Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константа активированного комплекс

    В табл. ХП.1 приводится список величин констант скоростей для бимолекулярных реакций, их экспериментальные энергии активации и предэкспоненциальные множители, полученные на основании вышеизложенных данных. Из таблицы видно, что выражения для констант скорости, полученные из термодинамического уравнения и теории соударений, не позволяют без специальных допущений отдельно определить величины, входящие в эти выражения. Раздельное определение всех величин — частот, энергий активации и энтропии активации — из экспериментальных данных возможно лишь в случае использования теории активированного комплекса, а также уравнения Аррениуса .  [c.247]


    Было предпринято много попыток вычисления предэкспоненциальных множителей констант бимолекулярных реакций на основе теории активированного комплекса. Результаты этих вычислений зависят от ряда более или менее обоснованных гипотез относительно свойств п строения переходного комплекса, от допущений относительно трансмиссионного коэффициента реакции, а также от того, можно ли с достаточной степенью точности пользоваться декартовыми координатами для вычисления величин термодинамических функций для многоатомных молекул. [c.252]

    Метод активированного комплекса позволяет выделить кинетические и термодинамические факторы, входящие в определяемую на опыте константу скорости (для элементарного химического акта). Так, в случае активированного комплекса Х А-ЬВ-ЬС+... можно написать для констант скорости кп образования продуктов из X (см. разд. XII.4)  [c.437]

    Написав аналогичное выражение для активированного комплекса X, образующегося по реакции можно воспользоваться уравнением (ХУ.5.2) для оценки влияния изменений диэлектрической проницаемости на константу скорости реакции  [c.456]

    Взаимодействие минимально для случая ориентации голова к хвосту (0 = 180 ). Заряд активированного комплекса равен заряду иона А, так что, кроме энергии диполя, определяемой по уравнению (XV.11.3), благодаря наличию заряда должен появиться кулоновский член типа члена в уравнение Дебая — Хюккеля. Однако в результате сокращения (при и = 0) с соответствующим выражением для иона можно получить следующее уравнение, описывающее влияние растворителя на константу скорости реакции иона с диполем  [c.458]

    Добавки отрицательных ионов оказывают сильное каталитическое действие, вызывая изменение закона скорости. Скорость в этом случае оказывается зависящей либо от первой степени концентрации добавленного иона, либо от квадрата его концентрации. Константы равновесия для ассоциации большинства этих ионов с Ре " известны, и можно считать, что реакция идет через активированный комплекс, образующийся при взаимодействии Ре " и комплекса Ре . Следует учитывать, что закон скорости дает сведения только о числе комплексообразующих ионов, входящих в состав активированного комплекса, но не о том, каким образом они соединены между собой. Некоторые значения констант скоростей, полученных таким образом, приведены в табл. XVI.2. [c.505]

    Если считать, что в рассматриваемой системе преобладает гомогенный механизм зарождения цепей, и допустить, что в начальной стадии окисления скорость процесса определяется наиболее медленной элементарной реакцией — зарождения цепей, то согласно [24], активированный комплекс этой реакции (рис. 2.1,6) можно рассматривать в качестве сольватированного комплекса, и в этом случае для константы скорости реакции (О ) в схеме цепного окисления справедливо уравнение  [c.33]


    Факторы, определяющие константу скорости реакции. Энергия активации. Теория столкновений. Активированные комплексы. Поверхности потенциальной энергии, путь реакции. Теория абсолютных скоростей реакций, переходное состояние, энтальпия и энтропия активации. Реакции замещения, нуклеофильные группы, механизм 814) 1 (диссоциативный), механизм SN2 (ассоциативный). [c.350]

    Физические характеристики процесса сорбции из жидкой фазы в общем определяются наличием ближнего порядка молекул растворителя вблизи твердой поверхности, что приводит к предварительной ориентации сорбируемых молекул из раствора и соответствующего снижения энтропии образования активированного комплекса реагента с катализатором. Так как предэкспоненциальный множитель в константе скорости гетерогенно-каталитических реакций равен [c.49]

    Обратим теперь внимание на то, что наблюдаемая константа као представляет собой отношение константы дезактивирования к произведению констант активирования и превращения активного комплекса. Поскольку энергия активирования реакций активного комплекса близка к нулю, наблюдаемая энергия активирования, найденная по изменению оо с температурой, близка к энергии активирования реакции образования активного комплекса. По данным [2, 3], эта величина колеблется от 210 до 260 кДж/моль. [c.56]

    Выражение константы скорости реакции через термодинамические функции реагентов и активированного комплекса. Константа скорости в уравнении (212.22) имеет размерность молекула" - см -с Ч Скорость реакции в уравнениях (212.3) — (212.4) выражается в молекула см" с" . Обычно скорость реакции выражается в моль см" -с" . Разделив (212.4) на Л/д, получим скорость прямой реакции, выраженную в моль см" с  [c.576]

    Изменение энергии Гиббса при образовании активированного комплекса может быть выражено через энергию Гиббса реагентов, активированного комплекса и растворителя, находящихся в стандартном состоянии. Это позволяет проанализировать влияние растворителя и свойств реагентов на константу скорости реакции. [c.594]

    Из (217.1) и (217.2) следует, что влияние растворителя на константу скорости реакции будет проявляться через константу равновесия реакций образования активированного комплекса и коэффициенты активности реагентов. Термодинамическую константу равновесия К° выразим через химические потенциалы  [c.595]

    Маршруты каталитических процессов могут быть и более сложными Но и из приведенных простых маршрутов видно, что многостадийный каталитический процесс описывается несколькими константами, а если процесс описывается одной константой (уравнение (222.10)], то она включает константы других стадий. При этом в состав активированного комплекса всегда в той или иной форме входит катализатор. [c.622]

    Теория активированного комплекса позволяет получить выражение для константы скорости реакции. Для реакции [c.161]

    Выражая константу равновесия активированного комплекса при помощи уравнения Вант-Гоффа через стандартную свободную энергию, получают  [c.44]

    Если активированный комплекс сольватируется сильнее реагентов А и В (рис. 3.1,а), то < АСТ и константа скорости реакции увеличивается. Если реагенты сольватируются сильнее, чем активированный комплекс (рис. 3.1,6), то ЛО > и кон- [c.116]

    Константа скорости к (Е ) рассчитывается с применением метода стационарных концентраций активированных комплексов к в реакции [c.189]

    Константа а рассматривается как мора чувствительности реакции (катализа) к кислотности (или основности) катализатора. С точки зрения изменения свободной энергии мон но сказать, что а есть мера той доли изменения свободной энергии ионизации, которое происходит при образовании активированного комплекса. Соотношение Бренстеда нельзя использовать в виде уравнения (XVI.3.1). Б величины Ацл и К а должны быть внесены поправки, которые возникают из-за изменений симметрии и не влияют на внутренние химические и.шенения, происходящие в системе. Поскольку К я к выражены в моль/л, можно ожидать, что двухосповпые кислоты, н которых две карбоксильные группы удалены друг от друга на значительное расстояние, будут в 2 раза более эффективными (на 1 моль), чем одноосновные кислоты, такие, как уксусная кислота. Наоборот, сравнив каталитическую активность оснований, можно прийти к выводу, что формиат-ион H O в 2 раза эффективнее в реакцип присоединения протона, чем этокси-ион С2Н5О, так как первый может присоединять Н к любому из двух ато- [c.485]

    Каталитическая константа скорости реакции третьего порядка в 1 М ЫС104 лрп О" равна 0,5 л /молъ- сек-, предполагается образование активированного комплекса следующего строения (молекулы воды опущены)  [c.506]

    Разложение NO2 с образованием 2NO+O2 ири 500° протекает по закону второго порядка с константой скорости Ig 2=8,80—25600/4,575Л7 (константа выражена в я/молъ-сек), а) По теории соударений в температурном интервале 400—600° константу скорости реакции можно записать в виде = ехр(—E/RT). Вычислить значения Z и . б) По теории активированного комплекса константа =(Л Г/УУдЛ) ехр (Д5 /Л — —AH /RT). Вычислить AS и ДД . в) Пользуясь модифицированным] уравнением Аррениуса в виде к - АТ ехр (—E/RT), где А выражено в мм рт. ст., вычислить А к Е. [c.586]


    Однако энергия активации этой реакции достигает 109 кДж/моль (табл. 2.2), что указывает на сильное отталкивание между реагентами в момент образования активированного комплекса. Можно предположить, что в парафиновых и нафтеновых углеводородах эта реакция — основная. При таком предположении из экспериментальных данных рассчитаны константы скорости взаимодействия ROOH с третичной и вторичной связью насыщенных углеводородов (см. табл. 2.2). [c.40]

    Константу равновесия К между реагентами и активированным комплексом оказывается возможным вычислить из молекулярных свойств с использованием статистической механики. Мы не будем даже пытаться провести здесь такие вычисления, а вместо этого обратимся к термодинамической интерпретации приведенного вьпце выражения для константы скорости. Константа равновесия связана со стандартной свободной энергией образования активированного комплекса из реагентов, которая в свою очередь выражается через стандартные энтальпию и энтропию образования активированного комплекса  [c.377]

    Такой механизм называется диссоцштивным и обозначается 8 1, поскольку это нуклеофильное замещение, в котором наиболее медленная (скоростьопределяющая) стадия включает диссоциацию отдельной молекулы. Различие между этими механизмами должно проявляться в энтропии активации, если ее вычислить из уравнения (22-16) по экспериментальным данным о константах скорости. Механизм 8 2 должен характеризоваться больщой отрицательной энтропией активации, поскольку активированный комплекс образуется из двух молекул. В отличие от этого механизм 8 1 должен характеризоваться почти нулевой энтропией активации, потому что в этом случае активированный комплекс лищь незначительно отличается от молекулы реагента. [c.379]

    Как теория столкновений, так и теория абсолютных скоростей реакций основывается па представлении об энергии активации, которая играет роль барьера реакции. В этом смысле обе они основываются на данном еще Аррениусом объяснении температурной зависимости констант скорости. Теория столкновений фокусирует внимание на столкновении двух реагирующих молекул, тогда как теория абсолютных скоростей реакций уделяет больщее внимание комплексу, образуемому после столкновения, и исходит из предположения о существовании равновесия между этим комплексом и реагентами. Теория столкновений использует представление об энергии активации, утверждая, что все молекулярные пары, не имеющие этой энергии при столкновении, должны оттолкнуться, а не прореагировать друг с другом. Вместо этого теория абсолютных скоростей постулирует, что большая энтальпия образования активированного комплекса означает малую величину константы равновесия и, следовательно, низкую концентрацию активированного комплекса. Если считать, что комплекс образуется, когда две молекулы имеют энергию, требуемую теорией столкновений, то становится понятным, что обе рассматриваемые теории по сути не что иное, как две разные точки зрения на одно и то же явление. [c.379]

    Как указывалось выще, константа равновесия для образования активированного комплекса. К, может быть вычислена по данным о свойствах реапф то1щгх молекул и о предполагаемых свойствах комплекса. Это означает, что константу скорости к (или /сг) можно вычислить из первых принципов, подобно тому как это может быть сделано в теории столкновений. В табл. 22-2 сопоставляются вычисленные в рамках этих теорий константы скорости нескольких реакций с экспериментальными данными. Не- [c.379]

    Гершинович и Эйринг [296] рассмотрели реакцию 2N0 - - Xj -v 2N0X (X = l, Вг) исходя из теории активированного комплекса. Поскольку в результате потери шести вращательных степеней свободы происходит значительное понижение энтропии системы, приводящее к уменьшению предэК снонепциального множителя в выражении константы скорости, такого рода реакции в общем случае должны протекать медленнее, чем бимолекулярные реакции, имеющие ту же анергию активации. Это дает объяснение малых значений множителя Р, что уже отмечалось выше. [c.134]

    Интерпретация константы скорости в рамках метода переходного состояния представляет более простую задачу. Обычно удается выбрать такую структуру активированного комплекса, которая приводила бы к наблюдаемой абсолютной величине и температурной зависимости к (Т). Такой подход, ставший традициовным в течение последних 40 лет, дает также некоторую информацию о сечениях реакции. [c.145]

    Таким образом, согласно теории активированного комплекса, при представлении константы скорости обменного процесса в аррениусовской форме экспериментальная эпергин активации увеличивается с повышением температуры. Однако это изменение энергии активации относительно невелико и в пределах погрешностей измерений обычно не обнаруживается. [c.146]

    Значение Afi° не зависит от катализатора. Следовательно, константа равновесия К° не зависит от катализатора. Константа равновесия реакции (а) К° может быть выражена через отношение констант скоростей прямой fej и обратной реакций К° = kjk . Отсюда вытекает положение о том, что катализатор в одинаковой степени увеличивает (или уменьшает) константы скоростей прямой и обратной реакций. Кинетический критерий реакционной способности AG° представляет собой изменение энергии Гиббса в процессе образования активированного комплекса (Aj — Аг — Х) из исходных веществ и катализатора  [c.619]

    С помощью этой модели можно вычислять функцию распределения по максимальным временам спонтанного распада, которая является детальной кинетической характеристикой мономолекулярной реакции [406]. Максимальным временем спонтанного распада называется временной интервал между двумя последовательными прохождениями траекторией окрестности активированного комплекса с последующим необходимым распадом. За это время часть распадной траектории Г должна пройти область фазового пространства, соответствующую возбужденной молекуле, а затем возвратиться к области активированного комплекса, но уже с такими направлениями импульсов, которые непосредственно ведут к распаду молекулы. Максимальное время спонтанногг аспада является случайной величиной, так как начальные условия выбираются случайно. Функция распределения 1 т) этой случайной величины может быть определена при статистической обработке результатов моделирования. Используя эту функцию, можно получить константы скорости распада при различных видах активации молекулы. [c.72]

    Программа осуществляет расчет микроскопических констант к(Е), макроконстант в зависимости от давлений и другие характеристики элементарного акта в рамках теорий активированного комплекса (АК) и РРКМ как для термически, так и для химически активированных систем. Для расчетов необходимы параметры активной молекулы, активированного комплекса и условия эксперимента. [c.252]


Смотреть страницы где упоминается термин Константа активированного комплекс: [c.242]    [c.485]    [c.346]    [c.378]    [c.64]    [c.35]    [c.380]    [c.74]    [c.572]    [c.573]    [c.576]    [c.593]    [c.594]    [c.603]    [c.639]    [c.79]    [c.116]    [c.116]   
Практические работы по физической химии Изд4 (1982) -- [ c.239 ]




ПОИСК





Смотрите так же термины и статьи:

Активированный комплекс

Комплекс активированный Активированный

Комплексы константы



© 2024 chem21.info Реклама на сайте