Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерода ненасыщенный, замещение нуклеофильное

    Замещение атома водорода непосредственно при действии аминов типично для хинонов, имеющих доступное для атаки хиноидное кольцо [98]. Эта реакция состоит в нуклеофильной атаке амино-азота по атому углерода ненасыщенной связи хинона и окислении образующегося аддукта молекулой исходного хинона последний при этом восстанавливается в гидрохинон и затем регенерируется при действии кислорода воздуха. Суммарное превращение [c.263]


    Ненасыщенный а-атом углерода. Субстраты винильного, ацетиленового [234] и арильного типов характеризуются очень низкой реакционной способностью в реакциях нуклеофильного замещения. Для таких систем реакции по механизмам SnI и Sn2 сильно замедляются или вовсе не идут. Это может быть обусловлено рядом факторов. Один из них заключается в том, что атом углерода в состоянии хр -гибридизации (и еще больше в состоянии sp-гибридизации) обладает более высокой электроотрицательностью, чем 5рЗ-гибридизованные атомы углерода, и поэтому сильнее притягивает электроны связи. Как уже было показано в т. I, разд. 8.5, кислотность связи sp- —Н выше, чем кислотность связи sp - —Н, а кислотность связи sp - —Н имеет среднее между ними значение. Это вполне объяснимо при потере протона электроны остаются у атома углерода, поэтому sp-атом С, притягивающий электроны сильнее других. [c.67]

    Карбанионы проявляют основные и нуклеофильные свойства, а также могут выступать как одноэлектронные доноры. Главные реакции — протонирование, нуклеофильное замещение у насыщенного атома углерода, нуклеофильное присоединение к ненасыщенным функциям и перенос электрона — в обобщенном внде представлены на схеме (27). Отдельно рассмотрены перегруппировки карбанионов. Конечный результат реакций карбанионов зависит от структуры реагирующих веществ многие важные в синтетическом отношении и тесно связанные между собой, с точки зрения [c.556]

    Основные направления разложения лигнина до низкомолекулярных или мономерных соединений, представленных на рис. 18.4, включают окисление или гидролиз в щелочной среде, сплавление со щелочью, нуклеофильное деметилирование под действием щелочи, пиролиз и гидрогенолиз. Получаемые химикаты можно разделить на следующие группы неспецифические продукты, такие, как уголь, масла, смолы, пек газы, такие, как моноксид и диоксид углерода, а также водород фенол и замещенные фенолы бензол и замещенные бензолы насыщенные и ненасыщенные углеводороды органические серосодержащие соединения органические кислоты. [c.422]

    Нуклеофильное замещение у ненасыщенного углерода [c.194]

    Нуклеофильное замещение у ненасыщенного атома углерода  [c.303]

    НУКЛЕОФИЛЬНОЕ ЗАМЕЩЕНИЕ У НЕНАСЫЩЕННОГО УГЛЕРОДА [c.304]

    Последовательность изменения реакционной способности галогенов арил-галогенидов в качество замещаемых групп в реакциях типа /5 ,2 в ароматическом ряду обычно такова Ясно видно, что факторы, управляющие реакционной способностью при нуклеофильном замещении у ненасыщенных углеродных атомов, полностью отличаются от тех, которые наблюдаются в реакциях 8 / у насыщенных атомов углерода. Поляризуемость относительно мало влияет на реакционную способность нуклеофилов и замещаемых групп в случаях замещения у ненасыщенных центров (ср. стр. 245). [c.315]


    Существует еще один механизм нуклеофильного замещения в аллилгалогенидах, который может протекать конкурентно или даже заменять собой замещение типа SN2. При этом механизме происходит нуклеофильная атака не по насыщенному а-углероду, а по ненасыщенному углеродному, атому в -положении — при этом происходит одновременный сдвиг электронов двойной связи и выталкивание галогенид-иона. Такие реакции имеют второй порядок и обозначаются символом SN2. В случае несимметричных аллильных производных образуется продукт перегруппировки. [c.294]

    Вопросы, вставшие перед химиками, изучающими бимолекулярное замещение у ненасыщенного углерода, были следующими Является ли замещение действительно синхронным и Имеются ли свидетельства в пользу существования стабильного промежуточного соединения Были получены ответы Нет — на первый вопрос и, зачастую, Да — на второй. Таким образом, было найдено, что бимолекулярное нуклеофильное замещение при ненасыщенном углеродном атоме по своим основным характеристикам отличается от механизма 5]у2 при насыщенном атоме углерода. [c.183]

    Нуклеофильное замещение у насыщенного атома углерода при применении алкилирующих агентов с вторичными и третичными радикалами осуществляется менее успешно, чем при применении алкилирующих агентов с первичными радикалами. Главная причина этого — конкурирующие реакции элиминирования, протекающие с образованием ненасыщенных соединений. Так, при реакции трет-бутилхлорида с основаниями главным продуктом реакции оказывается изобутилен. [c.261]

    Процессы нуклеофильного ароматического замещения не занимают обособленного положения среди органических реакций. Возможно, их следует рассматривать как частный случай нуклеофильного замещения у ненасыщенного атома углерода. При таком подходе становится явным их родство со многими реакциями замещения у углерода карбонильной [c.65]

    По сути дела, реакция III.14 является реакцией нуклеофильного замещения у ненасыщенного атома углерода. [c.143]

    В реакциях нуклеофильного замещения у ненасыщенного атома углерода (sp -углерод в активированных аренах или карбонильных соединениях) отношения иные, поскольку в этом случае реакции идут не через переходное состояние, а через определенный промежуточный продукт (см. гл. 6)  [c.214]

    При нуклеофильной реакции у ненасыщенного атома углерода возможно образование промежуточного продукта, поскольку вытесненный электрон может быть принят заместителем, находящимся у ненасыщенного атома углерода (например, атомом кислорода карбонильной группы). Промежуточный продукт имеет меньшую энергию, чем переходное состояние. Образование такого продукта для большинства реакций карбонильной группы вероятно или доказано. По названным причинам реакции нуклеофильного замещения у карбонильных соединений идут легче, чем реакции у насыщенного атома углерода. [c.293]

    Реакции нуклеофильного замещения при атоме углерода карбонильной группы могут осуществляться как по моно-, так и по бимолекулярному механизму более характерными являются реакции бимолекулярного замещения. В то время как реакции мономолекулярного замещения при атоме углерода, карбонильной группы имеют очень много общего с реакциями Sfjl в алкилгалогенидах, реакции бимолекулярного замещения в кислотах и их производных протекают по несколько иному механизму, чем соответствующие реакции алкилгалогенидов. Специфика карбонильной группы состоит в том, что она, являясь ненасыщенной, проявляет склонность к реакциям присоединения . При нуклеофильной атаке [c.191]

    Реакции нуклеофильного замещения характерны для насы-енных органических соединений, содержащих следующие функ-юнальные группы галоген, гидроксильную, тиольную группы аминогруппу. Для сравнения в настоящей главе рассматрива-гся также соединения с функциональной группой у ненасыщен-)го атома углерода — винил- и арилгалогениды, фенолы, юматические амины и др. [c.149]

    Углерод-углеродная связь С—СЫ в большинстве нитрилов весьма устойчива. Однако, как уже указывалось, в зависимости от природы радикалов, связанных с цианогруппой, свойства нитрилов меняются в очень широких пределах. При наличии в молекуле нитрила электроноакцепторных заместителей, вызывающих значительное понижение электронной плотности у а-углеродного атома (по сравнению с обычными незамещенными алифатическими и ароматическими нитрилами), энергия связи С—СЫ резко уменьшается. При взаимодействии таких нитрилов с нуклеофильными реагентами атака направляется не на углеродный атом цианогруппы, а на а-углеродный атом, в результате чего происходит отрыв или замещение цианогруппы. У подобных нитрилов возможны также реакции гетеролитического и гомолитического разрыва связи С—СЫ при термолизе и других воздействиях. К нитрилам, реагирующим с разрывом связи С—СЫ, в первую очередь относятся а-оксинитрилы, а-аминонитрилы, а-кетонитрилы, циануглероды, алифатические пергалогенонитрилы, а,р-ненасыщенные нитрилы с электроноакцепторными заместителями у а- и р-углеродных атомов и некоторые другие. Рассмотрение реакций перечисленных классов нитрилов, завершающихся укорочением углеродных цепей и замещением цианогруппы, составляет основной предмет данной главы. [c.400]


    При взаимодействии нитрилов, имеющих ослабленную углерод-углеродную связь в группировке С—СЫ, с нуклеофильными реагентами происходит замещение цианогруппы и образуются новые С—О, С—Ы, С—С и другие связи. Наиболее легко цианогруппа замещается у а-кетонитрилов, циануглеродов, а,р-ненасыщенных нитрилов, двойная связь которых активирована электроноакцепторными заместителями, [c.412]

    Реакции замыкания цикла включают внутримолекулярное обра->ание а-связи. В гораздо большей степени распространены про- сы, в которых нуклеофильный центр атакует злектрофильный. еди реакций этого типа можно перечислить следующие нуклео-льное замещение при насыщенном атоме углерода, нуклеофиль-е присоединение к ненасыщенному атому углерода и нуклеофнль-е присоединение — элиминирование. Гетероциклические системы жно также получить в результате внутримолекулярного ради-ibHoro процесса, электроциклического замыкания цикла с участи-сопряженной т-электронной системы или с участием карбенов литренов. Все эти процессы будут проиллюстрированы в последующих разделах. [c.81]

    Основное направление научных работ — изучение структуры и реакционной способности органических соединений, механизмов химических реакций и органического катализа. Открыл явление повышенной проводимости электронных эффектов в органических молекулах — положительный мостиковый эффект. Исследует кинетику и механизм реакций нуклеофильного замещения у ненасыщенных атомов углерода, серы, фосфора. Выяснил механизм действия органических катализаторов в процессах ацильного переноса, в том числе особенности нуклеофильного катализа в неводных средах, сформулировал закономерности бифункционального катализа, открыл кис-лороднуклеофильный и фотоинду-цированный катализ. [82, 207] [c.306]

    При нуклеофильном замещении у ненасыщениого sp -атома углерода (активированные ароматические соединения, карбонильные группы) имеют место другие соотношения, поскольку в этих случаях реакция идет не через переходное состояние, а через определенное промежуточное соединение (ср. гл. 6)  [c.177]

    В реакциях замещения ординарные связи образуются и разрываются у углеродного атома и новая вступающая группа замещает уходящую. Этот процесс мон<ет происходить как у насыщенного углерода (углерод с четырьмя а-связямх1), так и у ненасыщенного углерода (углерод с одной или двумя, я-связями), поэтому целесообразно подразделять реакции замещения на две подгруппы. Полезно также в свою очередь разделить реакции замещения на нуклеофильные, электрофильные или радикальные. Реакция может быть онределена, например, как нуклеофильное замещение у насыщенного [c.193]

    Наиболее характерные примеры электрофильного катализа процессов нуклеофильного замещения у ненасыщенного углерода относятся к электро-фильпым замещениям в ароматическом ядре (гл. 16). Тем не менее процессы конденсации алифатических соединений, катализируемые кислотами Льюиса, также находят известное применение. [c.324]

    Алкилирование и ацилирование. В присутствии кислот Льюиса алкены об. 1адают достаточной нуклеофильностью, чтобы участвовать в процессах замещения, протекающих как у насыщенных, так и ненасыщенных атомов углерода. Эти реакции известны как алкилирование и ацилирование по Фриделю.— Крафтсу в ароматическом ряду. Однако было осуществлено ограниченное число присоединений к алкенам. Действие катализатора состоит в поляризации и, возможно, ионизации агента алкилирования и ацилирования. [c.347]

    Связь О—Н в спиртах довольно прочна, хотя она, полярна и кинетически лабильна. Значения энергии гомолитической диссоциации связи (D°) для i—Сгалканолов лежат в пределах 427—436 кДж-моль . Гомолитическое отщепление гидроксильного атома водорода радикалами для первичных и вторичных спиртов в растворе обычно не встречается в этих случаях, как правило, протекает предпочтительно атака по а-атому углерода. С другой стороны, депротонирование с образованием алкоксида легко осуществляется при обработке спирта сильно электроположительным металлом или сильным основанием. Реакционная способность понижается от первичных к третичным спиртам в соответствии с порядком изменения кислотности в жидкой фазе (см. табл. 4.1.4). Гетеролиз связи О—Н также следует за электрофильной атакой по гидроксильному атому кислорода, например при алкилировании и ацилировании спиртов. Вследствие высокой электроотрицательности и низкой поляризуемости кислорода спирты являются только слабыми и относительно жесткими основаниями (см. табл. 4.1.4) и лищь умеренно реакционноспособны в качестве нуклеофилов. Реакции присоединения спиртов к ненасыщенным соединениям обычно требуют участия катализатора или использования активированных субстратов. Нуклеофильность самих спиртов может быть активирована путем (а) превращения их в алкоксиды или (б) путем замещения гидроксильного атома водорода электроположительной или электронодонорной группой. Первый, более распространенный подход, находит применение, например, при нуклеофильном замещении алкилгало-генов, нуклеофильном (по Михаэлю) присоединении к активированным алкенам и при нуклеофильных реакциях присоединения-элиминирования в процессе переэтерификации. Второй, менее популярный подход, включает использование ковалентного средине- [c.60]

    Среди реакций нуклеофильного замещения в ароматическом ряду только термическое разложение диазониевых солей является надежным примером механизма 5дг1. Соответствующие данные были обсуждены ранее [3, 4]. -Реакции карбоновых кислот и их эфиров [5] являются, по существу, 5.у1-реакциями при карбонильном атоме углерода. Рйлеются также данные о том, что гидролиз хлорангидридов карбоновых кислот протекает частично по механизму [6]. Таким образом, механизм 5,у1 при ненасыщенном атоме углерода представлен несколькими примерами, однако значение его гораздо меньше, чем значение -замещения при насыщенном атоме углерода. [c.182]

    За прошедшие годы появилось значительное количество исследований, в которых был расширен круг галоидорганических соединений, вступающих в реакцию Арбузова, и проведены исследования по изучению ее механизма. Однако за последние 20 лет наметилось и другое, не менее важное и интересное направление исследований в химии производных кислот трехвалентного фосфора — изучение взаимодействия с органическими электрофильными реагентами, не содержащими атомов галоидов. Эта новая, многообещающая и быстро развивающаяся область фосфорорганической химии включает разнообразные превращения производных кислот трехвалентного фосфора с широким кругом соединений как насыщенного, так и ненасыщенного рядов — спиртами, перекисями и гидроперекисями, карбоновыми кислотами и их производными, аминами, альдегидами, кетонами, сернистыми соединениями, непредельными углеводородами и др. Ввиду многообразия реагентов, вступающих в реакции с соединениями трехвалентного фосфора, естественно и механизмы их протекания неоднозначны. Наряду с нуклеофильным замещением наблюдаются процессы нуклеофильного присоединения и окисления. Многие из реакций нуклеофильного замещения и присоединения осуществляются по схемам, аналогичным или близким к предложенным для классической перегруппировки Арбузова и могут рассматриваться как ее разновидности. В первой фазе происходит атака атома фосфора на атом углерода, несущий какую-либо функциональную группу или являющийся концевым в непредельной системе, по механизму бимолекулярного нуклеофильного замещения с образованием квазифосфониевого соединения или биполярного иона. Во второй фазе в результате 5д,2-реакции аниона [c.5]

    Э. Хьюз и К. Инголд с сотрудниками показали при исследовании замещения у насыщенного [47] и ненасыщенного [48] атомов углерода, что ...углеродный атом, который обладает только 0-электронами, значительно более чувствителен к нуклеофильным, но. .. менее чувствителен к электрофильным реагентам, с другой стороны,. ..атом углерода, обладающий л-электронами, менее чувствителен к нуклеофильным и более к электрофильным реагентам [47, стр. 10]. Причем механизм ионизации 5 1. .. является наиболее общим для перегруппировок анионо-тропной системы [47, стр. 14]. Вообще нет другого механизма замещения, являющегося столь чувствительным к конститутивным полярным влияниям, как мономоле-кулярное нуклеофильное замещение [47, стр. 15]. [c.21]

    Одним из характерных химических свойств хинонов является их склонность к реакциям присоедипения . Типичное для хинонов присоединение нуклеофильных агентов к атомам углерода можно рассматривать как присоединение к сопряженной цепи, включающей группу СО и С—С-связи хиноидного ядра. В этом отношении хиноны подобны а,р-ненасыщенным кетонам и их винилогам. Своеобразие присоединения к хинонам состоит во вторичных превращениях, обусловленных тенденцией к ароматизации. Первоначально образующиеся при нуклеофильной атаке продукты присоединения стабилизируются далее путем отщепления вытесняемой группы в виде аниона (нуклеофильное замещение) илц путем прототропного перехода в замещенный гидрохинон. Последний является конечным продуктом реакции, если вступающая группа обладает электроноакцепторными свойствами и повышает окислительно-восстановительный потенциал системы хинон — гидрохинон. Б тех случаях, когда заместитель имеет электронодонорный характер, происходит дальнейшее окисление частью исходного хинона, восстанавливающего в гидрохинон. Применение дополнительного окислителя позволяет регенерировать исходное вещество и довести процесс до полного превращения в замещенный хинон. Конечный результат при этом состоит в замене атома водорода в молекуле хинона и часто интерпретируется как. нуклеофильное замещение с удалением гидрид-иоца, облегчаемое участием окислителя Поскольку механизм, допускающий гид-ридное перемещение, в данном случае не доказан, вопрос о том, рассматривать ли вторичное превращение продукта присоединения в замещенный хинон как перенос электронов с последующим переходом прртона или как отщепление гидрид-иона, сопровождающееся его окислением, остается открытым. [c.5]


Библиография для Углерода ненасыщенный, замещение нуклеофильное: [c.329]   
Смотреть страницы где упоминается термин Углерода ненасыщенный, замещение нуклеофильное: [c.77]    [c.324]    [c.328]    [c.181]    [c.479]    [c.60]   
Современные теоретические основы органической химии (1978) -- [ c.221 , c.226 ]

Современные теоретические основы органической химии (1978) -- [ c.221 , c.226 ]




ПОИСК





Смотрите так же термины и статьи:

Замещение нуклеофильное

Нуклеофильное замещение при ненасыщенном атоме углерода и в ароматических молекулах

Нуклеофильное замещение у ненасыщенного атома углерода Образование связи углерод — галоген



© 2025 chem21.info Реклама на сайте