Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сверхтонкое взаимодействие контактное

    Оказалось, что времена ядерной магнитной релаксации 71 и Гг растворителя (изотопы Н и Ю) резко укорачиваются под влиянием парамагнитных катионов за счет прямого диполь-ди-польного и контактного сверхтонкого взаимодействия между электронным и ядерным магнитными моментами. Ввиду большого значения магнитных моментов неспаренных электронов этот механизм эффективен уже при малых концентрациях парамагнитных катионов 10 —10 моль/л [833]. Парамагнитные примеси, создавая сильные магнитные поля на ядрах молекул растворителя, координированных парамагнитным катионом, ускоряют отвод энергии от системы резонирующих ядерных спинов к ее окружению (решетке). Благодаря быстрому обмену молекул воды в координационной сфере аква-комплекса влияние парамагнетика распространяется на весь объем растворителя, и за время релаксации все ядра растворителя успевают побывать в непосредственной близости от катиона. При прочих равных условиях скорость релаксации 01=(1/Г1) или 02=(1/Гг) линейно зависит от концентрации катиона Таким образом, ядерная магнитная релаксация оказывается чувствительным инструментом обнаружения и количественной оценки содержания парамагнитных ионов в растворе. [c.436]


    Выражение для контактного сдвига обычно записывают не в виде уравнения (12.13), а как функцию константы сверхтонкого взаимодействия А. Если мы подставим уравнение (12.15) в уравнение (12.13), то получим для изотропного сдвига следующее выражение  [c.170]

    Известны два типа сверхтонкого взаимодействия анизотропное, которое определяется диполь-дипольным взаимодействием магнитных моментов ядра и неспаренного электрона, и изотропное, или контактное, появляющееся в результате того, что плотность вероятности l з электронного облака неспаренного электрона в точке нахождения ядра не равна нулю. [c.209]

    Изотропное сверхтонкое взаимодействие неспаренного электрона со спином ядра азота обусловлено поляризацией спинов s-электронов атома азота неспаренным электроном, локализованным на 2р-орбитали, что приводит к эффективному изотропному контактному взаимодействию между электронным и ядерным спином [30]. Как видно из данных, представленных в табл. 1.1, изотропное взаимодействие в нитроксильных радикалах приводит к тем же по порядку величины константам СТВ, что и анизотропное взаимодействие. [c.14]

    Сверхтонкое взаимодействие объединяет в себе контактное взаимодействие Ферми, дипольное взаимодействие ядерного спина с электронным и взаимодействие ядерного спина с орбитальным моментом [c.222]

    Энергия сверхтонкого взаимодействия состоит из двух частей энергии анизотропного, или дипольного, СТВ, которая зависит от ориентации молекулярных осей относительно внешнего поля, и энергии изотропного, или контактного, СТВ, которая не зависит от ориентации. Изотропное СТВ характеризует взаимодействие ядра с неспаренным электроном, находящимся в з-состоянии энергия СТВ пропорциональна плотности неспаренного з-электрона. [c.282]

    Этот гамильтониан соответствует сверхтонкому взаимодействию (СТВ), состоящему из изотропного (контактного) и анизотропного диполь-дипольного взаимодействий [c.15]

    При /-=0 I F(O) р= l/я/ о (Го — радиус первой боровской орбиты).. Молекулярные орбитали могут быть представлены в виде линейной, комбинации атомных орбиталей. Для неспаренного электрона, находящегося на молекулярной орбитали, величина контактного взаимодействия определяется вкладом атомных s-орбиталей. Контактное взаимодействие изотропно, т. е. не зависит от ориентации пара-магнитны.к частиц по отношению к внешнему магнитному полю. Константа a сверхтонкого взаимодействия в единицах напряженности магнитного поля может быть выражена в виде [c.243]


    Контактное (Ферми) взаимодействие состоит в переносе спиновой плотности неспаренных электронов парамагнитного иона на данное магнитное ядро по цепи химических связен. Поэтому контактное взаимодействие зависит прежде всего от электронного строения лигандов и характера связи металл — лиганд. Контактное взаимодействие прямо пропорционально константе сверхтонкого взаимодействия Л/ неспаренного электрона с магнитным ядром и обратно пропорционально абсолютной температуре Т. Константа /4 быстро затухает по цепи а-связей в сопряженных системах знак Л, в цепи альтернирует. Контактное взаимодействие более характерно для элементов IV периода, а у лантаноидов, как правило, оно играет второстепенную роль, особенно при их взаимодействии с протонами. [c.107]

    Кроме взаимодействия с магнитным полем, неспаренные электроны близких атомов или свободных радикалов взаимодействуют как между собой (диполь-дипольные и обменные взаимодействия), так и с парамагнитными ядрами, входящими в состав того же атома или молекулы (диполь-дипольное и контактное взаимодействие). Электронно-ядерные взаимодействия обусловливают наличие сверхтонкого расщепления в спектрах ЭПР. Гамильтониан сверхтонкого взаимодействия (СТВ) может быть записан как  [c.279]

    Главные значения тензора сверхтонкого взаимодействия А, В, С определяются 14) изотропны.м контактным и анизотропным дипольным взаимодействиями неспаренного электрона с магнитным моментом ядра  [c.146]

    Константы сверхтонкого взаимодействия дают возможность получать сведения о распределении неспаренного электрона в системе. Взаимодействие электронного спина с ядерным можно разделить на скалярный и тензорный вклады. В изотропной жидкой среде тензорный вклад усредняется и оказывается равным нулю. (В твердой фазе анализ тензорного вклада позволяет получать ценные сведения, но мы не будем останавливаться на этом.) Скалярный вклад включает так называемое контактное взаимодействие. Контактное взаимодействие поддается вычислению. Оно приводит к следующему выражению для константы взаимодействия а  [c.374]

    Наиболее важный вклад вносит контактное взаимодействие Ферми, которое можно рассматривать как предельную энергию взаимодействия электрона с магнитным диполем, когда размеры диполя стягиваются в точку [23]. Эта проблема имеет некоторые общие черты с проблемой сверхтонкого взаимодействия неспаренного электрона с ядром в ЭПР в обоих случаях необходимо знать волновую функцию электрона, в особенности в месте нахождения взаимодействующего ядра. Эта проблема была подробно рассмотрена в работе [163] недавно появились новые работы [96, 130], посвященные этому вопросу. [c.427]

    Следует также упомянуть, что существуют другие, менее эффективные механизмы интеркомбинационной конверсии. Наиболее распространенными среди них является сверхтонкое взаимодействие электронных и ядерных спинов. Это есть контактный член Ферми, который отвечает за тонкую структуру как спектров ЯМР, так и спектров ЭПР. [c.506]

    Дение, а величина > 5(0) определяет полную плотность электронного заряда у ядра. Ее следует отличать от величины связанной с магнитным сверхтонким взаимодействием, которое возникает за счет контактного взаимодействия Ферми и наблюдается в виде изотропного сверхтонкого взаимодействия в спектрах электронного парамагнитного резонанса, а также проявляется во внутренних полях в металлах. Определяемая магнитным взаимодействием величина 4 5(0) является мерой спиновой плотности неспаренных электронов у ядра. [c.249]

    Точный гамильтониан контактного сверхтонкого взаимодействия для молекулы дается оператором [c.111]

    Релятивистская К.м. рассматривает квантовые законы движения микрочастиц, удовлетворяющие требованиям теории относительности. Осн. ур-ния релятивистской К. м. строго сформулированы только для одной частицы, напр, ур-ние Дирака для электрона либо любой др. микрочастицы со спином /2 ур-ние Клейна - Гордона - Фока для частицы со спином 0. Релятивистские эффекты велики при энергиях частицы, сравнимых с ее энергией покоя, когда становится необходимым рассматривать частицу, создаваемое ею поле н внеш. поле как единое целое (квантовое поле), в к-ром могут возникать (рождаться) и исчезать (уничтожаться) др. частицы. Последоват. описание таких систем возможно только в рамках квантовой теории поля. Тем не менее в большинстве атомных и мол. задач достаточно ограничиться приближенным учетом требований теории относительности, что позволяет для их решения либо построить систему одноэлектронных ур-ний типа ур-ния Дирака, либо перейти к феноменологич. обобщению одноэлектронного релятивистского подхода на многоэлектронные системы. В таких обобщениях к обычному (нерелятивистскому) гамильтониану добавляются поправочные члены, учитывающие, напр., спин-орбитальное взаимодействие, зависимость массы электрона от его скорости (масс-поляризац. поправка), зависимость кулоновского закона взаимод. от скоростей заряженных частиц (дарвиновский член), электрон-ядерное контактное сверхтонкое взаимодействие и др. [c.365]


    Спин-орбитальное взаимодействие приводит к косвенному спин-спиновому взаимодействию электронов в значительной степени тем же способом, каким контактное сверхтонкое взаимодействие а 1-5 вызывает косвенное ядерное спин-спиновое взаимодействие в диамагнитных молекулах (разд. 5.5). Согласно теории возмущений с учетом членов второго порядка, энергия электрона содержит член [c.207]

    Контактное сверхтонкое взаимодействие — не единственное взаимодействие, которое может обусловливать химические сдвиги. Кроме вклада от возросшей вследствие парамагнетизма обш,ей восприимчивости, существует другой вклад, который обусловлен так называемым псевдоконтактным сверхтонким взаимодействием. Этот вклад в химический сдвиг возникает вследствие комбинированного действия анизотропии -тензора и дипольного сверхтонкого взаимодействия и имеет наиболее простую форму в случае хаотически движущегося в растворе парамагнитного иона, электрическое поле вокруг которого обладает осевой симметрией. Если ядро лиганда находится на расстоянии г от неспаренного электрона центрального иона и вектор г образует угол я с осью, то при расчете парамагнитного сдвига следует использовать вместо а константу эффективного сверхтонкого взаимодействия [c.292]

    Рассмотрим сначала релаксационные процессы, обусловленные модуляцией контактного сверхтонкого взаимодействия а -S. Для простоты определим влияние только / Зг-части этого взаимодействия. Чтобы подчеркнуть, что электронный спин быстро релаксирует, запишем гамильтониан в виде [c.297]

    Непрямое электронное спин-спиновое взаимодействие. При достаточно высокой разрешаюи1,ей способности спектрометра ЯМР становится заметным влияние на спектр других локальных полей. Последние возникают вследствие ферми-контактного взаимодействия ядерного спина, ориентированного во внешнем поле Н , со спином электрона. Это приводит к возникновению электронной поляризации, которая вновь воздействует на соседние ядра (сверхтонкое взаимодействие). Вследствие существования 2/ + 1 различных возможностей ориентирования спина ядра А 8 поле (см. стр. 249) по этому механизму расщепления, в м сте нахождения соседнего ядра X возникают точно такие же многочисленные локальные ПОЛЯ вызывающие расщепление сигнала. Это сверхтонкое расщепление характеризуется константой сверхтонкого взаимодействии J, величину которой измеряют в герцах. В простых случаях она соответствует расстоянию между соседними линиями в мультиплете сигнала (рис. 5.23, б). Если п эквивалентных ядер А взаимодействуют с ядром X, то на ядро А оказывают воздействие 9.nJ + 1 различных дополнительных полей и мультиплетность расщепления сигнала оказывается равной [c.258]

    В качестве примера рассмотрим зависящее от времени контактное сверхтонкое взаимодействие V (1) = а ,) 1-8 спина 5 электрона со спином I протона, которое быстро флуктуирует относительно среднего значения, равного нулю. При этом в спектре ЭПР не будет наблюдаться разрешенной сверхтонкой структуры и энергетические уровни должны соответствовать гамильтониану зеемановского взаимодействия [c.301]

    В многоэлектронной задаче контактный член, используемый для вычисления констант сверхтонкого взаимодействия Л, записывается в виде [c.349]

    Как можно показать, электрон-электронное контактное взаимодействие не приводит к спиновой зависимости энергии. Поэтому это взаимодействие мало интересно, скажем, при интерпретации экспериментов ЭПР и его часто опускают (потому что оно ведет к одинаковому сдвигу уровней). Взаимодействие Ндг описывает сверхтонкое взаимодействие с ядерными спинами оно обусловлено членами Н" (ядерное зеемановское взаимодействие) и Н" (ядерное диполь-дипольное взаимодействие без учета контактного члена), НГ и НГ (электрон-ядерное и ядерное диполь-дипольное взаимодействие с учетом контактного члена) и Н (ядерное дипольное взаимодействие с электронным орбитальным движением). Все эти слагаемые собраны воедино в формулах (43) и (45) приложения IV. Итак (прямое взаимодействие Щ записываем как Н )  [c.275]

    В выражении (29) пренебрегают членами, содержащими а , и аЬ, так как они много меньше приведенных. Для немагнитного иона Ь = а и сверхтонкое взаимодействие отсутствует, но для магнитного иона обменные и поляризационные эффекты приводят к тому, что афЬ м сверхтонкое взаимодействие характеризуется контактным членом, не равным нулю. Поляризация имеет место и для 2з- и для 35-орбиталей. Хотя величина Ь — а мала и поляризационные эффекты не дают заметных вкладов при вычислении общей энергии атома, вклад в сверхтонкое взаимодействие может быть значительным вследствие того, что величина (Ь (0) 45 (0)) намного больше (Г ). Оценку поляризационных вкладов провел Хейне [4], который получил величины, сравнимые с экспериментальными величинами изотропных констант. Обычно контактный член учитывают, прибавляя к ранее полученным формулам для А я В выражение —иР. Для переходных ионов у. положительно. [c.350]

    Если основным состоянием конфигурации d является состояние Big, как это имеет место для комплексов ванадила, то вклады первого порядка от контактного дополнительного сверхтонкого взаимодействия с s-орбиталями лигандов должны быть равны нулю. [c.394]

    Из приведенных в табл. 10 данных следует, что существует корреляция между константами сверхтонкой структуры и ковалентностью связи металл — лиганд. Основной вклад в константы сверхтонкого взаимодействия дает контактный член, рассмотренный в разд. 1.1.5. Этот член зависит от вероятности пребывания неспаренного электрона на d-орбитали металла он должен уменьшаться при делокализации неспаренного электрона на атомы лигандов. При конфигурации d неспаренные электроны находятся на I2g-орбиталях, в которые входят я-орбитали лигандов следовательно. [c.409]

    Для ионов с конфигурацией d дополнительное сверхтонкое взаимодействие должно быть малым, так как молекулярные орбитали симметрии t2g, на которых находятся неспаренные электроны, не содержат s-орбиталей атомов лигандов, которые дают основной вклад в константы дополнительного сверхтонкого расщепления. Была обнаружена дополнительная сверхтонкая структура от ядер [31, 34]. Как и следовало ожидать, изотропный контактный член оказался малым. Куска и Роджерс [119] обнаружили дополнительную сверхтонкую структуру от ядер для комплекса r( N) . В этом случае имеется заметный изотропный член 9,17 х X 10 см , природа которого не ясна. Дополнительная сверхтонкая структура от ядер была обнаружена также для иона Мп " в решетке ТЮг П15] и от ядер для иона Мп + в решетке ЗпОг [116[. [c.410]

    А — ассоинатнвный механизм реакции А, A - константы сверхтонкого и контактного взаимодействия /1м — постоянная Маделунга а. — активность -го вещества [c.5]

    Сверхтонкое взаимодействие определяется двумя членами ани-ютропным (диполь-дипольным) и изотропным (контактным). Ди-поль-дипольный вклад обусловлен взаимодействием магнитных моментов электрона и ядра (Це и ц/у) [c.288]

    ОТ >гла 9 получают информацию о геометрии радикала и кристалла. Аниго-тропную сверхтонкую структуру нельзя наблюдать только у 5-электронов, так как они характеризуются шаровой симметрией распределения заряда. Наблюдаемые спектры поликристаллических образцов возникают вследствие наложения спектров всех беспорядочно ориентированных кристаллов и характеризуются значительным уширением линий. Диполь-дипольное взаимодействие свободных радикалов в растворе обусловливается молекулярным движением. Если вязкость раствора препятствует статистическому движению молекул, то линии сверхтонкой структуры уширяются, так как диполь-дипольное взаимодействие осуществляется частично. Изотропное или ферми-контактное взаимодействие можно объяснить только на основании квантовой механики. Предполагается, что вероятность пребывания электрона вблизи ядра ф(0) отлична от нуля, что и является причиной возникновения сверхтонкой структуры. Это может иметь место только для электронов, расположенных на 5- или сг-орбиталях. Тогда константа сверхтонкого взаимодействия а для этого изотропного взаимодействия равна (а единицах энергии) [c.268]

    С.-с.в. электронов и ядер приводит к расщеплению зеемановских уровней и соответствующих линий спектра ЭПР-т. наз. сверхтонкое взаимодействие. Выделяют два осн. слагаемых диполь-дипольное С.-с.в. ядер и электронов и контактное взаимод. Ферми. Первое слагаемое аналогично по форме (1), но вместо одного из электронных спинов, напр. Лу, стоит спин ядра вместо Гу стоит расстояние между электроном г и ядром а, к множитель (д Ив) заменяется на ц = йеИв З.И). где ц -ядерный магнетон, з,-д-фактор для ядра а. Для атома диполь-дипольное С.-с.в. дает осн. вклад в гамильтониан при условии, что атом находится в любом состоянии (Р-, О-и т.д.), за. исключением 5-состояния (или, в одноэлектронном приближении,-за исключением тех состояний, в к-рых есть открытая оболочка, включающая л-орбиталь). При усреднении величин УЛ по всем положениям электронов получаются постоянные С.-с.в. [ , (постоянные сверхтонкого взаимод.), значения к-рых состмля-ют обычно иеск. десятков (до сотни) МГц (1 см = = 3-10 МГц). [c.403]

    Константа сверхтонкого взаимодействия с дейтероном в матрице Ва равна 217,7 Мгц [13]. Поскольку константа СТВ определяется контактным фер-ми-взаимодействпем, это означает, что плотность неснаренного электрона на протоне и дейтероне одинакова. Действительно, Лg (H)/g (D) = 6,51. [c.115]

    По сравнению с контактным членом, член диноль-дипольного взаимодействия при прочих равных условиях вносит значительно меньший вклад. Поэтому даже если в рассматриваемой координационной системе неспаренный электрон занимает -орбиталь центрального иона, полагают, что сверхтонкая структура определяется за счет взаимодействия (смешивания) с электронной конфигурацией, содержащей -состояние (гипотеза 5-конфигу рационного взаимодействия [264]). Так как такое смешивание слабо зависит от кристаллического поля, то контактное сверхтонкое взаимодействие не должно сильно зависеть от природы лигандов, что и наблюдается экспериментально [247]. Особенно характерна наблюдаемая у солей Мп2+ сверхтонкая структура, которая, ввиду L == О для основного состояния, может появиться только благодаря 5-кон-фигурационной примеси [уравнение (X. 95)]. [c.163]

    Анизотропный член характеризует диполь-дипольное взаимодействие, которое зависит от взаимного расположения магнитных моментов неспаренного электрона и ядра. В невяаких растворах анизотропный вклад в расщепление усредняется до О за счет хаотического движения молекул. Изотропный член одинаков для каждой оси (не зависит от ориентации) он выражает так называемое контактное сверхтонкое взаимодействие, обусловленное не равной u плотностью неспаренного электрона на дре (т.е. когда неспаренный электрон является 5-электроном или описываегся гибридной функцией с I-компонентой), и поэтому зависит т о л ь к от спиновой плотности. [c.152]

    Существуют два типа магнитных взаимодействий, которые играют важную роль в процессах релаксации. Одним из них является прямое диполь-дипольное взаимодействие между спинами электрона и ядра, которое пропорционально величине 1/г , т. е. обратно пропорционально кубу расстояния между спинами. Другим взаимодействием является контактное сверхтонкое взаимодействие a -S. Эти взаимодействия модулируются несколькими различными, зависящими от времени процессами, характеризующимися следую-щилш значениями времени корреляции  [c.297]


Смотреть страницы где упоминается термин Сверхтонкое взаимодействие контактное: [c.33]    [c.403]    [c.120]    [c.120]    [c.378]    [c.401]    [c.268]    [c.484]    [c.134]    [c.218]    [c.219]    [c.298]    [c.303]   
Биофизическая химия Т.2 (1984) -- [ c.169 , c.170 ]




ПОИСК





Смотрите так же термины и статьи:

Контактное взаимодействие

Сверхтонкое взаимодействие

Сверхтонкое взаимодействие взаимодействия



© 2025 chem21.info Реклама на сайте