Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ртуть влияние на металлы

    Сульфирование антрахинона обычно приводит к 2-изомеру, но в присутствии небольшого количества ртути группа ЗОзН вступает исключительно в положение 1. Для объяснения влияния металла на направление замещения было высказано предположение, что реакция протекает через образование ртутноорганического производного. [c.45]

    Название амальгама для сплава ртути с металлами, и особенно с золотом и серебром, применялось, кажется, Фомой Аквинским, который хотя не занимался алхимической практикой но под влиянием своего учителя Альберта Великого благосклонно относился к алхимикам и интересовался вопросами алхимии в абстрактном плане, не исключая возможности превращения неблагородных металлов в благородные. [c.51]


    Последнее выражение в точности соответствует решению задачи для точечного заряда с учетом его изображения при наличии единственного разрыва диэлектрической проницаемости. Таким образом, по отношению к иону, достаточно удаленному от поверхности ртути, влияние резкой неоднородности диэлектрической проницаемости проявляется только в виде эффективного сдвига границы металл — раствор из положения 2 = О в положение [c.149]

    На полированной поверхности мелкозернистого цинка радиус матового пятна г вокруг небольшой (несколько мг) капли ртути растет по закону г = (рис. IV. 14). Через несколько часов капля исчезает и рост пятна прекращается. Коэффициент а не зависит от массы капли. При комнатной температуре а = 0,02 см/с (при размере зерна 50 мкм). С увеличением температуры скорость роста пятна растет, а конечные размеры пятна уменьшаются (рис. IV. 15). При росте матового пятна на вертикально расположенных пластинах или проволоках, нижний край которых погружен в большую массу ртути, выполняется тот же закон Я со (рис. IV. 16) [261, 262]. Аналогичные кинетические закономерности наблюдались при распространении ртути по золоту [234], жидкого галлия по меди [263]. Скорость роста матового пятна (коэффициент а) увеличивается при растворении в ртути непереходных металлов в небольших концентрациях. Эффективность влияния [c.145]

    Перенапряжение водорода очень чувствительно к присутствию в электролите посторонних веществ. Добавки солей к разбавленным растворам кислот увеличивают перенапряжение водорода на ртути, причем увеличение концентрации 1—1-зарядного электролита (при постоянном pH) в 10 раз повышает т] примерно на 55— 58-10 В. Первоначальная добавка электролита с поливалентным катионом оказывает большее действие, чем такая же добавка 1—1-зарядного электролита. Соединения с поверхностно-активными анионами сильнее всего влияют на водородное перенапряжение на ртути в области малых плотностей тока, снижая его на десятые доли вольта. Поверхностно-активные катионы, наоборот, повышают перенапряжение водорода на ртути в широких пределах плотностей тока. Поверхностно-активные молекулярные вещества или повышают, или понижают в зависимости от их природы, величину Т1Н на ртути. Действие этих добавок ослабляется с ростом плотности тока и при высоких ее значениях полностью исчезает. Перенапряжение водорода на платине, железе и никеле также возрастает при введении поверхностно-активных веществ. Характер влияния поверхностно-активных веществ на водородное перенапряжение и на этих металлах является функцией потенциала электрода. В случае железа, на котором перенапряжение водорода в кислых средах слабо зависит от pH, присутствие в ]застворе поверхностно-активных катионов не только увеличивает перенапряжение, но и изменяет характер связи между г)н и pH. [c.401]


    Эти общие заключения о природе перенапряжения на разных металлах подтверждаются в общих чертах соответствием между наиболее важными следствиями из теории перенапряжения водорода и данными, полученными при экспериментальном изучении кинетики выделения водорода. Так, на поверхности ртути в области потенциалов катодного выделения водорода ни одним из методов не удается обнаружить заметных следов адсорбированного атомарного водорода. Следовательно, стадия его удаления не является лимитирующей. Предлогарифмический коэффициент Ь на ртути близок к 0,12. При учете ничтожно малого заполнения поверхности ртутного катода адсорбированным атомарным водородом такое значение величины Ь не может быть получено из теории замедленной рекомбинации. Экспериментальные данные по влиянию состава раствора и pH на перенапряжение при выделении водорода на ртути также лучше всего согласуются с предположением о замедленности разряда на свободных участках катода. [c.413]

    Изучалось также влияние добавки различных химических веществ во время сульфирования углеводородов на ускорение или завершение реакции (при использовании серной кислоты), на уменьшение образования побочных продуктов (при применении высококонцентрированного олеума или ЗОз) или на изменение соотношения образующихся изомеров. Эти добавки рассматриваются как катализаторы или промоторы сульфирования. Но так как ароматические углеводороды легко сульфируются, вопросу ускорения этой реакции но уделялось достаточного внимания. Отмечается, что при высокой температуре (около 250°) сульфирование (главным образом моно- и некоторое количество ди-) бензола ускоряется добавлением солей металлов, особенна солей натрия и ванадия, добавленных вместо [5]. Ускорение введения второй сульфогруппы, которое происходит значительно труднее, чем первое, достигается добавлением различных соединений металлов [10, 73, 91], а ртуть может быть использована для облегчения введения третьей сульфогруппы [1031. [c.518]

    Поверхностная активность щелочных металлов по отношению к ртути и ее рост с увеличением ионного радиуса были объяснены В. К. Семенченко влиянием электростатического потенциала кулоновских сил г г, зависящего от заряда е и радиуса г ионов растворителя (ртути), и растворенных в нем ионов [c.473]

    Коррозионно-эрозионные повреждения твердых металлов повышаются при увеличении потока жидкого металла и его плотности. Они не наблюдаются для сталей в жидком литии даже при высоких скоростях, возникают в жидких натрии и калии при скорости выше 8—10 м/с, а в жидких висмуте, свинце и ртути — при скорости выше 3 м/с. Указанные пределы скоростей превышать не рекомендуется. Более подробно эти вопросы так же, как и эффекты влияния среды на металл, испытывающий действие напряжений, рассматриваются в ч. И применительно к коррозии металлов в жидких электролитах (см. с. 332). [c.147]

    Для того чтобы исключить или значительно уменьшить влияние этого эффекта, конструкция вакуумметра была изменена, как показано на рис. 2.16,6. Измерительная часть прибора расположена соосно с нагревательной трубкой, а компрессионная отнесена вбок от нее. Это дает возможность при движении ртути полнее эвакуировать газ в систему, а не нагнетать его в замкнутый объем шара с капилляром. В вакуумметре такой конструкции использована замкнутая система нагнетания ртути с подвижным баллоном, что исключает контакт ртути с окружающей средой и опасность ее розлива, так как баллон изготавливается из металла. [c.42]

    Рассмотрим теперь адсорбционное (в отсутствие коррозии или растворения) влияние среды и ПАВ на механические свойства компактного материала — моно- или поликристаллического либо аморфного твердого тела. Это явление было открыто П. А. Ребиндером на кристаллах кальцита (1928 г.) и получило название эффекта Ребиндера. Очень характерно его проявление на ряде пластичных металлов. Так, будучи весьма пластичными по своей природе, монокристаллы цинка под действием микронной ртутной пленки или же массивные цинковые пластины при нанесении капли жидкого галлия или ртути хрупко ломаются уже при очень малых нагрузках (рис. 6). По Ребиндеру, общее термодинамическое объяснение таких явлений состоит в резком понижении поверхностной энергии о и тем самым работы разрушения вследствие адсорбции из окружающей среды (или контакта с родственной жидкой фазой). Одной из наиболее универсальных и вместе с тем простых моделей, связывающих прочность материала Рс с величиной ст, служит схема Гриффитса, являющаяся по сути приложением теории зародышеобразования к решению вопроса об устойчивости трещины и устанавливающая пропорциональность Рс ст . [c.312]

    При электролизе чистых растворов поваренной соли выход амальгамы по току может приближаться к 100%. Однако при наличии в растворе примесей солей тяжелых металлов доля тока, расходуемая на выделение водорода, существенно возрастает. Особенно сильное влияние на выделение водорода оказывают соли германия, ванадия, хрома и платины. Действие этих солей объясняется тем, что они восстанавливаются на ртутном катоде до свободного металла и, будучи нерастворимыми в ртути, плавают на новерхности в виде так называемого амальгамного масла . Так как перечисленные металлы обладают низким перенапряжением водорода, последний начинает выделяться на этих участках. [c.160]


    Существенно на скорость выделения водорода влияет природа катодных участков. Некоторые металлы, например платина, кобальт, никель и др., катализируют выделение водорода, и катодный процесс на них протекает с высокими скоростями. Поэтому, если в составе металла или сплава находятся металлы, катализирующие выделение водорода, то коррозия с выделением водорода может ускоряться за счет этих компонентов в сплаве. Другие металлы, например, ртуть, свинец, кадмий, цинк, не катализируют или слабо катализируют катодное выделение водорода, и катодный процесс на них протекает медленно. Поэтому присутствие в составе сплава таких компонентов или не меняет скорости коррозии основного металла, или снижает ее из-за уменьшения площади поверхности, занимаемой основным металлом, на которой происходят и растворение металла и выделение водорода. Влияние природы металла на скорость выделения водорода количественно можно оценить по перенапряжению водорода на различных металлах (см. табл. 22). Чем ниже перенапряжение водорода, тем большей каталитической активностью к реакции выделения водорода обладает металл и тем выше скорость выделения водорода при данном потенциале катодного участка, а следовательно, и больше скорость коррозии. Чем выше перенапряжение, тем меньше и скорость выделения водорода при данном потенциале катодного участка, тем ниже скорость коррозии металла. Таким образом, скорость коррозии с выделением водорода может быть замедлена снижением температуры и уменьшением концентрации ионов Н , очисткой металла от примесей, катализирующих выделение водорода, а также изоляцией поверхности металла. Перемешивание раствора практически не влияет на скорость выделения водорода. [c.216]

    Описанные выше электроды со стационарной ртутной каплей на металлическом контакте и пленочные содержат амальгаму металла, применяющегося для контакта. Растворенный в ртути металл оказывает в некоторых случаях нежелательное влияние на процессы, протекающие на электроде, например вследствие образования интерметаллических соединений. [c.197]

    В таблице видны сходства двухвалентных самария, европия и иттербия с щелочноземельными металлами, одновалентных меди, таллия и серебра, двухвалентных меди, цинка и кадмия и отличие от них двухвалентной ртути, что, вероятно, связано с влиянием инертной электронной пары по второму диагональному направлению. Практически совпадают константы двухвалентных хрома, марганца и железа, [c.27]

    Исследование влияния приложенной разности потенциалов на поверхностное натяжение границы раздела фаз удобнее всего проводить на идеально поляризующейся поверхности жидкого металла (обычно ртути) в водном растворе электролита. Очень важно, что при этом одновременно измеряются разность потенциалов фаз (по сравнению с каким-либо стандартным электродом) и поверхностное натяжение межфазной а поверхности (обычно по максимальной высоте столба ртути, удерживаемой силой поверхностного натяжения в капилляре) вместе с тем возможно определе- ние и плотности заряда двойного слоя по току, переносимому вытекающей по каплям ртутью, при известной их по-верхности. [c.215]

    Для снижения коррозии цинковые электроды амальгамируют, вводя 2—10% металлической ртути по отношению к массе цинка. Влияние ртути определяется высоким перенапряжением выделения водорода на ней и снижением вследствие этого скорости растворения цинка. Амальгамацией называется образование растворов металла в ртути. [c.38]

    Отрицательное влияние на электролиз с ртутным катодом оказывают твердые примеси, которые могут попадать в рассол, подвергаемый электролизу, например, частицы графита, образующиеся при разрушении анодов. Ионы некоторых металлов могут восстанавливаться на ртутном катоде с образованием соответствующих амальгам или металлов в коллоидной форме. Эти примеси образуют так называемое амальгамное масло. Оно легче ртути и всплывает на поверхность катода, образуя участки с интенсивным выделением водорода,, что может вызывать короткие замыкания. [c.165]

    Следует отметить, что ни положение двух металлов в ряду потенциалов, ни их фактическая разность потенциалов не дают сведений о гальваническом токе, так как его значение зависит от кинетики катодной и анодной реакций, удельного сопротивления раствора, образования пленки, эффективных площадей двух металлов и др. Гальванический ток, конечно, можно определить непосредственным измерением с помощью амперметра с нулевым сопротивлением и соответствующим образом составленной гальванической парой, погруженной в рассматриваемую среду. Было бы грубым приближением сказать, что чем дальше расположены два металла в ряду потенциалов или чем выше ЭДС, тем больше гальванический ток, поскольку в этом правиле есть много исключений. Так, платина и ртуть имеют одинаковые потенциалы в морской воде ( 0,0 В отн. НВЭ), но хотя контакт платины с магнием (около —1,0 В отн. НВЭ) значительно увеличивает скорость коррозии магния, ртуть оказывает незначительное влияние на скорость коррозии магния. Это вызвано тем, что магний в морской воде корродирует с выделением водорода, а платина в отличие от ртути является хорошим катализатором для реакции выделения водорода. [c.38]

    У металлов с высоким перенапряжением (свинец, кадмий, ртуть) влияния анодного процесса не наблюдается, но для них трудно получить начальный участок тафелевской кри)зой, так как необходимая для этого Пототность тока слишком мала и большая доля электричества расходуется не на электрохимический процесс, а на зарядку двойного слоя (нефарадеевский ток). [c.187]

    Если бы в точке В не происходило присоединения электрона при разряде (или его потери при ионизации), то левая и правая кривые были бы доведены соответственно до уровней D я F. Уровень характеризует величину потенциальной энергии системы Н+Ч-НгО, состоящей из свободного газообразного протона и жидкой воды. Расстояние между уровнями D и Л отвечает энергии адсорбции атомарного водорода электродным металлом —AGh-i-.. Из рис. 79 следует, что энергия активации разряда меньше, чем полная энергия дегидратации. Точно так же энергия активации ионизации меньше энергии десорбции атома водорода с поверхности металла. Так, например, энергия активации разряда водородных ионов на ртути Влияние энергии (теплоты) сольвата- [c.435]

    Для ртутной пленки было использовано большое число подложек [9]. В ранних работах использовали проволоку из таких металлов, как Р1, N1 или Ад, но эти работы были неудачными из-за влияния пленок оксидов, образующихся на поверхности электрода, и плохой воспроизводимости при получении ртутной пленки. В настоящее время в качестве подложки для РТПЭ почти исключительно используются угольные электроды. Они инертны, механически прочны и обладают хорошей электропроводностью. Пленки ртути первоначально готовили путем двухстадийного процесса [24] сначала ртуть выделяли на электроде при относительно положительном потенциале (например, —0,2 В отн. нас.КЭ), а затем, потенциал электрода делали более отрицательным для осаждения определяемых металлов. Позднее Флоренс [25] сообщил о весьма удачном приеме. В определяемый раствор прибавляют нитрат ртути (П) и проводят одновременное осаждение из одной пробы и ртути, и металла. РТПЭ этих типов легко можно привести во вращение с высокими скоростями порядка нескольких тысяч оборотов в минуту и тем самым обеспечить высокую эффективность осаждения. [c.526]

    Метод анализа бинарных сплавов ( d — u) в аммиачно-буферных и кислых растворах с использованием графитовых электродов, пропитанных парафином под вакуумом, описан в работе П. К. Агасян и Т. К. Хам-ракулова [24]. А. Г. Стромбергом и Э. А. Захаровой [17] предложен графитово-ртутный электрод для определения 5-10 —10 М ионов металла. Он состоит из графитового электрода, на который в виде мельчайших капелек осаждается ртуть при электролизе анализируемого раствора, содержащего 10- —5-10- М соли ртути. При использовании метода ППН (пленочная полярография с накоплением) этот тип электрода рекомендуется применять для уменьшения взаимного влияния металлов. [c.205]

    Если исходить из предположения, что адсорбция ионов на ртути определяется исключительно электростатическими силами, то все анионы должны изменять ход лишь восходящей ветви электрокапиллярной кривой, где поверхность ртути заряжена положительно. Напротив, влияние катионов должно локализоваться только иа кисходя1цей ветви, где они электростатически притягиваются к отрицательно заряженной поверхности ртути. В действительности, как это было найдено еще Гуи, многие анионы изменяют ход элек-трокапиллярпой кривой справа от точки максимума, а некоторые катионы влияют не только на нисходящую, но и на восходящую ветвь кривой. Такое поведение ионов нельзя объяснить действием только кулоновских сил. Оно связано с силами взаимодействия, отличными от простых электростатических сил. Такими силами, специфическими для данного рода частиц, могут быть, например, силы Ваи-дер-Ваальса или химические (валентные). Благодаря этим силам ионы в состоянии удерживаться на одноименно заряженной поверхности ртути и влиять на электрокапиллярные свойства границы металл — раствор. Точно так же нельзя на основе одних только электростатических представлений объяснить влияние неиоинзированных органических веществ на ход электрокапиллярных кривых. Дело в том, что большинство органических веигеств обладает меньшей диэлектрической постоянной, чем вода, и поэтому должны были бы изгоняться ею из двойного слоя уже при не- [c.239]

    Влияние материала электрода иногда приписывают только величине перенапряжения водорода на нем. Действительно, на металлах с высоким водородным перенапряжением реакции восстановления часто идут полнее. Кроме того, на таких электродах легче могут быть достигнуты потенциалы, при которых происходит носстановление трудно восстанавливаемых соединений. Однако в общем случае прямого параллелизма между водородным перенапряжением на электродном материале (его катодным потенциалом) и его активностью по отношению к реакциям электровосстановления не существует. Более того, оказывается, что некоторые соединения лучше восстанавливаются на катодах с низким перенапряжением и хуже или даже вообще не восстанавливаются на металлах с высоким водородным перенапряжением. Такое избирательное электровосстановление органических соединений представляет собой распространенное явление (Л. И. Антропов, 1951). Примеры избирательного восстановления приведены в табл. 21.1. На катодах с низким перенапряжением — платине и никеле (особенно в форме черни или губки) —преимущественно восстанавливаются изолированные ненасыщенные связи в органических соединениях жирного ряда и двойные связи в бензольном кольце. В то же время эти связи практически ке гидрируются на катодах, обладающих высоким водородным перенапряжением, таких, например, как ртуть или свинец. Напротив, полярные группы — карбонильная и карбоксильная — восстанавливаются на катодах с высоким перенапрям ением водорода и не затрагиваются на катодах с низким перенапряжением. Исключение составляют нитро- и нитрозо- [c.432]

    Следовательно, влияние данного поверх-юстно-активного вещества на кинетику электродного процесса прекратится при одном и том же ф-потенциале независимо от природы металла. Неизменному ср-потенциалу десорбции данного соединения будут, однако, отвечать совершенно различные электродные потенциалы, зависящие от природы металла. Так, например, десорбция выбранного соединения будет происходить с иоверхности цинка при Й -потенциале, равном не —0,8 В (как в случае ртути), а —1,3 В, так как [c.470]

    Ртуть, будучи жидким металлом, ипит при 350 С, но испаряется при комнатной текгпературе. Содержание паров ртути в воздухе возрастает с увеличением поверхности испарения, особенно когда ртуть разливается, разбивается на множество мелких шариков и вследствие своей тяжести проникает в щели полов, столов, стен, где сохраняется в течение длительного времени, выделяя в воздух ядовитые пары. В условиях химической промышленности острые отравления парами ртути случаются редко, чаще встречаются хронические отравления. У тех, кто долго работает со ртутью, может развиться раздражительность, снижается работоспособность, наступает бессонница, ослабление памяти, тупые головные боли, дрожание пальцев рук. Ртутные пары, попадая через легкие в кровь, способствуют накоплению ртуТИ в почках. Впоследствии, даже когда человек прекращает контакт с ртутью, накопленная ртуть может Вновь поступить в кровь под влиянием различных причин (болезнь, принятие алкоголя, травма) и вызвать отравление организма. [c.93]

    Характер влияния потенциала на поверхностное натяжение может быть исследован но изменению краевого угла 0. Если на поверхность ртути (или другого металла), находящейся в водном растворе электролита, нанести небольшую каплю органической жидкости, которая нерастворима в воде (рис. 7), то на трехфазной границе устанавливается равновесие сил поверхностного натяжения в соответствии с уравнением Юнга (I. 13). Если органическая жидкость неполярна и не является проводником, то значения ai, я и ai, 2 практически не зависят от потенциала поверхности металла. Косинус краевого угла в этом [c.27]

    Некоторые катализаторы, особенно сульфаты серебра и ртути, оказывают благоприятное влияние на скорость абсорбции этилепа [33]. Однако спустя некоторый промежуток времени после начала поглощения этилена это влияние исчеуает. Поэтому можно допустить, что присутствие солей металлов улучшает растворимость этилена в свежей серной кислоте, которая вначале не очень велика. По мере того, как растет концентрация этилсериой кислоты, что приводит к увеличению растворимости этилена в реакционной смеси, влияние солей металлов уменьшается. Так как использование этих солей в промышленной практике связано с различными осложнениями, от него отказались. [c.449]

    Изготовление отрицательного электрода. Для обеспечения необходимой коррозионной стойкости цинка, соприкасающегося в сухих элементах с электролитом, он не должен содержать примесей, образующих вредные короткозамкнутые пары. Поэтому обычно применяют металл, содержащий не менее 99,94% цинка. Примеси металлов, перенапряжение водорода на которых велико, не оказывают вредного влияния. Иногда даже рекомендуется применять цинк, содержащий 0,3% Сё и 0,3% РЬ, так как кадмий повышает ко ррозионную стойкость цинка, а свинец облегчает при прокатке получение металла с более равномерной структурой. Устойчивость цинка заметно возрастает в присутствии ртути. Поэтому в производстве цинковых электродов их, как правило, подвергают амальгамированию. [c.33]

    Иодид ртути [Н 2]12 — желто-зеленый порошок, практически почти не растворимый в воде и спирте. Нагретый до 120 С (Hg2]I2 начинает возгоняться. Под влиянием света частично разлагается на ртуть и Н 12. (НёаНз получается взаимодействием нитрата комплексного иона ртути lHgз](NOз)2 с иодидом щелочного металла  [c.430]

    Первое упоминание об арабской алхимии связано с именем Халида ибн йазида (665—704), изучавшего эту науку под руководством александрийского ученого Стефа-носа и впервые организовавшего перевод сочинений алхимиков на арабский язык. Однако первым крупным арабским алхимиком считается Джабир ибн Гайан (721—815), известный в средневековой европейской литературе под именем Гебера. Ему приписывается ряд сочинений ( Семьдесят книг , Ящик мудрости и др.), содержащих много разнообразных химических данных. В частности, Гебером впервые описана азотная кислота. Различные вещества он делит на летучие, плавкие и хрупкие. Металлы, по мнению Гебера, образуются в земле из серы и ртути под влиянием планет. Идея эта пережила своего создателя почти на 900 лет. При ее оценке нужно учитывать, что сера и ртуть понимались Гебером (и всеми последующими алхимиками) не просто как вещества, а как наиболее совершенные носители определенных принципов . Следует также отметить, что алхимики нередко практиковали приписывание собственных трудов уже известным авторам (с целью придания этим трудам большего научного вега), — есть основания подозревать, что некоторые произведения Гебера в действительности написаны не им, а гораздо позднее. [c.13]

    Роль биокоординационных соединений в охране окружающей среды от загрязнений токсичными элементами велика. Токсичные металлы участвуют в геоциклах и биоциклах. Установлены биоциклы таких вредных элементов, как ртуть, мышьяк. Подобные биоциклы могут наблюдаться для таких элементов, как олово, палладий, платина, золото. Использование подходов бионеорганической химии при исследовании столь сложной проблемы, как взаимодействие живых организмов с резко изменяющейся под влиянием деятельности человека окружающей средой, только начинается. В ближайшем будущем применение подходов бионеорганической химии к проблеме охраны окружающей среды (химической экологии) получит самое широкое развитие. [c.574]

    По отношению к металлам и некоторым ковалентным кристаллам весьма активными средами являются жидкие металлы. Эффекты адсорбционного понижения прочности могут быть выражены здесь очень ярко характерным примером служит влияние тоН кой пленки ртути на механические свойства монокристаллов цинкг (рис. XI—30). Чистые монокристаллы способны растягиваться нь сотни процентов, превращаясь при этом в тонкую ленту. По мере деформации растет усилие, которое необходимо прикладывать к образцу для обеспечения дальнейшего деформирования (этот рост напряжения пластического течения по мере увеличения деформации, связанный с увеличением плотности дефектов в кристалле, называется механическим упрочнением, или наклепом, — ср. замечание о зависимости т =т (у) в 2). Лишь при значительных напряжениях порядка нескольких килограммов на квадратный миллиметр (10 Н/м ) и удлинении кристаллов в несколько раз они разрываются. Нанесение ртути резко изменяет поведение монокристаллов уже после деформации около 107о происходит разрыв образцов с хорошо выраженным хрупким сколом по плоскости спайности (плотности базиса (0001)), и напряжение разрушения составляет лишь сотни граммов на квадратный миллиметр (10 Н/м2). [c.338]

    Возможность превращения ацетилена в тринитро- и затем в тст )а-шгфометаи путем действия азотной кислоты была отхрыта в 1900 г. Од ако выход продукта составлят 20—25%, В 1920 г. в качестве катализатора была применена азотнокислая ртуть, и выход увеличился до 40— 45%. Позже было установлено положительное влияние окислов зота на выход и особенно иа скорость процесса. Найдено так же. что некоторые металлы (Fe. Ni. Со,. 1) являются отрицательными катализаторами этого процесса. Учет этих факторов дал возможность повысить выход тетранитрометана до 90%. [c.223]

    Все высокопрочные алюминиевые сплавы чувствительны к межкристаллитному охрупчиванию в жидких металлах (ОЖМ). Было найдено, что следующие жидкие металлы способствуют охрупчиванию алюминиевых сплавов Hg, Ga, Na, In, Sn и Zn [94], Влияние жидкой ртути на субкритический рост трещины в высокопрочных алюминиевых сплавах при комнатной температуре интенсивно изучается. В противоположность испытаниям по времени до разрушения достижения механики разрушения позволяют количественно измерять скорость трещины как функции коэффициента интенсивности напряжений в вершине трещины. На рис. 20 показана типичная межкристаллитная трещина ориентации ВД в результате ОЖМ. Трещина на образце из сплава 7075-Т651 была заполнена ртутью при комнатной температуре. Соответствующая кривая V — К показана на рис. 34. Следует отметить очень высокую скорость роста трещины в области II кривой [c.221]


Библиография для Ртуть влияние на металлы: [c.175]   
Смотреть страницы где упоминается термин Ртуть влияние на металлы: [c.168]    [c.402]    [c.230]    [c.37]    [c.19]    [c.412]    [c.470]    [c.286]    [c.135]    [c.258]    [c.403]    [c.322]   
Техника физико-химических исследований при высоких давлениях (1951) -- [ c.18 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы ртуть



© 2024 chem21.info Реклама на сайте