Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхностное натяжение равновесный

    С позиции молекулярной физики свойства газов, жидкостей и твердых тел можно подразделить на две группы равновесные свойства (например, описываемые уравнением состояния, или описываемые коэффициентами поверхностного натяжения и Джоуля - Томсона) и неравновесные (такие, как вязкость, диффузия и теплопроводность). Выражение для всех макросвойств через молекулярные величины и межмолекулярные силы может быть получено из статистической механики, позволяющей также предсказать значения многих физических величин, для которых отсутствуют экспериментальные данные. [c.28]


    Увеличение концентрации эмульсола в воде приводит к закономерному снижению поверхностного натяжения (а), однако равновесное значение устанавливается только через сутки после изготовления СОЖ, что связано с диффузией поверхностно-активных веществ (ПАВ) из масляной фазы в поверхностный водный слой. [c.150]

    Откладывая на оси абсцисс равновесную концентрацию вещества, оставшуюся в водной фазе, а на оси ординат соответствующие ей значения поверхностного натяжения системы (01,2) и количество выделившейся воды в процентах (Д, %), получили для каждого гомологического ряда эфиров серию изотерм поверхностного натяжения и деэмульгирования. [c.143]

    Влияние шероховатости на равновесный краевой угол легко учесть при условии, что размер капли значительно больше средне- го размера выступов и впадин на поверхности. Так как в уравнении Юнга (I. 121) составляющие поверхностного натяжения на грани- це с твердым телом будут в К раз больше, то можно записать  [c.75]

    Рассчитайте избыточное давление внутри капель бензола, равновесных с паром, если удельная поверхность системы составляет 6-10 м-, а поверхностное натяжение бензола 28,87 мДж/м при 293 К- [c.34]

    Рассчитайте равновесное давление паров над каплями воды с дисперсностью 20 мкм при температуре 333 К, если поверхностное натяжение воды при температуре 293 К составляет 72, 75 мДж/м , а температурный коэффициент поверхностного натяжения а/йТ — = — 0,16 мДж/(м2-К). Давление насыщенных паров воды над плоской поверхностью при 60°С равно 20,58-10 Па, а плотность воды 0,983 г/смз. [c.35]

    Определите равновесное давление паров над каплями воды и четыреххлористого углерода с дисперсностью 0,1 нм- при температуре 293 К. Давление насыщенных паров над плоской поверхностью при этой температуре для воды и четыреххлористого углерода составляет соответственно 23,38-10 и 13-10 Па плотность соответственно равна 0,998 и 1,593 г/см поверхностное натяжение 72,75 и 25,68 мДж/м . Обратите внимание, как влияет природа жидкости на давление насыщенных паров в дисперсной системе. [c.35]

    Рассчитайте равновесное давление паров над водой, находящейся в капилляре радиусом 1 мкм при 293 К, предполагая, что угол смачивания равен 0°. Выразите результат в процентах от давления насыщенного пара воды. При 293 К плотность воды 0,998 г/см , поверхностное натяжение 72,75 мДж/м , давление насыщенного пара 2338 Па. [c.35]


    Образование пленок мен<ду масляными каплями показывает, что действие поверхностных сил, препятствующих слиянию капель, для параллельного слоя жидкости никогда не может возникнуть просто из гидродинамических сил и инвариантного поверхностного натяжения. По аналогии с подобной системой газ — жидкость, для которой имеются более полные данные, можно уверенно предположить, что следует различать два типа жидких пленок, соответствующих неустойчивой и стойкой пенам (Китченер и Купер, 1959). Неустойчивая пленка — это такая, в которой поверхностные силы достаточны, чтобы образовать толстую пленку в динамическом состоянии, но она не способна выдержать равновесное давление в статическом состоянии. [c.79]

    Состояние двух равновесно существующих фаз, при достижении которого фазы становятся тождественным и по свойствам называется критическим состоянием. Критическое состояние характеризуется критическими значениями температуры, давления и удельного объема. Б критическом состоянии системы жидкость - пар удельные объемы жидкой и паровой фаз становятся одинаковыми, теплота ФП обращается в нуль, исчезает граница раздела фаз и поверхностное натяжение. Сжимаемость системы жидкость - пар очень велика, вследствие чего резко возрастают флуктуации плотности. В критическом состоянии появляются особые свойства вещества, например аномальное рассеяние света (критическая опалесценция) и возрастание теплоемкости. [c.20]

    В работе [9] представлены многочисленные варианты формирования ССЕ, Например, при низких температурах в условиях кристаллизации из раствора или расплава, за счет дисперсионных взаимодействий молекулы н-алканов могут сформировать ассоциат с параллельной укладкой молекул, способный самостоятельно существовать в равновесных условиях. При этом склонность молекул к ассоциации возрастает по мере перехода к высокомолекулярным и-алканам. Ядро ССЕ, образованное молекулами высокомолекулярных -алкаиов, отличается большой упорядоченностью по сравнению с сольватным слоем. Низкомолекулярные н-алканы, обладающие большей подвижностью и меньшим поверхностным натяжением, концентрируются в адсорбционно-сольватном слое ССЕ. [c.31]

    Эквивалентность поверхностного натяжения и поверхностной свободной энергии, отнесенной к единице площади поверхности, приводит к равновесному термодинамическому соотношению  [c.80]

    Как уже упоминалось, адсорбирующиеся на поверхности компоненты понижают, и во многих случаях значительно, поверхностное натяжение раствора по сравнению с чистым растворителем. Поэтому они получили название поверхностно-активных веществ. Эта активность состоит в том, что они обычно имеют очень высокий коэффициент распределения, т. е. при значительной концентрации на поверхности их концентрация в объеме очень мала. По этой причине часто равновесная система, содержащая поверхностноактивные вещества, ведет себя в отношении своих объемных свойств как идеальный раствор. Для молекулярной интерпретации адсорбции очень важно знать, является ли адсорбционный слой мс  [c.106]

    В динамических методах, когда работают с новообразованными поверхностями, равновесие не всегда успевает установиться. По этой причине динамические методы, которые во многих случаях быстрее и удобнее статических, не всегда дают равновесные значения поверхностного натяжения. Иногда измерение динамических неравновесных значений поверхностного натяжения представляет самостоятельный интерес, в частности при исследовании кинетики адсорбции. [c.116]

    Динамические методы. Среди рассмотренных методов определения поверхностного натяжения только метод капиллярного поднятия и метод равновесной формы капли или пузырька полностью статичны, а в остальных методах измерение связано с более или менее быстрым изменением величины поверхности. Несмотря на это, динамическими принято называть только такие методы, в которых поверхностное натяжение измеряется при ритмичных колебаниях поверхности жидкости. Такие колебания возникают в струях, при деформации капель, а также на поверхности возмущаемой жидкости. Во всех этих случаях стремление жидкости уменьшить свою свободную поверхность, мерой чего является поверхностное натяжение, противодействует увеличению поверхности. Если под [c.121]

    В качестве наиболее удовлетворяющего всем требованиям метода может быть рекомендован метод наибольшего давления пузырька. Применительно к измерениям поверхностного натяжения растворов этот метод разработан Ребиндером и в литературе описан достаточно подробно [4, 5]. Он позволяет относи тельно просто реализовать условия, обеспечивающие строгость и точность измерений. Его преимущество в том, что удобно проводить измерения с небольшим количеством жидкости в легко термостатируемом объеме, защищенном от загрязнений и испарения. Результаты измерений не зависят от условий смачивания, равновесные значения поверхностного натяжения получаются истинными. Все это делает метод особенно пригодным для измерения поверхностного натяжения растворов и на границе двух несмешивающихся жидкостей. Если прибор имеет хороший микрокран и систему тонких капилляров, регулирующих скорость нарастания давления, то можно легко достичь скорости образования одного пузырька за 1—3 мин, что вполне удовлетворяет условиям достижения равновесия. [c.13]


    Угол 0 (рис. 1.8), образуемый поверхностью смачиваемого тела и плоскостью, касательной к поверхности капли в точке, расположенной на линии их соприкосновения, называется краевым углом смачивания. При полном смачивании он острый и приближается к нулю, а при полном несмачивании он тупой и стремится к 180 . В промежуточных ситуациях его значение лежит между О и 180 (0° < 6 < 180 ), т. е. зависит от степени смачивания. По этой причине английский физик Т. Юнг (1773—1829) в 1805 г. предложил использовать его в качестве меры смачивания. При равновесном смачивании угол 0 связан с поверхностными натяжениями жидкости Ода, смачиваемого тела а также поверхностным натяжением, действующим на границе между ними о, . т, уравнением Юнга  [c.31]

    Рассмотрим гомогенное зародышеобразование в чистом водяном паре при 25 °С. Коэффициент поверхностного натяжения равен 71,96 мН/м. В разд. 14.3 приведены данные, характеризующий зародыши новой фазы. Видно, что при пересыщении, равном 8,1, критический зародыш радиусом 0,5 нм состоит из 18 молекул воды. Равновесное давление этих критических зародышей составляет [c.278]

    Рассмотрим в качестве примера случай насыщенного пара, который был быстро и адиабатически сжат до давления Р. Это давление является избыточным в срависнпи с равновесным давлением пара Ро при данной темиературе Т. Для образования жидкости должен начаться рост маленьких капелек. Если, однако, мы будем считать, что в парах присутствуют только чрезвычайно маленькие капельки жидкой фазы, то они будут иметь некоторый избыток свободной энергии в сравнении с жидкостью в объеме. Эта избыточная энергия возникает за счет увеличения поверхности. Величина избыточной поверхностной энергии равна 4л/-2ст, где ст — поверхностное натяжение, а г — радиус каили. Для того чтобы капля и пар находились в равновесии, давление пара Р должно превышать давление насыщенного пара Ро на величину, которая может быть вычислена но уравненик Гиббса — Кельвина  [c.558]

    Теоретические исследования процесса образования пузыря с мини-мапьным количеством упрощающих предположений в настоящее время проведены только для квазистатического режима. Задача определения формы пузыря и его отрывного объема при квазистатическом истечении решалась в [70, 71] путем рассмотрения равновесных форм свободной поверхности жидкости, находящейся под действием сил тяжести и поверхностного натяжения. За отрывной объем принимался такой объем пузыря или капли, при котором равновесная поверхность теряла устойчивость. Формула для отрывного объема пузыря, полученная в работе [71] и аппроксимирующая численные расчеты авторов с погрешностью, не превышающей 2,5 %, имеет вид  [c.50]

    Действием сил поверхностного натяжения объясняется смачивание жидкостью поверхности твердого тела, сопровождающееся адгезией. На рис. 8 показан пример взаимодействия трехфазной системы вода — воздух — твердое тело (минерал). При образовании равновесного краевого угла а все три силы поверхностного натяжения, действующие на границах раздела каждой фазы друг с другом и обозначенные соответствующими векторами, должны уравновешивать друг друга  [c.24]

    Мениск смачивающей жидкости контактирует при этом со смачивающей пленкой, равновесная толщина которой Ло определяется уравнением изотермы П(/г). Значение ко отвечает расклинивающему давлению, равному капиллярному давлению равновесного мениска По =. Ра . Между объемной частью мениска с постоянной (в пренебрежении силой тяжести) кривизной поверхности Ко = Рк1а (где о —поверхностное натяжение) и плоской смачивающей пленкой образуется переходная зона 2 (см. рис. 13.1), где действуют одновременно капиллярные силы, вызванные кривизной поверхности слоя жидкости, и поверхностные силы, связанные с дальнодействующпм полем подложки. В состоянии равновесия из условия постоянства давления во всех частях системы получим  [c.211]

    Если 0с — угол смачивания между твердым веществом и жидкостью, то составляющая поверхностного натяжения равна a os0o и уравнение (VI.25) изменится. Давление равновесной адсорбция Яа в области капиллярной конденсации превышает соответствующее давление десорбции Яд, так как десорбция в этом случае происходит из целиком заполненных капилляров, и угол смачивания равен нулю. В опыте необходимо провести адсорбци10 до относительного давления, равного единице, и десорбцию, а затем использовать для расчета десорбционную ветвь петли гистерезиса данной изотермы, т. к при этом не нужна поправка на угол смачивания. На рис. 131 изображены изотермы адсорбции и десорбции паров бензола на крупнопористом силикагеле. Каждая точка изотермы адсорбции дает значения адсорбированного количества бензола а и относительного давления пара Р/Рд. Умножая величину а на V, находят объем пор, а подставляя в уравнение Кельвина (VI. 25) соответствующее значение Я/Яо, получают гк. [c.301]

    Следует обратить внимание и на другой физический смысл поверхностного натяжения. Он заключается в том, что поверхностное натяжение можно выразить силой, направленной тангенциально (параллельно) к поверхности и приходящейся на единицу длины периметра, ограничивающего эту поверхность. Однако только для жидкостей такое представление не вызывает сомнений, так как у жидкостей одновременно с образованием иоверхности молекулы и атомы на ней ориентируются, уплотняются, переходя в равновесное состояние и вызывая тем самым тангенциальное натяжение иоверхности. В твердых телах переход поверхностных атомов и молекул в равновесное состояние вследствие их малой подвижности может продолжаться очень долго, чем и объясняется наличие у твердых тел поверхностного напряжения. В связи с этим для твердых тел правильнее говорить об удельной поверхностной энергии. В то же время если предположить возможность достн- [c.24]

    При таком условии равновесне между смачивающей жидкостью и поверхностью другого тела становится невозможным и происходит растекание. Из соотношения (II. 141) следует, что уменьшение межфазного натяжения ог.з (увеличение работы адгезии) и уменьшение поверхностного натяжения жидкости агл способствуют растеканию жпкости на поверхности смачиваемого тела. Если разность аз,1 — 02,3 заменить выражением из уравнения Дюире (11.117), то получим условие растекания, заиисываслюе в виде [c.79]

    На практике наиболее часто используют статические или полуста-тические методы, позволяющие измерять равновесные значения поверхностного натяжения жидкостей. К статическим относятся методы капиллярного поднятия жидкости и висячей (лежащей) капли. Полу-статическими являются методы максимального давления в капле (пузырьке), отрыва кольца или пластины и сталагмометрический метод. [c.11]

    Равновесные краевые углы, рассчитанные на основе баланса сил, действующих по периметру смачивания, определяются уравнением Юнга (1.13). Если поверхностное натяженне на границе твердое тело— газ сГг-г больше, чем поверхностное натяжение на границе твердое тело — жидкость ат-м<, то краевой угол 0р < 90°, поверхность твердого тела является лиофильной (при смачивании водой — гидрофильной), К материалам с гидрофильной поверхностью относятся, например, кварц, стекло, оксиды металлов. Жидкость не смачивает поверхность, если Стт-г < огт-ж н Эр > 90°. В этом случае поверхность является лио-фобной (гидрофобной). К материалам с гидрофобной поверхностью относятся металлы, у которых поверхность не окислена, большинство полимеров, а также все органические соединения, обладающие иизко11 диэлектрической проницаемостью. [c.21]

    Водно-топливные эмульсии неустойчивы, что обусловливается больнюй и всегда положительной. энергией поверхностного натяжения. Такие силы должны стремиться к равновесному состоянию, разделению системы на две сидошные фазы с минимальной межфазной поверхностью. Однако на практике коагуляция дисперсной фа.зы не наблюдается, т. к, сближе- [c.32]

    Капиллярный кончик для и змерения поверхностного натяжения методом висяш,ей капли удобно изготовить путем припаивания короткого капилляра из стекла пирекс к обыкновенному медицинскому шприцу. Желательно, чтобы стеклянная трубка по всему сечению была равномерной, а кончик должен быть срезан перпендикулярно оси капилляра. Если поверхностное натяжение битума измеряют при относительно низкой температуре, можно вследствие высокой вязкости битума использовать трубки диаметром 4 мм или больше. Аппарат помещают в термостат и каплю получают при температуре, на 5—10 С выше температуры размягчения образца. После достижения равновесного состояния капли ее фотографируют. Снижая температуру и не трогая образец, можно определить температурный коэффициент поверхностного натяжения. Естественно, что метод может применяться только для битумов, не имеющих предела текучести. [c.58]

    ПЛОТНОСТЬ битумов при обычных температурах медленно растет во времени до какой-то постоянной величины [191, значения поверхностного натяжения для данных температур, приведенные в табл. 1.7, не соответствуют равновесным условиям. Филиппов [611 измерил поверхностное натяжение у многих битумов при равновесны.х условиях он нашел, что поверхностное натяжение и его темг1ерат рный коэффициент для разных битумов практичрски одинаковы, а полная поверхностная энергия их такая же, как и у парафиновых углеводородов. Из этого следует, что в условиях равновесия на поверхности преобладают СНз-группы. [c.59]

    Например, когда толуол или ксилол осторожно вводят в соприкосновение с водным раствором додециламина, образуется система, в которой происходит самопроизвольное эмульгирование. Эту систему изучали многие авторы (Каминский и Мак-Бен, 1949 Гартинг и Райс, 1955 Дэвис и Хейдон, 1957). При концентрации эмульгатора >0,1 М самопроизвольное эмульгирование происходит в водной фазе. Капельки масла стабилизируются вследствие адсорбции на своей поверхности активного вещества. Равновесное поверхностное натяжение остается постоянным (порядка 1 дин/см при изменении концентрации эмульгатора от 0,4 до 0,03М), и нет тенденции к тому, чтобы оно стало отрицательным. В этой системе происходит значительное перемешивание в поверхностных слоях. Под микроскопом видно, что отдельные капли или нити ксилола прорывают поверхность раздела двух жидкостей, некоторое время движутся в воде, а затем возвращаются обратно. Во время такого путешествия от них отделяются более мелкие капли, которые остаются в воде и стабилизируются. [c.61]

    Уравнение Гиббса часто применяют для вычисления адсорбции на межфазных поверхностях эмульсий М/В. Благодаря значительной межфазной поверхности, эмульсии являются удобными системами для определения адсорбции посредством измерения падения концентрации эмульгирующего агента. Кокбейн (1954) успешно измерил поверхностные концентрации додецилсульфата натрия на межфазной поверхности эмульсии типа М/В и показал применимость уравнения Гиббса. Трудности возникают, когда замедляется достижение постоянного значения поверхностного или межфазного натяжения, например, в случае сильно разбавленных растворов, следов высоко поверхностно-активных примесей или при наличии макромолекул. Во-первых, все методы, связанные с увеличением межфазной поверхности — например, метод счета капель или метод дю Нуи — дают завышенные результаты (Педдэй и Расселл, 1960). Во-вторых, применение равновесной формулы к системе, поверхностное натяжение которой все еще медленно уменьшается (например, протеины), является сомнительным, так как скорость понижения а может быть [c.85]

    A.A. Жуховицкий предложил следующий механизм сажо-эмулъгирования жидкостей. На границе раздела двух жидких фаз при взаимодействии двух веществ, каждое из которых растворимо только в одной из соприкасающихся фаз, образуется поверхностно активное соединение. Протекающая в существенно неравновесных условиях адсорбция образующегося вещества способна приводить к резкому снижению поверхностного натяжения и самопроизвольному диспергированию одной из фаз в другой. По завершении химической реакции образования на межфазной поверхности ПАВ, скорость его адсорбции по мере приближения к равновесным условиям падает, вследствие чего поверхностное натяжение может снова возрасти. Исходя из такого механизма был предложен следующий метод получения устойчивых эмульсий. Раствор ПАВ в дисперсной фазе, растворимый в обеих контактирующих жидкостях, интенсивно перемешивается с чистой дисперсионной средой. При этом происходит перенос ПАВ через межфаз-ную поверхность, что вызывает турбулизацию поверхности и приводит к образованию наряду с более крупными каплями (эмульсии) большого числа очень маленьких капелек (микроэмульсии), оказывающих стабилизирующее действие на систему. [c.17]

    Исследование равновесных значений краевых углов ряда жидкостей с известными величинами поверхностного натяжения на поверхности твердых тел, имеющих как высокую, так и низкую поверхностную энергию, были выполнены Циеманном с сотр. [3, 4]. Твердые вещества с высокой температурой плавления обычно обладают высокой свободной удельной поверхностной энергией (0,5— 5,0 Дж/м ), в то время как у мягких органических веществ с низкой температурой плавления свободная удельная поверхностная энергия [c.81]

    Рамшайдт и Мэсон [22] исследовали также системы, характеризующиеся чрезвычайно высоким отношением вязкости (2-10 Па-с), в частности дисперсии ацетата изобутирата сахарозы (около 10 Па-с) в силиконовом масле. При этом почти сферические капли вращались как тведые тела, а частицы, вытянутые в нити, при погружении их в силиконовое масло стремились приобрести окрученную винтовую конфигурацию и двигались по спиральной траектории. В этом случае вязкость диспергируемой фазы так велика, что каплям не хватает времени приобрести равновесную конфигурацию за счет поверхностного натяжения. Такое поведение характерно для реальных многокомпонентных систем. [c.390]

    Определение поверхностного натяжения по форме капли или пузырька. Жидкая капля или газовый пузырек в жидкости частично деформируются гравитационными силами. Так как сферическая форма обусловлена поверхностным натяжением, то чем оно меньше, тем больше будет деформация. Действие сил тяжести, вызывающее деформацию, усиливается с увеличением размеров капли (или пузырька) и с возрастанием разницы в плотностях капли (или пузырька) и окружающей среды. Зависимость равновесной формы, которая определяется из условия минимума свободной энергии, от поверхностного натяжения можно использовать как метод его измерения. Подобные методы являются строго статическими и, несмотря на большие экспериментальные трудности, получили распространение, в частности, при измерении зависимости поверхностного натяжения растворов поверхностно-активных веществ от времени (Наттинг и Лонг, 1941 г.). В 1961 г. Смолдерс успешно применил анализ формы капли и пузырьков для прецизионного изучения явления смачивания. [c.121]

    Правило Антонова [1]. Если одна из жидкостей растекается по другой, то вначале процесс протекает достаточно быстро, так что толщина растекающегося слоя немного превышает толщину равновесного слоя. Если же растекание происходит медленно, так что обе жидкости успевают взаимно насытиться, то по мере того, как поверхность нижней жидкости В покрывается поверхностной пленкой жидкости Л и ее поверхностное натяжение уменьшается, коэффициент растекания также постепенно уменьшается. Пока коэффициент растекания положителен и сумма Оа + Оав меньше сгв, краевой угол остается равным нулю. Растекание прекращается, когда сгв = ста+сГав. В этот момент краевой угол остается все еще равным нулю. Однако при всяком дальнейшем уменьшении поверхностного натяжения нижней жидкости краевой угол должен принять отличное от нуля значение. [c.75]


Смотреть страницы где упоминается термин Поверхностное натяжение равновесный: [c.161]    [c.220]    [c.480]    [c.316]    [c.108]    [c.376]    [c.153]    [c.20]    [c.444]    [c.86]    [c.83]    [c.231]    [c.86]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.2 , c.226 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.2 , c.226 ]




ПОИСК





Смотрите так же термины и статьи:

Поверхностное натяжение равновесное значение



© 2025 chem21.info Реклама на сайте