов условия пиролиза сгрото стандартизируют. Анализ продуктов нироли-за проводят методами газо-жидкостной и газоадсорбционной хроматографии. Широко использ. капиллярные колонки (см. Капил- [c.442]

    Газо-адсорбционная хроматография обладает рядом преимуществ перед газо-жидкостной не только в случае анализа газов и паров низкокипящих жидкостей, но также и при разделении высококипящих жидкостей и твердых тел (высокие температуры колонок), когда неподвижные жидкие фазы оказываются летучими и нестабильными. Газо-адсорбционную хроматографию можно с успехом применять и для разделения среднекинящих смесей. Стабильность адсорбентов делает газо-адсорбционную хроматографию особенно важной при препаративном разделении многих смесей, в том числе при разделении больших количеств веществ в колоннах большого диаметра. Однако ее развитию мешает отсутствие адсорбентов однородной геометрической структуры с разными величинами удельной поверхности, разными размерами пор и достаточно разнообразным, но в каждом случае однородным химическим составом поверхности, В последние годы сделаны попытки создать такие адсорбенты основные пути их синтеза уже намечены и проработаны. Необходимо быстро организовать промышленный выпуск таких адсорбентов и развить дальнейшие исследовательские работы по улучшению уже созданных в лаборатории адсорбентов и по синтезу и изучению новых. [c.195]

    По сравнению с методом жидкостной хроматографии (см. разд. П1.2.2.7.1) метод бумажной хроматографии свяяап с большим числом ручных операций, однако он пригоден для работы с меньшими образцами пластичных смазок, что особенно важно при контроле их состава в процессе эксплуатации в подшипниках. [c.341]

    Несмотря на то, что ионообменные процессы были открыты еще в 60-х годах XIX в., иониты в хроматографических опытах (ионообменная хроматография) начали применять лишь в конце 30-х годов нашего столетия и особенно интенсивно — с момента развития работ в области атомной энергетики для анализа и выделения продуктов ядерных реакций [13]. В 40-х годах были предложены распределительная и осадочная хроматографии— процессы, связанные с использованием сорбентов, пропитанных раствором (распределительная) или химически-активным веществом, дающим осадки с компонентами смеси (осадочная). В 50-х годах были предложены газо-жидкостная хроматография [14] и ее вариант — хроматография капиллярная [15] и, наконец, сравнительно недавно — так называемая тонкослойная хроматография (см., например, [16]), отличающаяся не механизмом сорбционного процесса, а способом использования сорбента опыт проводится не па колонках сорбента, а в тонком слое измельченных веществ самой различной природы. Особый интерес для определения микропримесей представляет вакантная хроматография [17], в которой в анализируемую смесь, циркулирующую через сорбент, вводится порция растворителя или газа-носителя. [c.316]

    Газовая и в особенности газо-ншдкостная хроматография — наиболее молодая отрасль классической хроматографии, разработанной М. С. Цветом в 1903 г. Значение газо-жидкостной хроматографии особо выявилось в 1952 г. в результате работы Джеймса и Мартина, которые применили инертный пористый носитель с нанесенной на него высококипящей органической жидкостью и этим существенно ускорили десорбцию веществ с высокой температурой кипения. Разделение на такой насадке оказывалось более полным. Это значительно расширило возможности применения хроматографии на практике. С тех пор количество работ по газо-жидкостной хроматографии резко растет и область применения этого метода непрерывно расширяется. Наибольших результатов газо-жидкостная хроматография достигла в анализе органических веществ, в области органического синтеза, нефтеперерабатывающей и нефтехимической промышленности. [c.5]

    Несмотря на наличие специалистов в области физических и химических методик, оператору, работающему на масс-спектрометре, иногда приходится проделать некоторую работу по подготовке образцов к анализу. Часто, если анализу подвергается сложная смесь, эта предварительная работа включает разделение смесей на компоненты. В других случаях бывает необходимо получить масс-спектр эталонного соединения и тем самым подтвердить идентификацию это иногда сопряжено с необходимостью очистки малого количества эталонного соединения или проверки его чистоты. Для проведения работы подобного рода особенно важны методы газо-жидкостной хроматографии и зонной плавки. Овладение этими двумя методиками облегчает работу масс-спек-трометриста и позволяет достигнуть больших успехов в масс-спектрометрическом анализе. [c.195]


Смотреть страницы где упоминается термин Хроматограф жидкостной особенности работы: [c.300]    [c.175]    [c.182]    [c.178]    [c.11]    [c.175]    [c.5]   
Жидкостная колоночная хроматография том 3 (1978) -- [ c.178 , c.179 ]




ПОИСК





Смотрите так же термины и статьи:

Жидкостная хроматография хроматографы

Особенности жидкостных хроматографов

Особенности работы

Хроматография жидкостная

Хроматография жидкостно-жидкостная

Хроматография особенности

Хроматографы жидкостные



© 2025 chem21.info Реклама на сайте