Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ртуть в виде металла

    Металлические решетки образуют простые вещества большинства элементов периодической системы — металлы. По прочности. металлические решетки находятся между атомными и молекулярными кристаллическими решетками. Это связано с тем, что металлической связи присущи и характерные черты ковалентной связи, и отдельные черты дальнодействующей связи. Металлические решетки бывают и малопрочные, например, ртуть — жидкая. Металлам свойственны непрозрачность, характерный металлический блеск, хорошая тепло- и электропроводность и другие характерные свойства. Упрощенно металлическая решетка представляется в виде положительно заряженных ионов, располагающихся в узлах ее, и электронов, двигающихся между ними. Атомы металлов, с характерным для них дефицитом валентных электронов, должны иметь как можно больше соседних атомов, чтобы этот дефицит компенсировать за счет электронов соседей. Поэтому координационное число здесь достигает больших значений (8—12). [c.161]


    Цинк, кадмий и ртуть наибольший интерес для техники представляют в виде металлов. Широко применяются сплавы цинка с медью (латунь). Цинк используют для защиты стальных изделий от коррозии. Он применяется в этих случаях как в качестве покрытия (цинкование), так и в качестве протектора. [c.55]

    В некоторых случаях весьма полезными оказываются амальгамные электроды, т. е. такие, в которых активный металл (например, натрий) применяется не в чистом виде, а в виде его раствора в ртути. Амальгама металла является фазой переменного состава, следовательно, активность его в этой фазе переменна. Рассмотрим свойства таких электродов на примере натриевого амальгамного электрода  [c.508]

    Сосуды для приготовления гальванических элементов перед опытом необходимо тщательно промыть хромовой смесью и высушить. Их форма показана на рис. 61. Ртуть и металл (в виде мелкой стружки) взвешивают на технических весах. Затем ртуть подогревают в вытяжном шкафу и осторожно добавляют металл. Тщательно размешав амальгаму и убедившись, что весь металл ра- створился, перепаивают ее в подогретом состоянии в сосуд. Немедленно вслед за этим вставляют платиновый электрод. Количество подготовленной амальгамы должно быть таким, чтобы ею была покрыта вся платина. В случае ртутного электрода платиновый электрод также должен быть полностью закрыт ртутью. [c.109]

    Электроды. В электрохимии электродом принято называть систему, состоящую из токопроводящего вещества и раствора или расплава электролита, в который погружается это вещество. В качестве электропроводящего материала может быть использован твердый металл (в виде кусочка, пластины, проволоки, порошка), жидкий металл (ртуть, расплавы металлов), различные соединения (например, карбид вольфрама, оксиды), неметаллические материалы (графит, стеклоуглерод), полупроводники. [c.202]

    Содержание ртути в шламах, извлекаемых из карманов электролизеров, обычно близко к 20 вес, %. Примерно 60—70% ртути может быть выделено в виде металла из шламов в результате отстаивания или отмывки водой и возвращено в производство. Для извлечения остальной части ртути, а также ртути из бедных шламов необходима термическая или химическая регенерация. [c.273]

    Значительную часть ртути из амальгамного масла извлекают отстоем с отмывкой водой. При этом в виде металла удается выделить 60—70% ртути. Остальная ртуть так же, как и ртуть из других отходов, должна быть извлечена на установках для регенерации ртути. Основной аппарат этой установки выполняется в виде [c.96]

    Редкоземельные металлы употребляются обычно в виде сплавов или же содержат значительное количество примесей. По этой причине чистые амальгамы редкоземельных металлов не готовят прямым действием ртути на металл, а применяют электролитический метод, в котором используются чистые соли. Амальгаму можно приготовить электролизом с ртутным катодом водных растворов [1], однако эта методика не рекомендуется из следующих соображений во-первых, в высшей степени реакционноспособная амальгама реагирует с водой, давая соответствующие гидраты окисей, и, во-вторых, эта методика дает малые выходы. Амальгамы можно быстро приготовить электролизом с ртутным катодом [2] спиртовых растворов безводных хлоридов. [c.19]


    Электрогравиметрический метод анализа заключается в выделении определяемого элемента в виде металла на предварительно взвешенном катоде, после чего электрод с осадком взвешивают и определяют количество металла. Этим способом можно определять кадмий, медь, никель, серебро, олово и цинк. Некоторые вещества могут окисляться на платиновом аноде с образованием нерастворимого плотного осадка, пригодного для гравиметрического определения. Примером может служить окисление свинца(П) до диоксида свинца. Кроме того, в аналитической химии электролиз можно использовать для разделений ионов известен способ, когда легко восстанавливающиеся ионы металлов осаждаются на ртутном катоде, а трудно восстанавливающиеся катионы остаются в растворе. Таким способом алюминий, ванадий, титан, вольфрам, щелочные и щелочноземельные металлы можно отделить от железа, серебра, меди, кадмия, кобальта и никеля, которые выделяются на ртути. [c.413]

    Ячейка с ртутным катодом для электролитических разделений. Как уже говорилось, ионы некоторых металлов, восстанавливающиеся на обычных металлических электродах труднее, чем ион водорода, довольно просто выделяются на ртутном электроде в виде металла, при этом они отделяются от катионов металлов, которые в этих условиях не восстанавливаются. На рис. 12-5 показана электролитическая ячейка, которую можно использовать для этой цели площадь ртутного катода, находящегося на дне ячейки, составляет от 10 до 50 см . После того как необходимое отделение закончено, не прекращая электролиза, сосуд для уравнивания осторожно опускают до тех пор, пока уровень ртути в электролизере не понизится до уровня крана. Этот прием применяют для того, чтобы металлы в ртутной фазе не окислились кислородом, присутствующим в водной фазе. Затем кран закрывают для прекращения электролиза и раствор извлекают из ячейки для последующего анализа. Металлы, растворенные в ртути, не извлекают, но загрязненную ртуть очищают и используют повторно. [c.419]

    Определение в виде металлической рту и. В описываемом ниже методе ртуть взвешивают в виде металла после, восстановления ее хлоридом олова (II) в солянокислом растворе. По данным авторов железо, кадмий, висмут, медь, свинец, сурьма, нитраты и сульфаты определению не мешают. [c.251]

    При анализе платину отделяют от иридия осаждением каломелью (см. гл. IV, стр. 108) и после прокаливания осадка определяют ее в виде металла. В фильтрате осаждают гидроокись иридия раствором углекислого натрия в присутствии окислителя. Основная соль ртути, образующаяся при этом, служит коллектором, способствуя полному осаждению иридия.. Иридий определяют в виде металла. [c.286]

    Ионы Hg экстрагируются совместно с ионами Рд . Присутствие Hg(HDz)2 также не мешает спектрофотометрическому определению Рс1(НВг)2 при длине волны 640 мц. Большие количества ртути, следует удалить в виде металла отгонкой. [c.183]

    В латинских сочинениях, приписываемых Геберу, эта теория металлов излагается довольно подробно (под трансмутацией металлов понимается их очистка). Более чистым металлом считается тот, который содержит больше ртути, а менее чистым тот, который содержит больше серы (при этом имеются в виду не природная ртуть и сера, а две отвлеченные составные части, обусловливающие характерные свойства металлов). Считалось, что более прочные, блестящие и ковкие металлы содержат больше ртути, а металлы, легче подвергающиеся изменению, содержат больше серы. Полагали, что ртуть, получаемая из руд, изменяющаяся на огне и летучая, также содержит ту же серу. [c.39]

    Определение ртути в виде металла [c.213]

    Эти уравнения также можно составить путем простого подбора коэффициентов, если известны правильные формулы всех участников реакции. Проверьте это сами.) В промышленности ртуть, медь, свинец и серебро иногда получают сразу в виде металлов путем нагревания их сульфидов, обнаруживаемых в природе в естественном состоянии. Другие элементы обычно предварительно получают в виде окислов. Сравните относительные величины А№ и Л5° для всех указанных выше процессов. Уточните также состояния окисления элементов. Совпадают ли они во всех случаях с номерами групп элементов в периодической системе. [c.176]

    Осаждение следов золота в виде металла. Следы золота можно выделить, проводя восстановление хлоридом олова (II), цинком или магнием и применяя в качестве коллектора ртуть, каломель или теллур. При последующем прокаливании коллектор улетучивается, остается одно золото. [c.779]

    Наиболее примечательными свойствами цинка, Zn, кадмия, Сс1, и ртути, Hg, является их слабое сходство с остальными металлами. Все эти металлы мягкие и имеют низкие температуры плавления и кипения. Ртуть-единственный металл, представляющий собой при комнатной температуре жидкость. Цинк и кадмий напоминают по химическим свойствам щелочно-земе льные металлы. Ртуть более инертна и похожа. на Си, А и Аи. Ддя всех трех элементов, 2п, Сс1 и Н , характерно состояние окисления -Ь 2. Ртуть также имеет состояние окисления + 1 в таких соединениях, как Н 2С12. Но ртуть(1) всегда обнаруживается в виде димерного иона причем рентгеноструктурные и магнитные исследования показывают, что два атома Hg связаны друг с другом ковалентной связью. Таким образом, ртуть имеет в Hg2 l2 степень окисления -I- 1 лищь в том же формальном смысле, в каком кислород имеет степень окисления — 1 в пероксиде водорода Н—О О—Н. [c.449]


    Для вывода этого уравнения рассмотрим вначале следующую простую систему. Пусть на дне стакана находится ртуть, а над ней раствор сульфата натрия. Потенциал ртутного электрода будем изменять, внося в раствор различные количества ионов Hg- (B виде соли Hg2S04). Зависимость потенциала от активности ионов ртути aHg2+ можно вычислить по формуле Нернста, вытекающей из равенства электрохимических потенциалов ионов ртути в металле и в растворе [см. уравнение (5.П)  [c.39]

    Все эти недостатки существующих методов систематического анализа заставили Н. А. Тананаева подробно разработать капельный метод на бумаге или на пористых пластинках и дробный метод в полуми-кропробирках. В дробном методе важную роль играет выделение катионов из раствора в виде металлов. Это осуществляется с помощью свободных металлов. Последние можно использовать соответственно порядку расположения их в электрохимическом ряду напряжений магний, алюминий, цинк, железо, олово, медь. Магний и алюминий позволяют вытеснить большинство металлов из раствора. Однако удобнее применять цинк как менее активный металл, вытесняющий в солянокислой среде ртуть, серебро, медь, мышьяк, сурьму, висмут, олово. Выделив эти металлы, можно, например, дробным путем обнаруживать кальций в виде оксалата. [c.151]

    Литий, натрий, калий, кальций, бериллий, магний, цинк, кадмий, стронций, алюминий, свинец, хром, молибден, марганец, железо, кобальт, германий, никель, медь, серебро, ртуть, олово, планша, бор, сурьма, висмут, палладий и церий в виде металлов, их окислов, гидроокисей, гидридов, формиатов, ацетатов, алкоголятов или [c.43]

    По числу определяемых элементов и по своим возможнбстям вариант электрохимического концентрирования определяемого компонента в виде металла является самым распространенным и самым изученным. Независимо от состояния в растворе определяемый компонент восстанавливается на электроде до элементного состояния, образуя амальгаму M(Hg) на ртутном электроде или твердофазный концентрат (Мтв) на поверхности твердого электрода. Однако, если образование концентрата на твердых электродах осуществимо гфактически для всех перечисленных элементов, то возможности ртутных электродов ограничены. Во-первых, их нельзя применять для металлов, потенциалы ионизации которых положительнее ртути (Ag, Ли, Рс1 и др.), и для самой ртути. Во-вторых, применение ртутных электродов для определения Ре, N1, Со сопряжено с большими трудностями из-за их крайне малой растворимости в ртути. В табл. 11.1 и 11.2 приведены основные характеристики вольтамперограмм при определении металлов на ртутном и графитовом электродах в различных фоновых электролитах. [c.419]

    При гравиметрическом определении ртуть может быть выде-лена в виде металла или труднорастворимых соединений. Выбор той или иной весовой формы существенно зависит от анализируемого продукта. [c.75]

    В виде металла ртуть может быть определена сухим путем (разложение ее соединений и последующая возгонка ртути в виде металлической) или мокрым путем после предварительного восстановления металлами растворов ее солей. Помимо этого, для определения различных количеств ртути используют злек-тролитические методы. [c.75]

    Возможно также разложение ртутьорганического соединения, при котором ртуть выделяется в виде металла или амальгамы. Для этого, например, кипятят вещество с цинковой пылью в нейтральном [571, 1063] или щелочном [572, 714] растворе, образовавшуюся амальгаму растворяют в азотной кислоте и затем обычным образом определяют ртуть. В некоторых случаях предлагают восстановление металлическим алюминием в нейтральной или слабощелочной среде [651], хлористым оловом [461], моноэтанола-мвном и металлическим натрием в диоксане [1093]. [c.173]

    Если в электролизе при постоянном наложенном напряжении или при постоянной силе тока использовать ртутный катод, то можно выполнить несколько успешных определений. Такой же прием можно использовать в качестве метода разделения, предшествующего какому-либо другому виду физического или химического измерения. В связи с необычайно высоким активационным, сверхпотенциалом для выделения газообразного водорода на ртути (см. табл. 12-1) восстановление иона водорода в 1 F хлористоводородной или хлорной кислоте не начинается до тех пор, пока потенциал ртутного катода не достигнет приблизительно —1,0 В относительно НВЭ. Поэтому в 1 кислом растворе все ионы металлов, за исключением алюминия(П1), урана(III), титана(III), ванадия (II), молибдена(III), вольфрама(III), трехзарядных катионов лантаноидов и актиноидов и ионов щелочноземельных и щелочных металлов, восстанавливаются до элементного состояния и растворяются в ртути. Марганец(П), который даже при —1,0 В заметно не восстанавливается, при соответствующих условиях может отлагаться в виде металла на ртути. [c.417]

    Дихлорид олова — силъныи восстановитель. Он осаждает золото и серебро из растворов их солей в виде металлов. Sn lg может также выделять в виде металла ртуть или, если его количество недостаточно для этого, восстанавливать соли двухвалентной ртути до солей одновалентной ртути. Далее, он восстанавливает соли железа(Ш) до солей железа(П), арсенаты — до арсенитов, хроматы — до солей хрома(П1), перманганаты — до солей марганца(П), нитросоединения — до аминов, соли диа-зония — до солей гидразина. В водном растворе он медленно окисляется кислородом воздуха [c.581]

    Реакции разряда катионов металлов на ртути с образованием соответствующих амальгам в большинстве случаев обратимы. Равновесный потенциал амальгамного электрода определяется уравнением типа (3.42). При прохождении катодного, тока начинается концентрационная поляризация в поверхностном слое ртути накапливается металл, образующий амальгаму, а в поверхностном слое раствора концентрация ионов этого металла уменьшается. Форма поляризационной кривой определяется уравнением (6.48) (объемная концентрация амальгамы равца нулю). Она имеет вид типичной волны — полярографической волны (см. рис. 6.5, кривая 3). [c.155]

    В качестве люминесцентного реактива для открытия таллия Фейгль, Гентиль и Гольдштейн [107] применили родамин С, образующий с трехвалентным таллием соединение, флуоресцирующее в бензольном растворе оранжево-красным светом. Примеси сурьмы, золота и ртути удаляются путем вытеснения из раствора (восстановления) медной или латунной проволокой, на которой опи отлагаются в виде металла. Метод позволяет обнаруживать 0,1 у таллия в присутствии 500 у золота, ртути и сурьмы. Применяя соосаждепие таллия коллектором — двуокисью марганца, удается обнаруживать 0,1 у таллия в 500 мл воды, что соответствует его определению при разбавлении 1 5 ООО ООО ООО. [c.175]

    Для разделения изотопов был применен также метод дистилляции, получивший название молекулярной дистилляции. В этом методе жидкость испаряется на нагретой поверхности в условиях глубокого вакуума и конденсируется на расположенной рядом холодной поверхности. Степень разделения зависит не от равновесия системы жидкость — пар, а от скорости испарения. Но значения коэффициентов одноступенчатого разделения приблизительно равны таковым для газодиффузионного метода разделения изотопов. Хотя в лабораторном масштабе была показана возможность разделения изотопов лития, ртути и урана, до сих пор не появилось сообщений о практическом использовании этого метода. Проводилась дистилляция стойких жидких соединений урана, пентаэтилата и пентаизопропилата урана [11(ОК)5], где К представлен радикалами С2Н5 или ИЗО-С3Н7. Другие элементы, ртуть и литий, дистиллировались в виде металлов. [c.350]

    Книга исцеляющих средств — также энциклопедическое сочинение, посвященное в основном различным естественнонаучным и медицинским проблемам. Ибн-Сина излагает здесь основы учения Аристотеля о происхождении металлов и минералов в земле. Он поддерживает также точку зрения Джабира ибн Гайяна о главных элементах, составляющих металлы, — ртути и сере. Однако в отличие от Джабира и ар-Рази Ибн-Сина отрицает возможность трансмутации металлов и осуждает занятия алхимиков — искателей золота. Алхимики утверждают, — пишет он,— что они будто бы в силах осуществить подлинные превращения веществ. Однако они могут лишь производить превосходные имитации, окрашивая красный металл в белый цвет, так что он становится похожим на серебро, или окрашивая его в желтый цвет, так что он становится похожим на золото... Я не отрицаю, что при подобных переменах во внешнем виде металлов может быть достигнута такая степень сходства, что даже очень опытные люди могут обмануться. Однако возможность уничтожения специфических различий между металлами или сообщение металлу специфических свойств другого металла никогда не была ясной для меня. Наоборот, я считаю это невозможным, так как нет путей для превращения одного металла в другой  [c.94]

    Ртуть, попадающая в окружающую среду в виде металла, например в результате утечки из электролитических ячеек, используемых для получения NaOH и СЬ, или в виде соединений, например алкильных производных, применяемых в качестве фунгицидов или компонентов покрытий, представляет большую опасность. В результате биологического метилирования из ртути и ее соединений образуются чрезвычайно ядовитые диметилртуть или соли метилмеркур-катиона HsHg+. Соединения, подобные витамину Bi2, такие, как метилкобалоксимы (гл. 31), в которых имеется связь СНз—Со, могут переносить метильную группу на атом ртути. В природе существует большое число микроорганизмов, которые могут осуществлять эту функцию, вероятно, тем же способом, [c.585]

    Свойства простого вещества и соединений. У ртути необычное сочетание высокой плотности (13,5 г/см ) и низкой температуры плавления. Ртуть — единственный металл, жидкий при обычных тегчпературах. Ее надо охлаждать до —39° С, чтобы получить в твердом виде. В жидком виде она серебристо-белая, а при затвердевании становится белой. Ртуть — благородный металл не вытесняет водорода из кислот и не окисляется в атмосфере сухого воздуха. Реакция взаимодействия с кислородом протекает при 300— 350° С, а уже при 400° С и выше наблюдается разложение оксида ртути [c.313]

    Метод осаждения ртути фосфористой кислотой в виде каломеля, i предложенный первоначально Rose, был проверен и улучшен L. W. Winkle г ом. Осаждение надежнее всего производить в сернокислом растворе, который можно получить без потерь ртути выпариванием азотнокислого раствора с серной кислотой на водяной бане. К раствору хлорной ртути, который не должен содержать избытка соляной кислоты, а также хлористых щелочных металлов, прибавляют 5 мл серной кислоты (1 1). В качестве осаждающего реактива берут раствор 10 мл треххлористого фосфора в 200 мл воды. Прибавив 20 мл осадителя, сейчас же начинают очень осторожно нагревать на водяной бане, тщательно перемешивая до тех пор, пока жидкость не начнет осветляться. Более продолжительное нагревание и недостаточное перемешивание приводят к образованию металлической ртути. Осадок фильтруют через фильтровальный тигель, промывают холодной водой, затем спиртом и сушат просасыванием сухого воздуха. Высушивания при повышенной температуре нужно избегать. Метод позволяет отделять ртуть от металлов меди, кадмия, цинка, марганца, алюминия и магния. [c.213]

    Ртуть, как жидкий металл, способна растворять другие металлы и образовать твердые и жидкие металлические растворы или сплавы. Они носят общее название сортучек или амальгам. Такое растворение металлов в ртути совершается нередко с выделением большого количества тепла, как напр., при растворении калия и натрия (гл. 12, доп. 347j, а иногда с поглощением тепла, как, напр., при растворении свинца. Очевидно что явления этого рода чрезвычайно сходственны с явлениями растворения солей и других веществ в воде но здесь с очевидностью доказывается то, что над водными растворами видеть гораздо труднее растворение металлов в ртути сопровождается образованием определенных химических соединений ртути с растворяющимися металлами. Это доказывается тем, что такие растворы при прожимании (лучше всего в замше) оставляют твердые, определенные химические соединения ртути с металлами. Очень трудно, однако, иметь их в чистом виде, потому что отделить последние следы ртути, механически распределяющейся между кристаллическими соединениями, затруднительно. Тем не менее, во многих случаях такие соединения получены несомненно, и их определенность состава видна из того, что многие амальгамы имеют ясное кристаллическое сложение, — особый характер- [c.109]

    Можно ожидать, что полимер, состоящий из атомов неметаллических элементов, будет напоминать полиэтилен (СНг) и другие характерные полимеры. В некоторых отношениях это так и есть, но он обладает и некоторыми уникальными свойствами. Например, он имеет вид металла и проводит электрический ток так же хорошо, как металлическая ртуть. Более того, при охлаждении почти до абсолютного нуля он становитс.я сверхпроводником. Нужно отметить, что эти свойства проявляются только в очень чистом материале, полученном из предельно чистых исходных веществ. [c.16]

    Ртуть в литосфере встречается в. виде металла или соединений в изверженных горных породах, в минералах гранитных пег- ч атитовых жил, в сульфидных минералах гидротермальных месторождений, в осадочных породах (глинах, песчаниках, извест-г няках). [c.17]


Смотреть страницы где упоминается термин Ртуть в виде металла: [c.206]    [c.117]    [c.178]    [c.54]    [c.243]    [c.402]    [c.283]    [c.38]    [c.647]   
Практическое руководство по неорганическому анализу (1966) -- [ c.251 ]

Практическое руководство по неорганическому анализу (1960) -- [ c.229 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы ртуть



© 2025 chem21.info Реклама на сайте