Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент металла в ртути

    Эти общие заключения о природе перенапряжения на разных металлах подтверждаются в общих чертах соответствием между наиболее важными следствиями из теории перенапряжения водорода и данными, полученными при экспериментальном изучении кинетики выделения водорода. Так, на поверхности ртути в области потенциалов катодного выделения водорода ни одним из методов не удается обнаружить заметных следов адсорбированного атомарного водорода. Следовательно, стадия его удаления не является лимитирующей. Предлогарифмический коэффициент Ь на ртути близок к 0,12. При учете ничтожно малого заполнения поверхности ртутного катода адсорбированным атомарным водородом такое значение величины Ь не может быть получено из теории замедленной рекомбинации. Экспериментальные данные по влиянию состава раствора и pH на перенапряжение при выделении водорода на ртути также лучше всего согласуются с предположением о замедленности разряда на свободных участках катода. [c.413]


    В связи с преобладающим адсорбционным эффектом органических ингибиторов кислотной коррозии особое значение для понимания механизма их действия и для рационального подхода к созданию новых ингибиторов приобретает заряд поверхности корродирующего металла, т. е. его ф-потенциал. Применение приведенной шкалы потенциалов иозволяет использовать данные электрокапиллярных измерений на ртути в растворах, содержащих органические соединения, для оценки их эффективности в качестве ингибиторов при кислотной коррозии железа и других металлов. Значение ф-потенциала корродирующего металла иозволяет не только предсказать, какие вещества могут быть ингибиторами, но и рассчитать коэффициенты торможения. Л. И. Антропов в разработанной им формальной теории ингибиторов показал, что наблюдаемый в области малых и средних заполнений коэффициент ингибирования у представляет собой произведение ряда частных коэффициентов ингибирования  [c.508]

    Из хлоридных растворов с большим коэффициентом распределения извлекаются молибден (VI), теллур (IV), уран (VI), цинк индий, железо (III), палладий, золото, ртуть, хуже германий, галлий, цирконий, торий, ванадий (V), кадмий, медь, родий (III), платина (IV), совсем плохо кобальт, никель и др. металлы. [c.40]

    Соотношение (3.28) справедливо только в том случае, если жидкий металл смачивает поверхность, так что пе существует поверхностной пленки, действующей как тепловой барьер. С щелочными металлами обычно не возникает никаких затруднений, так как они очень хорошо смачивают поверхность конструкционных металлов и сплавов но свинец, висмут и ртуть очень плохо смачивают поверхности низколегированных сплавов и нержавеющей стали. При плохой смачиваемости поверхности коэффициент теплоотдачи может уменьшиться в 10 раз. Чтобы устранить этот недостаток, в ртуть, например, добавляют небольшое количество магния. Добавление магния в слишком большом количестве может вызвать коррозию и ухудшить массообмен. [c.64]

    Нагревание ртутью и жидкими металлами. Для нагрева до температур 400—800 С и выше в качестве высокотемпературных теплоносителей могут быть эффективно использованы ртуть, а также натрий, калий, свинец и другие легкоплавкие металлы и их сплавы. Эти теплоносители отличаются больщой плотностью, термической стойкостью, хорошей теплопроводностью и высокими коэффициентами теплоотдачи. Однако жидкие металлы и их сплавы характеризуются очень малыми значениями критерия Прандтля (Рг =s 0,07). В связи с этим коэффициенты теплоотдачи от жидких металлов следует рассчитывать по специальным формулам .  [c.320]


    Значение а при выделении водорода меняется в широких пределах — от 0,1 В у Р1 до 1,6 В у Нд коэффициент Ь почти у всех металлов, кроме платины в кислых и ртути в щелочных растворах, близок к 0,12. Все металлы с Ь 0,12 обладают высоким перенапряжением. [c.297]

    В табл. 21 приведены значения коэффициента с по данным различных авторов. Из таблицы следует, что эти значения лежат в пределах от 0,3 до 1,7 в. Как нетрудно заметить, высокое значение а типично для определенной группы металлов (свинец, ртуть, цинк, кадмий, олово). [c.299]

    С речным стоком с континентов в моря и океаны поступают огромные массы соединений тяжелых металлов (см. гл. 2, табл. 2.5). В наибольшей степени в миграцию в составе речных вод вовлекаются элементы, для которых коэффициент водной миграции К больше 2. Это кадмий и ртуть (К > 10), а также [c.251]

    Главное различие между жидкостью и твердым телом заключается в том, что жидкость обладает текучестью, а твердое тело сохраняет свою форму. Это следует из огромной разницы в молекулярной подвижности. Например, атомы золота в жидкой ртути диффундируют с коэффициентом /) = 8 10 ° м с , а в металлическом серебре - с В - 2 2. -1 (285 К). В свою очередь такое огромное различие является следствием разной структуры твердого тела и жидкости. В твердом кристаллическом теле молекулы, атомы металла или ионы находятся в узлах кристаллической решетки, где совершают колебательные движения. Диффузия частиц происходит в результате переме-шения вакансий кристаллической решетки. В жидкости, как показывает рентгеноструктурный анализ, существует только ближний порядок между молекулами, который довольно быстро нарушается, так что за время порядка 10 °-10 с каждая молекула перемещается на расстояние молекулярного диаметра, что и создает высокую по сравнению с твердым телом молекулярную подвижность. [c.180]

    Для определения металлов в ртути методами амальгамной полярографии (1591 определенный интерес представляют величины коэффициентов диффузии металлов в ртути [781, которые приведены в приложении II. [c.32]

    Измерение температуры. Для измерения температуры используют термометры расширения, манометрические термометры, термометры сопротивления, термоэлектрические термометры (термопары), различные термометры. В термометрах расширения используется зависимость увеличения объема жидкости при увеличении температуры. Для этого жидкость (ртуть, толуол, спирт) заключают в стеклянный резервуар с капилляром, который проградуирован в градусах Цельсия или в градусах другой шкалы. На принципе различных коэффициентов расширения двух спаянных между собой пластин из различных металлов основана работа биметаллических термометров. Для удобства эти пластины изготовляют в виде пружины. [c.292]

    Значительная часть работ, относящихся к катодному выделению металлов из неводных сред, сводится к полярографическим исследованиям на ртутном капельном электроде. Наиболее полно они представлены в библиографическом указателе по полярографии [50]. Поскольку ртуть в некоторых органических растворителях окисляется при потенциалах, предшествующих потенциалам восстановления ионов отдельных металлов (например, Ag+ в ДМСО, ДМФ [796]), дальнейшим расширением границ полярографических исследований явились вольт-амперные измерения на твердых, преимущественно платиновых, электродах [796, 681, 766, 689, 588, 892, 1118, 814], гораздо реже — на электродах типа Ме/Ме -1- [681, 479, 162, 609, 642]. Особого внимания заслуживает применение вращающегося платинового электрода, который обладает высокой чувствительностью, сочетающейся с иными преимуществами твердых электродов (отсутствие колебаний силы тока, обусловленных капанием на ртутном капельном электроде, емкостного тока). На вращающихся платиновых электродах целесообразно исследовать растворы деполяризаторов, в которых вследствие низких коэффициентов диффузии весьма малы диффу знойные токи, так как здесь предельный ток во много раз больше, чем на ртутном электроде. На таком электроде редко появляются максимумы. Оптимальными условиями работы вращающегося платинового электрода являются строго постоянные температура и скорость вращения электрода, обеспечивающие постоянство диффузионного тока и низкие концентрации деполяризатора, позволяющие избежать изменения электродной поверхности из-за осаждения металлов. Большое значение имеет форма электрода [433]. При вольт-амперных измерениях на твердых электродах довольно часто используют скорости изменения потенциала — гораздо большие, чем в классической полярографии на ртутном капельном электроде. Широкое распространение в последнее время [c.73]

    Коэффициент разделения s зависит от материала катода. Для ртути, имеющей особенно большое водородное перенапряжение, 5 = 3,1. Для металлов платиновой группы значение коэффициента разделения значительно больше и, согласно Кортюму [1], например, для платины должно быть равным 15. Однако при этом следует заметить, что известной систематической связи между металлом катода и значением коэффициента разделения не имеется. [c.283]


Таблица 6.61 Коэффициенты диффузии металла в ртути [13] Таблица 6.61 <a href="/info/305887">Коэффициенты диффузии металла</a> в ртути [13]
    Коэффициенты диффузии металлов в ртути [c.98]

    В-третьих, у ртути довольно большой коэффициент температурного расширения — всего в полтора раза меньше, чем у воды, и на порядок, а то и два больше, чем у обычных металлов. [c.241]

    К металлам относят вещества, которые обладают рядом характерных свойств хорошей электро- и теплопроводностью и отражательной способностью к световому излучению (блеск и непрозрачность), отрицательным температурным коэффициентом электропроводности, повышенной пластичностью (ковкость). Данные свойства металлов обусловлены наличием подвижных электронов, которые постоянно перемещаются от одного атома к другому. Вследствие такого обмена в металлической структуре всегда имеется некоторое количество свободных электронов, т. е. не принадлежащих в данный момент каким-либо определенным атомам. Чрезвычайно малые размеры электронов позволяют им свободно перемещаться по всему металлическому кристаллу и придавать металлам характерные свойства. Слабой связью валентных электронов с ядром атома объясняются и многие свойства металлов, проявляющиеся при химических реакциях образование положительно заряженных ионов-катионов, образование основных окислов и др. Металлы с хорошей электропроводностью одновременно обладают высокой теплопроводностью (рис. 105). Наибольшей электропроводностью обладают металлы серебро, медь, золото, алюминий. Медь и алюминий широко используются для изготовления электрических проводов. По твердости металлы располагаются в ряд, приведенный на рис. 106. По плотности все металлы условно делят на две группы легкие, плотность которых не более 5 г см , и тяжелые. Плотность, температуры плавления и кипения некоторых металлов указаны в табл. 18. Наиболее тугоплавким металлом является осмий, наиболее легкоплавким — ртуть. [c.266]

    Метод концентрирования ультрамалых количеств металлов в стационарной ртутной каппе с последующим анодным растворением амальгамы при непрерывно меняющемся потенциале позволяет определять примеси, образующие со ртутью амальгамы, при их концентрации в растворе до 10 —10" М (в зависимости от растворимости металла в ртути, коэффициента диффузии и других факторов) [1—5]. Такая высокая чувствительность достигается вследствие 100—1000-кратного концентрирования металла в амальгаме. [c.164]

    Теплоотдача при поперечном Ьмывании шахматных и коридорных пучков жидкими металлами (ртуть, натрий) изучалась в работах Л. 13, 171]. Опыты показали, что средний коэффициент теплоотдачи глубинных рядов описывается формулой [c.246]

    Установлено, что ртуть способна биоаккумулироваться по пищевым цепям водных и наземных экосистем. Особенно опасное концентрирование металла происходит в следующей цепи вода — донные отложения — биота (бентос, фито-, зоопланктон и др.) — рыбы — птицы, питающиеся рыбой. Коэффициент концентрирования ртути при этом может достигать 10 - 10 [156,520]. Важное свойство растворенной ртути в природных водных объектах — способность к химическому и биохимическому метилированию с образованием наиболее токсичных ртутных соединений — алкил-и фенилпроизводных. Данные соединения могут растворяться в липидных клетках живых организмов и вследствие этого характеризуются высокой биоусвояемостью и токсичностью. [c.5]

    Они представляют собой различного вида теплообменники, в трубках (реже — в межтрубном пространстве) которых находится катализатор (рис. VI 1.4). В качестве теплоносителя применяют газы, высококипящие органические теплоносители, расплавленные металлы (натрий, ртуть, сплавы), расплавленные соли. Температуру в кипящих банях регулируют, изменяя давление инертного газа (азота) над уровнем теплоносителя в бане. Если теплоноситель не является кипящей жидкостью, применяют искусственную циркуляцию (лцбо прокачивают теплоноситель через систему реактор — теплообменник, либо устанавливают мешалку в самом реакторе). Из-за малой теплоемкости и низких коэффициентов теплоотдачи газы в качестве теплоносителей применяют только для проведения реакций с относительно малым тепловым эффектом. [c.267]

    В качестве рабочей жидкости в них применяют дистиллированную воду, этиловый спирт, керооин, четыреххлористый углерод, дибутилфталат и ртуть. Манометрическая жидкость должна обладать высокой химической стойкостью, малой вязкостью, малой испаряемостью, малым коэффициентом теплового расширения и быть неагрессивной по отношению к металлам, стеклу и резине. [c.31]

    Потенциал капельного ртутного электрода определяется, во-первых, концентрацией разряжающегося осаждаемого катиона на поверхности электрода (со) и, во-вторых, концентрацией осажденного металла, растворенного в ртутной капле (Hg s). Hg o пропорциональна протекающему току. В капле ртути также идет конвекция, а следовательно, образуется диффузионный слой с толщиной б если коэффициент диффузии в ртути обозначить D, то [c.338]

    Электрохимические процессы с участием органических веществ часто проводят в неводных растворителях, так как в воде многие органические вещества слабо растворимы. Природа растворителя прежде всего сказывается на константах скорости реакции к и адсорбционного равновесия В . От природы растворителя зависит и коэффициент активности реагирующих молекул. При переходе от одного растворителя к другому при =сопз1 изменяется заряд поверхности, что приводит к изменению ф потенциала и, соответственно, скорости электродного процесса. Наконец, от природы растворителя зависят величины и На скорость электродных процессов с участием органических веществ влияет природа металла. При переходе от одного металла к другому изменяются энергия адсорбции органических веществ и молекул воды, 1 31-потенциал и потенциал максимальной адсорбции Ет- В меньшей степени зависит от природы электрода отношение ( < 0—К ) 2НТТ . Так, например, для ртути, кадмия и висмута этот коэффициент для одного и того же вещества оказывается примерно одинаковым. [c.383]

    Примером использования избирательной адсорбции может служить концентрирование микроколичеств катионов металлов, содержащихся в воде (водопроводная вода, вода природных водоемов и т. д.), на активированном угле с последующим определением их содержания. Для этого к достаточно большому объему анализируемой воды (-1 л) прибавляют аммиачный буфер до pH 8—9 и 8-оксихинолин (раствор в ацетоне), который образует относительно прочные оксихинолинатные комплексы с катионами металлов, присутствующих в микроколичествах в анализируемой воде (ионы меди, цинка, кадмия, ртути, алюминия, свинца, хрома, марганца, железа, кобальта, никеля и др.). Затем воду пропускают через активированный уголь, находящийся на фильтре. При фильтровании оксихинолинатные комплексы металлов практически количественно адсорбируются на активированном угле (коэффициент концентрирования равен -Ю ), из которого они могут быть десорбированы обработкой небольшим объемом раствора азотной кислоты НМОз (около 10 мл). В полученном азотнокислом концентрате можно определить содержание указанных металлов различными методами (например, оптическими). [c.236]

    Все высокопрочные алюминиевые сплавы чувствительны к межкристаллитному охрупчиванию в жидких металлах (ОЖМ). Было найдено, что следующие жидкие металлы способствуют охрупчиванию алюминиевых сплавов Hg, Ga, Na, In, Sn и Zn [94], Влияние жидкой ртути на субкритический рост трещины в высокопрочных алюминиевых сплавах при комнатной температуре интенсивно изучается. В противоположность испытаниям по времени до разрушения достижения механики разрушения позволяют количественно измерять скорость трещины как функции коэффициента интенсивности напряжений в вершине трещины. На рис. 20 показана типичная межкристаллитная трещина ориентации ВД в результате ОЖМ. Трещина на образце из сплава 7075-Т651 была заполнена ртутью при комнатной температуре. Соответствующая кривая V — К показана на рис. 34. Следует отметить очень высокую скорость роста трещины в области II кривой [c.221]

    V — к. Скорость охрупчивания в жидких металлах большинства высокопрочных сплавов составляет 7 см/с. Эта скорость трещины слишком высока, чтобы за ней можно было следить визуально. Поэтому была использована специальная высокоскоростная камера слежения. Следует отметить также переход между областями II и I, где скорость роста трещины сильно зависит от К-При очень низких значениях К скорость роста трещины так сильно зависит от К, что фактически имеет смысл говорить о пороговом коэффициенте интенсивности напряжений Кюжгл, ниже которого рост трещин практически неизмерим. В табл. 7 приведены значения /Сюжм для многих высокопрочных алюминиевых сплавов, которые были охрупчены ртутью при комнатной температуре. Для сравнения приведена вязкость разрушения этих же сплавов в сухом воздухе (/ ie). [c.221]

    Как И в случае цинковых протекторов, для обеспечения максимальной эффективности алюминиевых протекторов необходим контроль за содержанием примесей в металле. Для получения нужных электрохимических свойств сплава А1—гп—8п требуется, кроме того, и тщательно контролируемая термообработка. Специальная обработка необходима и для протектора нз сплава А1—2п—Нд, что связано с высокой реакционной способностью ртути. Как показано на рис. 96, при 255-дневных испытаниях в морской воде выход тока для алюминиевых и цинковых протекторов был примерно одинаковым. Согласно Шрайберу и Редингу [130] сплав А1—Zп—Нд характеризуется не только высокой токоотда-чей, но также воспроизводимыми параметрами н стабильным потенциалом. Высокий коэффициент полезного использования сплава сохраняется в широком интервале плотностей тока защиты (рис. 97). [c.173]

    Однако было бы ошибкой считать, что хороитее совпадение данных для жидкой ртути при использовании модели гармонического осциллятора и уравнения Ми говорит о том, что и другие жидкие или кристаллические металл ,I можно рассматривать таким же образом. В табл. 11 приведены некоторые физико-хпмичес ие константы для трех металлов. Коэффициенты расширения вычислялись путем измерения удлинения металлических стержней, длина которых нри 289° К равнялась точно 1 м [20]. Сжимаемости и теплоемкости получены интерполяцией точных данных Грюнейзеиа [211 и Джиока [22]. [c.298]

    О>059,, г. где г=Ег, +— gaяs /мх,/х — соответствующие коэффициенты активности Кс — константа диссоциации комплексного иона сх — концентрация комплексообразующего вещества X на поверхности электрода кс и кд, — пропорциональны квадратным корням из коэффициентов диффузии комплексных ионов металлов и металла в амальгаме анд — активность ртути у поверхности капающего электрода. [c.19]

    Соединения ртути с 1,5-ди- -нафтил)тиокарбазоном обладают большей стабильностью по сравнению с дитизонатом ртути, большей чувствительностью реакции. Это соединение имеет красную окраску, величина максимума светопоглощения его приходится на 512 нм, молярный коэффициент погашения при этом равен 14-10 л1моль-см. Поэтому данный реагент может быть более предпочтителен, чем дитизон, для определения ртути и других тяжелых металлов [24]. [c.109]

    Растворямость элементов в твердой и жидкой ртути и коэффициенты диффузии металлов в ртути [c.188]

    Определение кобальта в виде комплекса с пиридин-2,6-дикарбоновой кислотой С5Нз (СООН)2 [813]. Ионы двухвалентного кобальта легко окисляются броматом калия в азотнокислой или сернокислой среде в присутствии пиридиндикарбоновой кислоты, образуя окрашенный в красный цвет анионный комплекс трехвалентного кобальта, в котором на один ион кобальта приходится две молекулы реагента. Комплекс имеет максимум поглощения при 514 ммк и молярный коэффициент погашения при этой длине волны, равный 672. Можно определять 2—100 мг мл Со. Комплекс устойчив по отношению к ионам двухвалентного олова и тиогликолевой кислоте это позволяет определять кобальт в присутствии трехвалентного марганца, который также образует окрашенный комплекс, но легко восстанавливается при действии указанных восстановителей. Не мешают катионы меди, железа и никеля, а также щелочноземельных металлов, алюминия, кадмия, ртути, галлия, индия, свинца, сурьмы, мышьяка, висмута, титана, циркония, цинка, ванадия, церия, тория, хрома, серебра, анионы перманганата, молибдата, вольфрамата, хромата. [c.145]

    Коэффициенты диффузии металлов в ртути можно рассчитать из величины анодного диффузионного тока, соответствующего электрохимическому растворению металлов из амальгамного капельного электрода. Для этой цели Фурман и Купер [82, 83] применили первоначальное уравнение Ильковича, а Штакельберг и Тооме [291 — уравнение, исправленное на сферическую диффузию. Некоторые значения коэффициентов диффузии металлов в ртути приведены в табл. 7. [c.98]

    Экстракция нитратов систематически исследуется В. М. Вдовенко с сотрудниками. Так, ими изучены коэффициенты распределения [65] нитратов многих элементов между 6%-пыми водными растворами азотной кислоты и диэтиловым эфиром в присутствии нитрата аммония (52%) или нитрата алюминия (26%). Для нитратов натрия, калия, меди, серебра, щелочноземельных металлов, цинка, кадмия, алюм1шия, галлия, хрома, марганца, железа, кобальта и никеля коэффициенты распределения составляют примерно 0,0001 в присутствии Ч14 0з и 0,0002 в присутствии А1( Оз)з. Значения О для нитратов лития, рубидия, ртути и свинца находятся в пределах 0,0001 — —0,0003. Для нитратов урана, тория и циркония значения /) соответственно равны 2,3 0,0034 и 0,001 с использованием в качестве высаливателя NH4NOз и 208 0,32 и 0,011 в присутствии Л1(К0з)з. [c.224]

    При отражении от поверхности металла, свободного от пленки, как обычно, применимы уравнения Френеля с комплексным показателем преломления. Амплитуда юлны света в металле затухает пропорционально множителю ехр (-2пкг/ Л), где г - координата, отсчитываемая в глубь металла Поскольку коэффициент поглощения к(п = п - 1к) для большинства металлов равен по крайней мере единице, волна должна почти полностью угасать не далее, чем на расстоянии Л, а обычно еще раньше [121]. Коэффициент отражения г можно представить через отношение амплитуд р и изменение фазы Д (г = р ехр Д), причем обе эти величины могут быть определены с большой точностью. Тронстад и Фичем [129] измерили параметры отражения от чистой поверхности чистой жидкой ртути в атмосфере N2 как функции угла падения (р (рис. 26,а). Егер и сотр. [126] показали, что изменение потенциала золотого электрода вызывает значительное изменение отражения в той области, где нет поверхностных пленок (рис. 26,5), так что проникновением межфазного поля в металл прнебрегать нельзя (ср. [121]). [c.452]

    Работы Бродского по влиянию растворителя на э. д. с. элементов явились дальнейшим развитием исследований Л. В. Писаржевского, посвященных изучению природы электродных процессов. Еще до Бродского влияние растворителей на величину нормального потенциала исследовал Н. А. Из-гарышев (1912)- Он установил значительное влияние растворителей (спиртов) на потенциалы металлов (медь, ртуть, серебро) и металлоидов. В последнее время В. А. Плесков определил нормальные потенциалы металлов и галоидов в таких растворителях, как аммиак, гидразин н муравьиная кислота. Он установил, что нормальные потенциалы сильно зависят от растворителя. В некоторых случаях растворители даже изменяют порядок элементов в ряду напряжения. Н. А. Измайлов с сотрудниками исследовал влияние растворителей на э. д. с. цепей без переноса и показал, как зависят э. д. с. и единые нулевые коэффициенты активности То от химических и физических свойств растворителей. [c.51]

    В методах второй категории сложности, когда одноступенчатое разделение оказывается недостаточно селективным или неколичественным, первую фазу повторно контактируют со свежей порцией второй фазы. Такая повторная обработка применяется в тех случаях, когда один из разделяемых компонентов количественно остается в одной фазе, в то время как другой компонент распределяется между обеими фазами. Так, при реакции осаждения степень соосаждения обычно можно умень-щить путем растворения осадка в чистом растворителе и повторения процесса. Аналогичным образом если при экстракционном разделении один из компонентов количественно остается в одной из фаз, например водной, а второй распределяется между обеими фазами, то целесообразно повторение экстракционного процесса. Обычным примером тому является хорошо известный экстрактор Сокслета. Другой иллюстрацией того же принципа может служить использование в качестве катода свежей порции ртути при электролитическом разделении металлов при контролируемом потенциале и использование ионообменной колонки для количественного извлечения ионов из раствора. В разделе 25-2 при описании исчерпывающей экстракции изла-гается теория многоступенчатой экстракции с конечным числом порций свежего растворителя. Та же самая концепция применима и к другим примерам разделения этого типа, если предположить, что на каждой ступени устанавливается равновесие с постоянным значением коэффициента распределения. [c.515]

    По этой формуле для галлия, кадмия, свинца, меди, сурьмы, цинка, висмута, олова и индия в некоторых наиболее употребляемых в полярографической практике электролитах нами были определены значения К1, приведенные в таблице (таблица) [1, 2]. В таблице указаны также значения ширины полузубца (б, мв) и коэффициента диффузии атомов металла в ртути (О )- [c.152]


Смотреть страницы где упоминается термин Коэффициент металла в ртути: [c.355]    [c.581]    [c.179]    [c.333]    [c.159]    [c.85]    [c.552]    [c.388]   
Теоретические основы электрохимического анализа (1974) -- [ c.187 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузии коэффициент металлов в ртути

Металлы ртуть



© 2025 chem21.info Реклама на сайте