Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ртуть от металлов на катионитах

    Потенциал электродов первого рода увеличивается с увеличением концентрации катионов и уменьшается с увеличением концентрации анионов, У амальгамных электродов потенциал падает с увеличением содержания растворенного в ртути металла, [c.139]

    Ртуть представляет собой металл, химически мало активный, почти не посылающий своих ионов в электролит. Если же в ртути растворить какой-либо металл, имеющий более отрицательный равновесный потенциал, чем сама ртуть, то катионы ртути в электролите вообще не смогут существовать в сколько-нибудь значительной концентрации. Действительно, если катион ртути появится в электролите, то он будет служить окислителем для атома металла, растворенного в ртути. Например, [c.311]


    Ртуть представляет собой металл, химически мало активный, почти не посылающий своих ионов в электролит. Если же в ртути растворить какой-либо металл, имеющий более отрицательный равновесный потенциал, чем сама ртуть, то катионы ртути в электролите вообще не смогут существовать в сколько-нибудь значительной концентрации. Действительно, если катион ртути появится в электролите, то он будет служить окислителем для атома металла, растворенного в ртути. Например, если взять амальгаму кадмия, то катион Hg в растворе восстановится атомом d на поверхности амальгамы [c.285]

    До сего времени нет общепризнанной точки зрения на механизм действия примесей, присутствующих в рассоле, на процесс выделения водорода при электролизе. Предполагается, что при имеющемся на катоде высоком потенциале на нем восстанавливаются до металлов катионы из состава примесей. Если выделившиеся металлы нерастворимы в ртути, плохо ею смачиваются, способны образовывать пленки на поверхности катода и имеют достаточно низкую величину перенапряжения для разряда ионов водорода, то на этих пленках создаются благоприятные условия для выделения водорода. [c.162]

    И связанного с этим уменьшения потенциала пары 2Н+/Н2 предупредить выделение водорода при электролизе можно также, проводя электролиз с ртутным катодом. Перенапряжение водорода на ртути особенно велико (около —1 в), поэтому применение ртутного катода дает возможность количественно выделять многие металлы, которые нельзя осадить на платине вследствие выделения водорода. Другое преимущество ртутного катода заключается в том, что выделяющиеся металлы образуют с ртутью амальгамы— разбавленные растворы этих металлов в ртути, и значительно меньше переходят в раствор (т. е. окисляются), чем эти же металлы в чистом виде. Вследствие этого на ртутном катоде можно выделить (при низкой концентрации Н+-ионов) даже щелочные металлы. Большое значение имеет применение ртутного катода для отделения Ре + и ряда других катионов от А1 +, Цз+ и т. д. [c.436]

    Перенапряжение водорода очень чувствительно к присутствию в электролите посторонних веществ. Добавки солей к разбавленным растворам кислот увеличивают перенапряжение водорода на ртути, причем увеличение концентрации 1—1-зарядного электролита (при постоянном pH) в 10 раз повышает т] примерно на 55— 58-10 В. Первоначальная добавка электролита с поливалентным катионом оказывает большее действие, чем такая же добавка 1—1-зарядного электролита. Соединения с поверхностно-активными анионами сильнее всего влияют на водородное перенапряжение на ртути в области малых плотностей тока, снижая его на десятые доли вольта. Поверхностно-активные катионы, наоборот, повышают перенапряжение водорода на ртути в широких пределах плотностей тока. Поверхностно-активные молекулярные вещества или повышают, или понижают в зависимости от их природы, величину Т1Н на ртути. Действие этих добавок ослабляется с ростом плотности тока и при высоких ее значениях полностью исчезает. Перенапряжение водорода на платине, железе и никеле также возрастает при введении поверхностно-активных веществ. Характер влияния поверхностно-активных веществ на водородное перенапряжение и на этих металлах является функцией потенциала электрода. В случае железа, на котором перенапряжение водорода в кислых средах слабо зависит от pH, присутствие в ]застворе поверхностно-активных катионов не только увеличивает перенапряжение, но и изменяет характер связи между г)н и pH. [c.401]


    Ртуть, наоборот, сильно отличается от и Сс1 и по некоторым свойствам уникальна. Так, это единственный металл, образующий кластерный катион стойкий в водном растворе. Только для ртути известны амидные соединения, содержащие связь Нд—N устойчивые в водной среде (другие металлы образуют подобные соединения лишь в неводных растворах). Ртуть образует два ряда соединений — соединения ртути(II), содержащие Hg+ и соединения ртути (I), имеющие HgГ. Последние получаются при действии металлической ртути на соединения Hg+ . [c.595]

    Из методов прямого титрования необходимо отметить прежде всего методы определения катионов различных металлов рабочим раствором этилендиаминтетрауксусной кислоты или другими комплексонами (см. 121). Кроме того, практическое значение имеет определение некоторых металлов (медь, никель и др.) с помош,ью рабочего раствора цианистого калия. В качестве индикатора применяют, например, коллоидный раствор йодистого серебра при избытке цианистого калия йодистое серебро переходит в раствор вследствие связывания ионов серебра в цианистый комплекс K[Ag( N)2]. Часто определяют содержание анионов хлора путем титрования солями двухвалентной ртути. Несколько особое место занимают методы, основанные на образовании или разложении простых и комплексных фторидов. [c.418]

    Образование галогенидных, роданидных, цианидных и иных комплексов также свидетельствует о большой склонности к комплексообразованию катионов IV группы, особенно катионов переходных металлов — серебра, меди, кадмия и ртути. [c.284]

    Для обратимых электродов определение заряда на основе уравнения (15.1) становится затруднительным из-за возможности перехода ионов через границу раздела фаз. Для металлов платиновой группы, а также металлов группы железа и ряда других возникает еще дополнительное осложнение, связанное с тем, что частичный перенос заряда адсорбированных ионов уже нельзя не учитывать. В пользу переноса заряда свидетельствуют данные по кинетике адсорбции и обмена ионов. Скорости адсорбции и обмена оказываются сравнительно небольшими, а адсорбционное равновесие устанавливается от нескольких минут до многих часов. Для сравнения отметим, что время образования двойного слоя на ртутном электроде в растворах неорганических солей обычно не превышает миллионных долей секунды. На перенос заряда указывают большие величины адсорбций ионов на платиновых металлах. Перенос заряда вытекает также из данных по изучению сверхэквивалентной адсорбции ионов на платиновых металлах. Так, на платине в отличие от ртути заряд сверхэквивалентно адсорбированных анионов возрастает в ряду S0 < I < l" < Вг" и при изменении потенциала электрода или остается постоянным, или уменьшается, что можно объяснить возрастанием переноса заряда при росте потенциала. Об этом свидетельствуют данные по адсорбции катионов при положительных зарядах поверхности (рис. 39) при сдвиге потен- [c.77]

    Константы скорости к для разряда на ртути катионов щелочных металлов имеют следующие значения  [c.251]

    Для элиминирования миграционного переноса восстанавливающегося вещества к электроду в исследуемые растворы добавляют так называемые электролиты фона в достаточно высокой концентрации ( М). В качестве электролитов фона используют соли, катионы которых восстанавливаются при высоких катодных потенциалах, а растворение ртути в присутствии аниона соли происходит при достаточно высоких анодных потенциалах. Выбор фона, таким образом, определяет диапазон потенциалов, в котором возможно проводить аналитическое определение или исследование кинетики электрохимических реакций. Чаще всего в качестве электролита фона используют соли щелочных металлов и тетраалкиламмониевых оснований. [c.239]

    Установить общие признаки, которые определяют, к какой группе относится данная соль — к сильным, к средним или к слабым — довольно трудно. Можно только высказать некоторые общие правила. К сильным солям относятся соли с большими катионами и анионами, например соли четвертичных аммониевых оснований, содержащие в качестве анионов большие анионы органических кислот. Эти соли почти во всех растворителях хорошо диссоциированы. Далее, к сильным солям относятся галоидные соли щелочных металлов, за исключением солей лития. К слабым солям относятся, как правило, соли не полностью замещенных аммониевых оснований, уже упомянутые соли лития и галоидов фтора и хлора. К слабым солям относятся соли, содержащие катионы, не имеющие электронной оболочки инертных газов например, ионы серебра, кадмия, ртути, цинка и др. У этих ионов электронные оболочки могут быть деформированы, поэтому они легко вступают во взаимодействие с другими ионами и растворителем. [c.110]


    Платиновый электрод может быть использован в положительной области потенциалов (до +1,3 в). Для определения катионов он применяется редко, так как поверхность его изменяется при выделении на нем металлов. Кроме того, большинство металлов выделяется при отрицательных потенциалах, платиновый же электрод не может быть использован в таких условиях. Иногда для этой цели используются твердые амальгамированные электроды, на которых перенапряжение водорода так же велико, как и на ртути. [c.155]

    Характерной особенностью сульфидов является их цвет. Сульфиды щелочных и щелочноземельных металлов бесцветны, сульфиды тяжелых металлов окрашены в различные цвета, например, сульфиды железа, кобальта, никеля, серебра, ртути, свинца, висмута окрашены в буро-черный цвет, цинка и германия — в белый, марганца — в телесный, кадмия, олова и мышьяка — в желтый, сурьмы — в оранжевый. Этим пользуются в аналитической химии для распознавания отдельных катионов в растворах солей. [c.566]

    Для ртути характерно образование соединений, в которых содержатся два атома металла, связанных друг с другом, т. е. группа (катион) (Нд—Hg) +. [c.205]

    Цинк и кадмий — активные металлы, а ртуть — пассивна ее ° (Hg +/Hg) = +0,85 В. В своих соединениях они проявляют степень окисления +2. Катионы Hg способны к димеризации с образованием +Hg—Hg+, т. е. Hg +. Соединения, содержащие такие катионы, называли соединениями одновалентной ртути. [c.431]

    В амперометрическом титровании для индикации конечной точки очень широко пользуются током восстановления ионов металлов до элементарного состояния. На платиновйм электроде могут быть восстановлены до металла катионы всех электроположительных металлов, а также некоторых электроотрицательных, в частности таллия и свинца, обладающих сравнительно невысоким отрицательным потенциалом наряду с высоким (почти как у ртути) перенапряжением для выделения водорода. [c.80]

    Катионы Na+, К+ и т. д. (однозарядные) бесцветные, вследствие чего бесцветны все соединения щелочных элементов (окраска может быть вызвана только цветным анионом типа МпО, СгО , Сг О ). При электролизе водных растворов солей щелочных металлов катионы восстанавливаются только на ртутном катоде (металлы образуют со ртутью амальгамы, см. 21.4), из певодных растворов или из расплава катионы могут быть восстановлены на любых электродах. [c.270]

    Патент США, № 4111830, 1978 г. Для замедления коррозии металлов, находящихся в контакте с жидкостью в системе, предлагается обрабатывать эту жидкость, например воду в ядерноМ реакторе, добавками растворимых в воде ионов ртути и катионов металлов I и II групп. Такие смеси оказывают взаимоусиливающее действие на ингибирование коррозии, которое значительно сильнее действия отдельной компоненты. [c.257]

    Уравнение, описывающее зависимость тока от потенциала, для обратимой реакции на РКЭ можно получить на основе уравнения Нернста. Мы сделаем этот вывод для важного специального случая восстановле]шя простого катиона до растворимого в ртути металла. Поскольку полярографически почти всегда изучают очень разбавленные растворы, коэффициенты актив-ности принимают равными единице. Это допущение справедливо и для коэффициентов активности металлов в амальгаме. Полуреакцию можно записать в таком виде  [c.340]

    На твердых электродах могут быть восстановлены до металла катионы всех электроположительных металлов, а также некоторых электроотрицательных, в частности свинца, обладающего сравнительно невысоким отрицательным потенциалом наряду с высоким (почти как у ртути) пербнапряжением для выделения водорода. [c.53]

    Четвертая группа катионов, рассматриваемая в настоящем учебнике, включает катионы меди, серебра, ртути, свинца и висмута. Сульфиды металлов, катионы которых относятся к этой группе, нерастворимы в воде, в разбавленных кислотах (кроме азотной) и в полисульфиде аммония. По нерастворилюстп в воде сульфиды этой группы отличаются от сульфидов катио1юв первой и второй групп, а по нерастворимости в разбавленных кислотах — от сульфидов катионов третьей группы. В отличие от сульфидов катионов пятой группы сульфиды катионов четвертой группы не растворяются в растворе полисульфида аммония. [c.123]

    Если исходить из предположения, что адсорбция ионов на ртути определяется исключительно электростатическими силами, то все анионы должны изменять ход лишь восходящей ветви электрокапиллярной кривой, где поверхность ртути заряжена положительно. Напротив, влияние катионов должно локализоваться только иа кисходя1цей ветви, где они электростатически притягиваются к отрицательно заряженной поверхности ртути. В действительности, как это было найдено еще Гуи, многие анионы изменяют ход элек-трокапиллярпой кривой справа от точки максимума, а некоторые катионы влияют не только на нисходящую, но и на восходящую ветвь кривой. Такое поведение ионов нельзя объяснить действием только кулоновских сил. Оно связано с силами взаимодействия, отличными от простых электростатических сил. Такими силами, специфическими для данного рода частиц, могут быть, например, силы Ваи-дер-Ваальса или химические (валентные). Благодаря этим силам ионы в состоянии удерживаться на одноименно заряженной поверхности ртути и влиять на электрокапиллярные свойства границы металл — раствор. Точно так же нельзя на основе одних только электростатических представлений объяснить влияние неиоинзированных органических веществ на ход электрокапиллярных кривых. Дело в том, что большинство органических веигеств обладает меньшей диэлектрической постоянной, чем вода, и поэтому должны были бы изгоняться ею из двойного слоя уже при не- [c.239]

    Образование осадков [5.24, 5.55, 5.64]. Очистка сточных вод данным методом заключается в связывании катиона или аниона, подлежащего удалению, в труднорастворимые или слабодиссоции-рованные соединения. Выбор реагента для извлечения аниона, условия проведения процесса зависят от вида соединений, их концентрации и свойств. Очистка сточных вод от ионов цинка, хрома, меди, кадмия, свинца в соответствии с санитарными нормами возможна при получении гидроксидов этих металлов. Более глубокая очистка воды от иона цинка достигается при получении сульфида цинка. Очистка от ионов ртути, мышьяка,- железа также возможна в виде сульфидов ртути, мышьяка и железа. Использование в качестве реагента солей кальция позволяет провести очистку сточных вод от цинк- и фосфорсодержащих соединений. В результате очистки получается суспензия, содержащая труднорастворимые соли, отделение которых возможно методами отстаивания, фильтрации и центрифугирования. [c.492]

    С кислотами NH3 образует соли аммония, содержащие ион NH4. Это кристаллические вещества. Большинство их, подобно солям щелочных металлов, хорошо растворимо в воде. Многие из, них изоморфны. этим солям. Сходство данных соединений на одном, примере иллюстрирует рис. 3.46 оно в значительной степени обусловлено близостью радиусов ионов для NH< г= 143 пм, а для К" " г =133 пм. Однако проявляется саоеобразие катиона NH — его вытесняет любой щелочной металл (по шкале ср° нейтральный аммоний NHil расположен между марганцем и алюминием), при этом происходит разложение аммония NH4 на NH3 и На (однако растворенный в ртути NH некоторое время может существовать в виде амальгамы при низкой температуре). Соли аммония термически неустойчивы, а также подвергаются гидролизу по катиону. [c.399]

    Катионы расположены в порядке их возрастающей поляризуемости. Так как обменная реакция между глиной и солями металлов обратима, результаты могут рассматриваться только как качественные. Тем не менее они указывают на то, что с ростом поляризуемости адсорбированного катиона начальный контактный угол возрастает и что на глине, обработанной солями свинца и ртути, он приближается к контактому углу для поверхности, обработанной лаурил-амииом. Это можно объяснить снижением свободной поверхностной энергии твердого тела в результате поляризации ионов и поверхность становится более нейтральной. [c.67]

    Наряду с основным продуктом реакции были обнаружены углеводороды и продукты хлорирования растворителя, что указывало на гомолитический распад диазоний-катиона. Поскольку медь в ряду активности металлов находится левее ртути, можно предполагать, что она не только вызывает гомолитический pa ido [c.459]

    Известно, что большинство солей сильных кислот (азотной, серной, соляной) хорошо растворяется в воде. Исключениями являются некоторые сульфаты (бария, стронция, кальция, свинца и закисной ртути), а также некоторые хлориды (серебра, закисной ртути и свинца). Часть этих соединений используют в количественном анализе для осаждения соответствующих ионов применение их описано в практической части. Однако большинство труднорастворимых соединений являются солями слабых кислот, кроме того, трудно растворимы также гидроокиси металлов. Поэтому для осаждения катионов в большинстве случаев их переводят в гидроокиси, а также в соли слабых неорганических или органических кислот. Из неорганических соединений наиболее широко используют сульфиды и гидроокиси металлов. [c.92]

    Измерение электропроводности растворов уксуснокислых солей ртути, меди и других тяжелых металлов показывает, что такие соли очень мало диссоциируют. Это характеризует наличие прочной химической связи между анионом СН3СОО и катионом. Образуют,иеся соли или более сложные по составу соединения диссоциируют часто также мало, и в этом отношении подобны комплексным аммиакатам ионов металлов и другим комплексным соединениям. Таким образом, солеобразующая группа — СООН является в то же время и комплексообразующей группой, причем образование комплексных групп происходит одновременно с замещением иона водорода на ион металла. Поэтому состояние равновесия существенно зависит от кислотности раствора. [c.98]

    Потенциал капельного ртутного электрода определяется, во-первых, концентрацией разряжающегося осаждаемого катиона на поверхности электрода (со) и, во-вторых, концентрацией осажденного металла, растворенного в ртутной капле (Hg s). Hg o пропорциональна протекающему току. В капле ртути также идет конвекция, а следовательно, образуется диффузионный слой с толщиной б если коэффициент диффузии в ртути обозначить D, то [c.338]

    Капельный ртутный электрод применяется для исследования реакций, протекающих в области потенциалов от +0,3 до —1,8 В (относительно н.к. э.). Этот диапазон потенциалов ограничивается при положительных потенциалах растворением ртути, а при отрицательных — электровосстановлеии- м катионов щелочных металлов из основного электролита или выделением газообразного водорода. [c.338]

    В химических реакциях атомы металлов подгруппы цинка отдают два внешних электрона. В образующихся соединениях степень окисления металла равна двум. В огличие от циика и кадмия ртуть имеет также соединения в степени окисления Ч- I, содержащие катион Эти соединения мо но получить, например, по [c.235]

    Перенос заряда вытекает также из данных по изучению сверхэквива-лентной адсорбции ионов на платиновых металлах. Так, на платине в отличие от ртути заряд сверхэквивалентно адсорбированных анионов возрастает в ряду <С1-< Вг и при изменении потенциала электрода или остается постоянным, или уменьшается, что можно объяснить возрастанием переноса заряда при росте потенциала. Об этом свидетельствуют данные по адсорбции катионов при положительных зарядах поверхности [c.71]

    На границе раствор — воздух в2=1 и Р>0, т. е. сила Р направлена в сторону раствора. На границе раствор — ртуть еа оо и из уравнения (19.1) следует, что —г]е11 лгЧае.1<.Ь, т. е. сила Р направлена в сторону металла. Таким образом, силы зеркального изображения способствуют отрицательной адсорбции ионов на границе раствор — воздух и их положительной адсорбции на границе раствор — ртуть. Положительная адсорбция катионов тетрабутиламмония на границе раствор — воздух обусловлена преобладанием эффекта выжимания над силами зеркального изображения. Из-за прослойки растворителя с низкой диэлектрической проницаемостью на границе ртуть — раствор увеличения адсорбции на этой границе неорганических катионов практически не наблюдается. С другой стороны, для анионов и органических катионов, частично или полностью теряющих при адсорбции гидратную оболочку, роль сил зеркального изображения в явлениях адсорбции несомненна, хотя при этом нужно учитывать и возможность образования в поверхностном слое ионных пар. [c.95]

    Вместе с тем обнаруживается своеобразие катиона ЫН1, его вытесняет из соединений любой щелочной металл (по 1пкале нейтральный аммоний ЫН расположен между марганцем и алюминием), при этом происходит разложение аммония Н на NHз и Нг (растворенный в ртути ЫнЗ некоторое время может существовать виде амальгамы при низкой температуре). Соли аммония термически неустойчивы, в растворах подвергаются гидролизу по катиону. [c.401]

    Ртуть сильно отличается от Zn и d и по некоторым свойствам уникальна. Это единственный металл, образую1ций кластерный катион Hgj, стойкий в водном растворе. Только для ртути измстмы- амидные соединения, солержащие связь Hg-N, устойчивые в водной среде (другие металлы образуют подобные соединения лишь а неводных растворак) Ртуть образует два ряда соединений - соединения ртути(П), содержащие ион Hg , и соединения ртути(1), имеющие ион Hg . Последние получаются при действии металлической ртути иа соединения Hg.  [c.563]

    Процессы, происходящие на электродах. Основное преимущество ртутного капающего электрода для полярографического анализа катионов заключается прежде всего в том, что поверхность его постоянно обновляется. На ней не накапливается, как на твердых электродах, слой постороннего металла, изменяющего свойства электрода, и поэтому условия определения остаются все время постоянными. Кроме того, перенапряжение водорода на ртути очень велико, т. е, свободный водород выделяется на ртуть только при больших отрицательных значениях потенциала. Это дает возможность определять многпе металлы в нейтральных и даже кислых растворах. [c.149]

    I. Действие гидрофосфатов щелочных металлов и аммония на катионы пятой группы. Na2HP04, К2НРО4 или (НН гНРО образуют белые кристаллические осадки гидрофосфатов или фосфатов серебра, свинца и ртути (I). [c.90]

    С). Таким образом, характерной особенностью процесса выделения водорода является его сильная зависимость от pH электролита. Перенапряжение вообще зависит от состава и раствора и присутствия в растворе посторонних ионов, влияющих на величину электрокинетического потенциала и строение двойного слоя. Это явление было изучено С. Д. Левиной и В. А. Зарин-ским, которые нашли, что добавление к раствору НС1 соли La la, дающей поверхностно активные поливалентные катионы La, повышает перенапряжение на ртути. Аналогичные закономерности наблюдаются и на других металлах, например на никеле. [c.301]

    Сульфиты весьма склонны к комплексообразованию. Особенно ярко эта тенденция выражена по отношению к катионам золота и платиновых металлов, серебра, ртути, одновалентной меди и др. Получаемые при этом комплексные соединения отвечают следующим формулам Ыаа [Ме(50з)2] N3 [Ме(30з)41 Ыа [Ме(50з)з1 Ыа [Ме(50з),1 Наб1Ме(50з)4] и др. Сульфиты могут быть получены различными способами, а именно пропусканием двуокиси серы в растворы или суспензии гидроксидов [c.573]

    Цинк и кадмий в отличие от щелочно-земельных металлов образуют двойные соли типа шё4И1тш. Это обстоятельство уже доказывает большую комплексообразовательную способность элементов подгруппы цинка по сравнению с щелочно-земельными металлами. Цинк вследствие амфотерности образует наиболее устойчивый гид-роксокомплекс [2п(ОН)4] (р -15,5). Вторичная периодичность имеет место и в химии комплексных соединений. Это видно, например, из сравнения р/С для аммиакатов [Э(NHз)4]2+ [9,46 7,12 19,28 соответственно для 2п(-Ь2), Сс1(-Ь2), Hg( -2)]. Такая же картина наименьшей устойчивости координационных соединений кадмия наблюдается и для комплексов с тиомочевиной. Не надо думать, что такое положение фиксируется только для комплексных катионов. Так, рК для ацидокомплексов стиосульфат-анионом [Э (8203)2] от цинка к ртути принимают значения 8,2, 6,4 и 24,4. Кроме того, Сс] - - чаще других показывает к. ч. 6, например [С(1 (NH)я)J2+ [Сёи , [С<1(С 5), и др. [c.136]

    Так, например, хлороводородная кислота НС1 и растворимые в воде хлориды (Na l, K l, NH4 I и т, д.) являются групповыми реагентами на группу катионов, состоящую из ионов одновалентного серебра Ag одновалентной ртути Hg и двухвалентного свинца РЬ . Точнее говоря, в роли группового реагента здесь выступают хлорид-ионы СГ, образующие с указанными катионами металлов малорастворимые н воде белые осадки хлоридов этих катионов  [c.19]

    Наличие альдегидных групп доказывают, окисляя а.1ьдегиды соединениями серебра, ртути, меди в щелочной среде. При эюм катионы металлов восстанавливаются до свободных металлов. Типичный пример — фармакопейная реакция образования серебряного зеркала . При действии аммиачного раствора серебра(1), содержан его комплексы [Ag(NH3)2]OH, на альдегиды на чистых стеклянных стенках реакционного сосуда образуется тонкая блестящая пленка металлического серебра ( серебряное зеркало ), а альдегиды окисляются до соответствующих кислот  [c.169]


Смотреть страницы где упоминается термин Ртуть от металлов на катионитах: [c.223]    [c.273]    [c.97]   
Ионообменные разделения в аналитической химии (1966) -- [ c.364 ]




ПОИСК





Смотрите так же термины и статьи:

Катионы металлов

Металлы ртуть

Ртуть катион



© 2025 chem21.info Реклама на сайте