Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аргон теплопроводности коэффициент

    На площадь пика в значительной мере влияет изменение скорости нодачи газа-носителя высота пика весьма чувствительна к изменениям температуры колонки, скорости газа-носителя и стабильности работы электроизмерительной схемы. Максимальная точность достигается при наличии калибровки для каждого компонента, входящего в состав анализируемых продуктов, особенно если в качестве газа-носителя применяется аргон или азот. При работе с гелием или водородом, теплопроводность которых значительно отличается от теплопроводности определяемых комионентов, градуировка не обязательна. Это положение многократно подтверждено анализами синтетических смесей газообразных и жидких продуктов. В случае анализа сложных смесей, в состав которых входят вещества, заметно разнящиеся по теплопроводности, а также при использовании аргона или азота в качестве газа-носителя, точный количественный состав рассчитывается либо с помощью коэффициентов чувствительности, либо но градуировочным графикам. [c.215]


    В воздухе, как известно, содержится около 1% аргона (см. табл. 1-2). В продуктах горения концентрация аргона, вносимого в топочную камеру с воздухом, естественно, больше, чем в воздухе она зависит от коэффициента избытка воздуха и от вида сжигаемого топлива. На сигнал детектора по теплопроводности, получаемый при прохождении аргона через рабочую камеру, когда в качестве газа-носителя используется гелий), будет накладываться сигнал, возникающий от присутствия в анализируемой смеси кислорода (см. рис. 5-23). В связи с этим погрешность за счет наличия в пробе аргона при определении малых количеств кислорода в продуктах горения (до 1—2%) будет соизмерима с определяемой величиной кислорода. [c.152]

    Газ-носитель, измерение перепада давления и скорости потока. Применяемые в газораспределительной хроматографии подвижные фазы (гелий, азот, водород, аргон, углекислый газ) практически не растворяются в жидкой фазе. Выбор газа-носителя обусловлен, с одной стороны, свойствами самого газа (чем меньше плотность, тем больше коэффициент диффузии и, следовательно, больше размывание пиков), с другой — от применяемого метода детектирования если он основан на измерении теплопроводности, то более удобны менее плотные газы, теплопроводность которых настолько отличается от таковой других газов, что позволяет определять даже микропримеси. [c.62]

    Обратимся к исследованиям излучательных характеристик конкретных плазменных источников. Асиновский и др. [90] определили дивергенцию полного потока излучения плазмы азота на оси стабилизированной дуги двумя способами — расчетным путем, включающим точное интегрирование уравнения переноса, и при помощи косвенных измерений, сопоставляя энергетический баланс дуги при разных токах. Результаты этих измерений (см. рис. 29) позволили, как и в случае аргона, найти коэффициент теплопроводности азота при высоких температурах. Оценочный расчет полной дивергенции потока излучения выполнен также в работе [338]. [c.202]

    Из рисунка видно, что при эрозии платиновых металлов в атмосфере воздуха и аргона точки, характеризующие эрозию платины, палладия, родия, меди и золота, лежат на одной прямой. Исключение составляют серебро, у которого самый высокий коэффициент теплопроводности, а также иридий и рутений (в аргоне), имеющие самые высокие температуры плавления и кипения. Чтобы выяснить характер влияния тепловых свойств на величину эрозии, те же металлы в виде корольков весом 150—200 мг помещали в кратер графитового электрода и производили испарение при тех же условиях. В этом опыте теплопроводность металлов не должна играть заметной роли и более четко должно проявиться влияние тепловых свойств металлов. Результаты наблюдения показывают, что серебро, палладий и золото разрушаются сильнее, а тугоплавкие металлы (иридий и рутений) меньше, чем родий и платина, температуры плавления и кипения которых занимают среднее положение. Следовательно, при оценке результатов эрозии следует учитывать тепловые характеристики данного металла. [c.25]


    Однако нельзя говорить о прямой пропорциональности между теплопроводностью газа и скоростью химических реакций. Так, коэффициент теплопроводности гелия почти в 10 раз выше, чем аргона, в то время как скорость отрыва хлора от четыреххлористого углерода в гелии приблизительно на 50% ниже, чем в аргоне. [c.221]

Фиг. 12.4. Зависимость коэффициентов теплопроводности неона и аргона от плотности. Сравнение экспериментальных данных с расчетами по теории Энскога. (Из Фиг. 12.4. <a href="/info/1828745">Зависимость коэффициентов теплопроводности</a> неона и аргона от плотности. <a href="/info/579302">Сравнение экспериментальных данных</a> с расчетами по теории Энскога. (Из
    Отношение АТ)1х можно считать специфичным сигналом и, как показывает уравнение (X. 12), величина его пропорциональна разности температур в ячейке и функции от теплопроводностей газа-носителя и веш ества, заключенной в скобки. При > кд сигнал противоположен но знаку тому, который получается при кд > ка. На рис. Х-6 показано применение этого уравнения для смесей гелий-гептан и аргон-гептан с использованием данных, полученных с помош ью термокондуктометрического детектора с платиновой нитью. Значения АТ рассчитаны по известному температурному коэффициенту сопротивления платины и сопротивлению нити, отвечающему замеренным величинам тока и напряжения при прохождении одного газа-носителя через ячейку. Измерялись площади пиков, полученные при различных значениях АТ для постоянного количества к-гентана и постоянной скорости потока при температуре ячейки 140° С. Полученные данные в обоих случаях показывают сильное искривление графиков, обусловленное нелинейным характером изменения теплопроводности, теплоемкости и электрических факторов ячейки с повышением темпера туры нити. Однако, мгновенный наклон таких кривых должен соответствовать рассчитанным значениям величины к 1к, — 1). Экспериментально получены, как показывает рис. Х-6, наклоны = 1 и = 0,021, дающие отношение, равное 47. Экстраполируя значения теплопроводности для Не, Аг и и к-гептана, приведенные в табл. Х-3, до 140° С, получим отношение 8 8 = 40, что вполне соответствует эксперименту. Этот результат является [c.216]

    Коэффициент теплопроводности X - при 600 С плавле-в аргоне "и . (р=40 кПа), Вт/(м-°С) [c.134]

    Залкин [108] на основе теплового баланса катарометра получил соотношение, связывающее коэффициенты теплопроводности газа-носителя и элюата, проходящего через детектор, а также температуру нити (измеренную по сопротивлению) и температуру стенки катарометра. Проведение хроматографического процесса в ступенчатом режиме позволяет вычислить теплопроводность с весьма высокой точностью. Для гелия и аргона (газ-носитель — воздух) относительная погрешность не превышала 0,13%. [c.97]

    При использовании детектора по теплопроводности и применении в качестве газа-носителя гелия или водорода изменение значений относительных коэффициентов чувствительности на различных хроматографах незначительно и составляет около 3—6% [62]. Трудности возникают при применении в качестве газа-носителя азота (аргона, воздуха), теплопроводность которого близка к теплопроводности анализируемых веществ. Так, для низкокипящих углеводородов относительные коэффициенты чувствительности заметно зависят от температуры и концентрации компонента, что при анализе углеводородов Сг может привести к инверсии пиков. Приводимые в литературе значения коэффициентов чувствительности для низкокипящих углеводородов справедливы лишь в узкой области температур 20—50 °С. [c.35]

    Для выяснения зависимости значений коэффициента / от температуры Одноатомных газов Зайцевой, [Л.2-26] было проведено экспериментальное исследование теплопроводности шести одноатомных газов. Ею экспериментально была определена теплопроводность гелия, неона, аргона, криптона, сенона и паров ртути при давлениях от 50 до 500 мм рт. ст. и температурах от О до 500° С. Установка Зайцевой исключала необходимость больших поправок к экспериментальным значениям в отличие от данных Каннулика и Кармана [Л. 2-27], уже при 300 С вводивших по правки до 20% к экспериментальным значениям. Обработка экспериментальных данных теплопроводности Зайцевой показала, что зависимость теплопроводности указанных шести одноатомных газов от температуры описывается уравнением [c.134]

    Для количественного анализа в обычной области концентрации толька в том случае можно довольствоваться одним калибровочным коэффициентом, когда теплопроводности газа-носителя и компонента сильно различаются, например, в случае органических компонентов в гелии или водороде. Точные результаты можно и не получить, если использовать один и тот же коэффициент для различных температур. Нельзя пользоваться одним коэффициентом в случае, когда теплопроводности газа-носителя и компонента лишь слабо различаются, например, в случае органических компонентов в азоте, этане или аргоне. При этих условиях необходимо проводить калибровку в ожидаемом диапазоне концентраций и для каждой температуры. Чем ниже температура, тем менее вероятны серьезные отклонения от линейности, при которых даже калибровка не является достаточной. [c.188]


    На рис. 4 теоретические значения коэффициента теплопроводности сопоставлены с экспериментальными, полученными при различных соотношениях %м (металлы и неметаллы) и %г (гелий, водород, воздух, углекислота, аргон). [c.19]

    Та Ким. методом определены коэффициенты теплопроводности аргона [123, 125], азота i[124, 126], водорода [127, 128], воздуха [129]. Точность экспериментального определения коэффициента теплопроводности в этих работах не выше 30—50%. Сравнение экспериментальных данных с теоретическими показывает, что, как правило, экспериментальные значения лежат выше. Однако в последнее время в связи с более корректным учетом излучения в балансе дуги появился ряд экспериментальных результатов [124—126], хорошо согласующихся с теорией. [c.229]

    Сопоставление с теоретическими расчетами. Расчет-цилиндрической дуги в аргоне выполнен в работе [8] для 1 атм и в работах [7, 9 для 1 и 10 атм. Сопоставление результатов расчетов [7—9],. приведенных к диаметру трубки 0,54 см, с данными табл. 1 показало следующее. Расчет [7] дает при 1 атж завышенную примерно на 10% температуру на оси дуги, завышенную на 30—40% напряженность электрического поля и заниженное излучение. Теоретические значения То № Е [9] совпадают с экспериментальными, но полное излучение завышено до 50%. В работе [8] получены совпадающие с экспериментальными значения Е, но завышены температура на оси до 10% и полное излучение до 50%. При давлении 10 атм теоретические значения 7"о и Е [7] совпадают с экспериментальными, но полное излучение занижено. Рассчитанная в [9] температура на оси дуги совпадает с экспериментальной, но напряженность электрического поля занижена на 30—50%, полное излучение завышено более чем на 50%. Подобное несоответствие теории и зксперимента может быть обусловлено недостаточной надежностью использованных нри расчете дуги величин электропроводности, теплопроводности и излучательной способности аргоновой плазмы. С цельЮ выяснения этого вопроса проведена раздельная оценка соответствия теоретических коэффициентов переноса аргоновой плазмы экспериментальным данным. [c.298]

    Оба метода основаны на предположении, что содержание аргона и соотношение аргона и азота в воздухе постоянны. Это справедливо для большинства случаев, но в некоторых опытах бывает нужна синтетическая атмосфера и тогда сказанное теряет силу. Например, образование азота микроорганизмами почвы можно изучать в атмосфере, содержащей 20% кислорода и 80% гелия. Конечно, экспериментатор будет знать это заранее и не станет использовать поправочный коэффициент для аргона. Но даже и в этом случае синтетическая атмосфера может смешаться с различными количествами природного воздуха. Если фактическое содержание аргона не представляет интереса и необходимо получить надежные данные только по кислороду, наиболее простой выход заключается в применении в качестве газа-носителя аргона (см. раздел Б,И,а,2). Оба газа существенно различаются по удельной теплопроводности, так что будут получены хорошо разделенные пики. При сложном пике, однако, термический детектор будет реагировать только на кислород и не будет чувствовать малых количеств аргона. Поэтому ошибка в определении кислорода автоматически исчезнет благодаря селективности такой системы. [c.167]

    Кроме того, результаты расчета коэффициентов электропроводности, теплопроводности и вязкости водорода, гелия, аргона, воздуха, азота, кислорода и цезия в зависимости от температуры давления даны на рис. 15—34. [c.35]

    Интенсивная перестройка структуры при графитации выше 2200 °С сопровождается соответствующим изменением макросвойств резким ростом теплопроводности и снижением а, микротвердости, а также резким падением пределов прочности на изгиб и сжатие (рис. 91). При этом отмечается различие в поведении образцов УС и УСБ, а у последних - различие между образцами, термообработанными в различных средах. Так, температурный коэффициент линейного расширения (а) и предел прочности на изгиб "вакуумных" образцов изменились сильнее, чем. у образцов УСБ, термообработанных в аргоне. У образцов неграфитирующегося опытного материала УС в интервале 1400-2600 °С а не изменился вообще, а прочность снизилась незначительно (см.рИс.91). Отношение пределов прочности на сжатие и изгиб, равное 2,2 для исходного УСБ и характерное для хрупких материалов, в результате термообработки снижается и при 3000 С достигает величины 0,8. Последнее свойственно уже для металлов. Величина упругой деформации (е = о / ) после термообработки выше 1800 °С падает примерно в 30 раз (рис. 92). Модуль упругости образцов из углеситйлла УСБ практически не из- [c.231]

    Р < 10 атм. В [56] вычислены коэффициенты вязкости и теплопроводности ионизованного аргона. [c.136]

    Как указывалось выше, для. получения хорошей чувствительности детектора газ-носитель и растворенное вещество должны значительно отличаться друг от друга по удельной теплопроводности. Существует ряд особых случаев, когда выгодно применять газ-носитель, идентичный одному из компонентов пробы, и тем самым исключить этот компонент из хроматограммы, поскольку детектор не реагирует на его присутствие. Подобный прием пригоден при плохом разделении двух компонентов, поскольку благодаря ему легче проанализировать смесь на основании различий в удельной теплопроводности, чем на основании различий в коэффициенте распределения. Например, аргон можно отделить от кислорода на молекулярных ситах только при низких температурах. Однако ошибки в определении кислорода, обусловленной присутствием аргона, можно избежать, используя в качестве газа-носителя аргон и тем самым исключая часть пика, приходящуюся на его долю в общем пике аргона и кислорода. И наоборот, аргон можно определить в воздухе, применяя в качестве газа-носителя кислород. Такой же прием был использован для определения содержания дейтерия в. водороде без фактического разделения протия и дейтерия на колонке (подробности см. в гл. 2, раздел В). Теоретически эту методику маскировки нежелательного компонента газом-носителем можно применять во многих случаях. Так, метан и другие легкие углеводороды, находящиеся в воздухе, можно определить, употребляя в качестве газа-носителя чистый воздух. Необходимо, однако, учесть, что различия в удельной теплопроводности будут обычно значительно меньщими, чем при использовании водорода или гелия. Поэтому иногда следует пожертвовать чувствительностью ради селективности. [c.96]

    Коэффициент полезного действия плазмотрона зависит от его конструкции. Так, ВЧ плазмотрона составляет 95% при работе на воздухе.-При работе на аргоне или на кислороде для получения,такого к.п.д. необходимо принимать специальные меры для использования излучения ВЧ разряда. В случав оптимальных параметров потока плазмообразующего газа потери тепла через стенки за счет теплопроводности и излучения могут составить не более 2%. 42 [c.42]

    Эффективность разных инертных газов зависит от их тепловых характеристик — теплоемкости и теплопроводности. Чем больше теплоемкость при одной и той же теплопроводности, тем выше эффективность. Например, коэффициенты теплоемкости аргона и СО2 близки (0,45 10 и 0,38 10 Вт/(см К) соответственно), но теплопроводность СО2 значительно больше теплопроводности аргона (0,908 и 0,53 кДж/(кг К)), чем и объясняется большая эффективность применения СО2 в качестве инертного разбавителя. Некоторые вещества (в частности, галогенпроизводные органических соединений — хлористо-иодистый этил, хлорбромметан и др.) являются значительно более эффективными разбавителями, чем инертные газы. Гасящее влияние обусловлено прекращением химической реакции распространения пламени, а не поглощением тепла или разбавлением смеси. [c.266]

    Гексагональный нитрид бора прекрасный изоляционный материал, его диэлектрическая проницаемость в 1,5—4 раза выше диэлектрической проницаемости лучших глиноземов. Его коэффициент термического расширения имеет очень низкую величину, поэтому материал в состоянии выдерживать сильные тепловые удары. Нитрид бора обладает высокой теплопроводностью, которая незначительно понижается с повышением температуры. При высокой температуре он сохряняет свои механические свойства. Спрессованные из него изделия обладают консистенцией мела или слоновой кости и легко поддаются обработке обычными резцами. Подобно графиту порошок BN обладает смазочными свойствами, которые улучшаются при высокой температуре. В инертной или восстановительной атмосфере (например, в атмосфере Н2 или аргона, или сухого N2) он может применяться вплоть до температуры 2800 °С. В окислительной атмосфере предельные температуры его применения колеблются в зависимости от плотности между 900 и 1400 °С. Он не смачивается многими металлами и жидкостями А1, Na, Si, Sn, u, I, Bi, Sb, d, криолитом, хлоридами ш,елочных металлов. [c.267]

    Азот и аргон в качестве газа-иосителя применяются довольно ча сто, однако эти газы также сбладают низким коэффициентом теплопроводности, что ограничивает их цспользовацие лри необходимости иметь высокую чувствительность. Из рис. 5-23 видно, Что наибольшую чувствительность анализа лри использовании детекторов ло теплопроводности можно лолучить, применяя в качестве газа-носителя Н2 или Не. [c.137]

    Коэффициенты теплопроводности наиболее употребляемых газов-носителей следующие (А, в пал1см X 10 ) водород — 40,0 гелий — 33,6 неон — 10,9 аргон — 4,0 азот — 5,68. Из приведенных данных видно, что применение неона обосновано, хотя теплопроводность его в три раза меньше, чем теплопроводность гелия. Однако неон имеет большую вязкость (rj в г см X 10 ) водород — 88 гелий — 194 неон — 312 аргон — 222 азот — 175. Обычно стремятся использовать газ-носитель, обладающий малой вязкостью. Падение давления в коротких колонках не имеет большого значения, в длинных колонках это падение давления делается весьма заметным. [c.64]

    Ностыо, близкой к теплопроводности анализируемого газа. Обычно сравнительную камеру заполняют тем из компонентов анализируемой смеси, содержание которого преобладает. Так, анализируя двухкомпонентные смеси, состоящие из аргона и азота, водорода и азота, гелия и азота, водорода и аргона, сравнительную камеру следует наполнить азотом или воздухом. Точность анализа методом теплопроводности смеси аргон—азот при содержании аргона в азоте порядка 40—42% по объему составляет до 0,2%. При более высоком содержании аргона в смеси аргон—азот точность анализа уменьшается, но остается не ниже 0,4—0,5% по объему. Присутствие кислорода в смеси не мешает анализу аргона, так как теплопроводности азота и-кислорода близки по своим значениям. Это дает возможность определять содержание аргона в тройной смеси аргон—азот— кислород, что представляет значительный практический интерес. Анализируя смеси, состоящие из водорода и азота, а также водорода и аргона, которые резко различаются по значению теплопроводностей, можно получить высокую степень точности анализа. Разница в значении коэффициентов теплопроводности гелия и азота очень велика. Поэтому метод анализа газов, основанный на измерении теплопроводности, нашел широкое применение в гелиевой промышленности, заменив адсорбционный метод анализа. Методом теплопроводности можно анализировать гелий также и в тройной смеси, состоящей из гелия—азота— кислорода. [c.214]

    Высокой надежностью в работе обладает конструкция торцового уплотнения, в которой крепление боросилицированного графита осуществляется приваркой к титановой обойме. Сварку выполняют в специальной камере в атмосфере аргона. Контактная прочность материала, его высокая теплопроводность и низкий коэффициент трения позволяют применять его для изготовления пар трения, работающих при высоких перепадах давле-ния, скоростях и температурах. [c.65]

    Влияние инертных газов на концентрационные пределы зависит от тепловых характеристик этих газов —их теплоемкости и теплопроводности. Чем больше теплоемкость газа при одной и той же теплопроводности, тем выше эффективность его действия, т. е. меньшая концентрация его прекрарает воспламенение. Например, коэффициенты теплопродности аргона и двуокиси углерода очень близки [для Аг Я,= =0,039-10-3 калI(см-сек-град) для СОг Я=0,033-10 ], теплоемкость двуокиси углерода почти в два раза больше, чем аргона [для Аг Ср=0,127 кал/ г-град) для СОг Ср=0,217]. Следовательно, действие двуокиси углерода эффективнее действия аргона. [c.88]

    В некоторых типах манометров в качестве сопротивлений используются бусинки из полупроводникового материала. Такие приборы обычно называют термисторными манометрами (см. Иапример, [6]). Вследстнне большой величины отрицательного температурного коэффициента полупроводникового сопротивления эти манометры имеют более высокую чувствительность. Термисторные манометры работают в интервале давлений 10 з — 50 мм рт. ст. Однако из-за большой теплоемкости бусинок по сравнению с проволочками эти приборы более инерционны, чем манометры Пирани. Все типы тепловых манометров необходимо калибровать по данным таких эталонных приборов, как манометр Маклеода. Поскольку в области молекулярных потоков теплопроводность обратно пропорциональна корню квадратному от массы молекулы (см., например, [6]), то покачд-ния прибора обычно зависят от рода газа. Серийные манометры калибруются обычно по азоту или сухому воздуху, коэффициенты теплопроводности которых очень близки. Для определения истинного давления других газов, таких как аргон, показания приборов корректируются с помощью калибровочных кривых. Однако после калибровки манометров их характеристики не остаются постоянными из-за изменения площади и эмиссионной способности поверхности нити. Знание точной величины давления требуется крайне редко, поскольку основное назначение этих нанометров заключается в контроле уровня форвакуума в откачиваемой системе. В этом смысле тепловые манометры очень удобны для автоматизации контроля, поскольку на выходе у них получается электрический сигнал. [c.322]

    Это уравнение позволяет исключить инструментальные погрешности определения коэффициентов теплопроводности газов я нх смесей на любой экспериментальной установке (в частности, на установке Гейера — Шэфера), что обеспечивается тем, что коэффициенты таплопроводности различных газов (НгО, N2), полученные на этой установке, присутствуют в числителе и знаменателе. Известно, что экс перил1енталь-ные данные о теплопроводности аргона в широком интервале температур хорошо совпадают [c.205]

    Л енуар, Юнк и Комингс [31], проверяя точность соотношений Гам-сона, исследовали коэффициенты теплопроводности азота, аргона, метана и этана при давлениях до 200 ama и температурах 40—70" С. Они констатировали для метана и аргона ошибку в 15% в сторону уменьшения для азота результаты расчета оказались на 19—25% выше опытных данных. Расчетные данные для этана были на 47—709O больше полученных экспериментально. Однако следует отметить, что температуры измерений были близки к критической температуре этана (32, Г С), а все методы, основанные на подобии термодинамических [c.22]

    Коэффициенты переноса плазмы вычислены (на основе методов Чеп-мана—Энскога или Грэда) в целом ряде работ. При этом использовалось не только первое приближение Чепмена—Энскога, но и высшие. Так, в [51, 52] показано, что для расчета теплопроводности и термодиффузии следует использовать но крайней мере третье приближение Чепмена, а для проводимости и вязкости — второе. Если вычислять теплопроводность и термодиффузию во втором приближении, ошибка составляет 57% в коэффициенте теплопроводности и 11% —в коэффициенте термодиффузии. Проведены расчеты для частично ионизованного аргона выяснено, что при любых степенях ионизации достаточно учесть третье приближение для теплопроводности и второе — для вязкости. Так же, как и в [44], в [51, 52] отмечается необходимость учета эффекта Рамзауэра. Аналогичные выводы получены и в [53], в которой использовался несколько иной подход. В [54] предлагается упрощенное теоретическое рассмотрение процессов переноса в рамках метода Чепмена—Энскога— Барнетта. Расчет, проведенный для частично ионизованного аргона, дал удовлетворительное согласие с результатами более точного метода. [c.136]

    Коэффициенты теплопроводности, >..10 , для аргона при 41 °С и различных давлен 1яхб >  [c.93]

    Этот последний способ расчета был также применен Сенджерсом [182, 183] для вычисления коэффициентов сдвиговой вязкости г] и теплопроводности А инертных газов. Экспериментальные данные для сдвиговой вязкости гелия, неона, аргона и ксенона и теплопроводности неона и аргона сравнивались с полученными из теории Энскога. Результаты приведены на фиг. 12.3 и 12.4. Из графиков видно, что экспериментальные и теоретические зависимости ту и Я от плотности согласуются довольно хорошо вплоть до значений Ьд==0,6. Аналогичное сравнение было проделано для сдвиговой вязкости водорода и азота, а также для теплопроводности азота. Однако здесь результаты оказались менее удовлетворительными, поэтому следует ожидать, что тео- [c.367]


Смотреть страницы где упоминается термин Аргон теплопроводности коэффициент: [c.231]    [c.130]    [c.152]    [c.232]    [c.117]    [c.67]    [c.358]    [c.214]    [c.379]   
Справочник по разделению газовых смесей методом глубокого охлаждения (1963) -- [ c.89 , c.93 ]




ПОИСК





Смотрите так же термины и статьи:

Аргон

Коэффициент теплопроводности

Коэффициенты теплопроводности газов и паКоэффициенты теплопроводности аргона

Теплопроводность коэффициент теплопроводности



© 2025 chem21.info Реклама на сайте