Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эмульсии жидких металлов

    При наличии в водных растворах эмульгаторов (жидкое стекло, ОП-7 или ОП-10) животные жиры омыляются, образуя растворимые мыла, а остатки минеральных масел эмульгируют. Жидкое стекло способствует также уменьшению агрессивного воздействия раствора на алюминий. Образование эмульсии и перемешивание растворов ускоряет отделение частиц жира от поверхности металла. [c.211]


    Полимеризация в эмульсии. Это наиболее распространенный промышленный способ получения полимеров. Полимеризацию проводят в жидкой среде (чаще всего в воде), не растворяющей ни мономер, ни полимер. Для стабилизации эмульсии, используют мыла (олеаты, пальмитаты, натриевые соли ароматических и высокомолекулярных жирных кислот), а также поливиниловый спирт, карбоксиметилцеллюлозу и некоторые другие вещества. Этот тип полимеризации обычно инициируют водорастворимыми низкотемпературными инициаторами. Наряду с ними в систему вводят регуляторы — буферные вещества (гидрокарбонаты, фосфаты, ацетаты щелочных металлов) —для поддержания постоянного значения pH среды. При эмульсионной полимеризации продукт образуется в виде мелких гранул. Преимущество этого способа — легкость отвода теплоты и получение продукта с высокой молекулярной массой. Недостаток — необходимость отмывания полимера от стабилизатора. [c.263]

    Эмульсии второго рода обозначают соответственно через в/м. В особый класс выделяют эмульсии жидких металлов (ртути, галлия) в воде, поскольку в этом случае и дисперсная фаза, и дисперсионная среда ведут себя как полярные жидкости. [c.369]

    Наиболее старый и традиционный способ полировки и выравнивания металлов — механический. Для обработки небольших предметов их помещают в барабаны, которые вращаются вместе с абразивами. Шлифовальные или полировальные круги, состоящие из скрепленных вместе слоев ткани, обычно используют для больших металлических листов. По мере вращения диска его опрыскивают жидкой абразивной эмульсией или наносят твердый абразив. [c.415]

    Кислород и перекиси металлов, способные выделять кислород, обладают антисептическим, дезинфицирующим и дезодорирующим действием с этой целью их применяют в медицине. К кислородным соединениям относится и вода, широко используемая для приготовления растворов, микстур, настоев, отваров, эмульсий и других, т. е. жидких лекарственных форм. [c.17]

    Основные стадии кумольного метода — окисление кумола в гидропероксид и кислотное разложение гидропероксида. Окисление проводят двумя способами 1) в водно-щелочной эмульсии при 130 °С и давлении 0,5—1 МПа кислородом воздуха до конверсии 25 % 2) в жидкой фазе при 120 °С кислородом воздуха в присутствии катализатора — меди (в виде насадки) или солей металлов переменной валентности (нафтенаты, резинаты). [c.257]

    Согласно определению понятие раствора охватывает любые агрегатные состояния системы —жидкие,—газообразные и твер-дые. Примерами растворов являются нефть и нефтепродукты, естественный нефтяной газ и воздух, жидкие и твердые сплавы металлов и расплавленные смеси силикатов. Основной характеристикой раствора является совершенно равномерное распределение составляющих его вешеств друг в друге. В этом смысле необходимо отличать растворы от химических соединений и простых смесей. Химические соединения состоят из молекул одного лишь вида и с точки зрения правила фаз являются однокомпонентными системами, не подходящими под определение понятия раствора. В растворе же число составляющих веществ может быть любым, ибо молекулы их в растворе сохраняются химически неизменными. От простых смесей растворы отличаются совершенно равномерным распределением молекул компонентов по всему объему фазы, тогда как жидкие смеси, называемые суспензиями, эмульсиями или коллоидными растворами, являются системами из двух или большего числа фаз, перемешанных с различной степенью дисперсности. [c.67]


    Шарообразные частицы могут образоваться из жидкого и газообразного вещества. Из твердого вещества они образуются лишь в случае, если в твердом теле нет определенной ориентировки молекул (аморфное состояние). Частицы шарообразной формы имеются у эмульсий (масел, углеводородов), у мелких пузырьков га зов , в суспензиях смол (гуммигут), иногда у частиц металлов, окисей или гидратов. В остальных случаях твердые первичные частицы имеют более или менее кристаллическое [c.81]

    Все 3. делятся на две большие группы — лиофобные и лиофильные 3. Лиофобные 3., в частности гидрофобные (напр., гидрозоли металлов платины, золота, серебра, сульфидов), являются термодинамически неравновесными, агрегативно неустойчивыми дисперсными системами, способными к агрегации диспергированных частиц — коагуляции. Такие 3. поэтому ие могут быть получены в концентрированном виде и коагулируют при введении малых добавок электролитов, при повышении темп-ры и т. д. В отличие от них, в лиофильных 3. (3. мыл, красителей), дисперсная фаза к-рых обладает на границе с дисперсионной средой весьма малой удельной поверхностной энергией, частицы сильно сольватированы средой. Такие 3. агрегативно устойчивы и термодинамически равновесны. К лиофильным 3. примыкают самопроизвольно образующиеся, а потому предельно высокодисперсные, эмульсии, включая и критич. эмульсии и туманы, возникающие вблизи критич. темп-ры смешения двух жидких фаз или жидкости и пара. Раньше лиофильными 3. считали также растворы высокомолекулярных соединений. [c.55]

    Нефть — более тяжелая жидкость, чем конденсат, и содержит значительно больше масел, парафинов и других высокомолекулярных соединений. Многие нефти более чем на 99 % состоят из углеводородов, наиболее широко из которых представлены углеводороды парафинового и нафтенового рядов. В нефтях также имеются в небольших количествах другие классы органических соединений — кислородные, сернистые, асфальтосмолистые и др. Большинство сернистых и кислородсодержащих соединений являются поверхностно-активными соединениями. Они агрессивны по отношению к металлу и вызывают сильную коррозию. Обычной примесью в нефти является пластовая минерализованная вода, которая вызывает значительные осложнения при сборе и транспорте нефти. Отрицательное качество пластовой воды — ее способность образовывать водо-нефтяпые эмульсии, которые осложняют движение нефтяных систем по трубопроводам (скопление воды в изгибах и замерзание, приводящее к разрыву трубопроводов), а также подготовку и переработку нефти. Поверхностно-активные вещества способствуют образованию эмульсий и поэтому называются эмульгаторами. Присутствие в нефти поверхностно-активных веществ облегчает образование эмульсий и повышает их устойчивость (свойство сохранять эмульсию в течение длите.тьного времени). В нефти содержатся также низкомолекулярные компоненты, которыми особо богата легкая нефть. Эти компоненты могут находиться как в жидкой, так и в газовой фазах. Изменение давления и температуры в процессе движения нефти по цепочке пласт — скважина — система сбора и подготовки — магистральный трубопровод приводит к интенсивному выделению из нефти легких компонент, в результате чего повышается газовый фактор (объем газа в единице объема нефтяной смеси, м /м ). Наличие свободного газа в нефти (нефтяной газ) также вызывает осложнения при добыче, сборе, подготовке и транспортировке нефти. Иногда наблюдается прорыв газа в продуктивные скважины из газовой шапки пласта или из газосодержащих горизонтов, что приводит к увеличению газового фактора добываемой нефти. [c.9]

    Для характеристики эмульгатора весьма существенно его отношение к обеим жидкостям, образующим эмульсию. Вещества, растворимые в воде и нерастворимые в другой жидкой фазе, являются хорошими эмульгаторами дл эмульсий типа масло в воде . Примером такого эмульгатора может служить олеат натрия или другие мыла щелочных металлов. Олеат натрия хорошо растворим в воде и слабо растворим в неполярных жидкостях. И наоборот, вещества, хорошо растворимые в неполярной фазе и мало растворимые в воде, эмульгируют воду в масле. Эмульгаторами для системы типа вода в масле являются мыла металлов Са, 7п, А1, М , Ре, Сг и других, которые плохо растворимы [c.300]

    Для объяснения рассмотренных выше фактов существует несколько моделей, позволяющих в упрощенной форме получить представления о механизме влияния эмульгаторов на тип получаемой эмульсии [14]. Так, Банкрофт (1913) выдвинул представление о бислойности пленки ПАВ, разделяющей две жидкие фазы, с различными значениями поверхностного натяжения на двух ее сторонах. Для ПАВ, хорошо взаимодействующих с водой, например для мыл щелочных металлов, значение со стороны воды снижается и пленка сворачивается в сторону большей стягивающей силы, замыкая в себе калю масла. Гаркинс (1929) предложил модель клиньев , считая, что сольватация расширяет одну из частей дифильной молекулы ПАВ, сообщая ей форму клина. Капелька возникает путем ориентации клиньев основаниями наружу, наподобие лепестков ромашки. [c.22]

    Проведенные в 1976 г. сотрудниками ВНИИСПТнефти исследования показали, что ПАВ, обычно рекомендуемые в качестве эмульгаторов и стабилизаторов маловязких нефтяных эмульсий, не обеспечивают гидрофильность металлической поверхности. Причинами этого являются мономолекулярный характер адсорбции ионогенных ПАВ с ориентацией молекул углеводородными концами в наружную сторону от металла и отсутствие адсорбции неионогенных ПАВ. Поэтому указанные ионогенные ПАВ рекомендуется применять в трубопроводном транспорте нефти с водой только с добавками, улучшающими избирательное смачивание внутренней поверхности трубы со стороны водной фазы (типа силиката натрия, жидкого стекла, гексаметафосфата и триполифосфата натрия, полиакриламида, солей карбоксилметилцеллюлозы и др.). [c.114]


    Электрохимическое обезжиривание основано на электрокапиллярных явлениях. Кабанов показал, что при погружении металла, покрытого маслом, Б некоторые щелочные растворы происходит разрыв сплошной пленки масла и вследствие изменения поверхностного натяжения и увеличения смачивания поверхности металла растворо л—собирание маслз в отдельные капельки, которые всплывают и дают с раствором эмульсию. Такому удалению масла с поверхности и эмульгированию его способствуют добавки поверхностно-активных веществ, так называемых эмульгаторов (жидкое стекло, мыло, желатина, клей, а также полиэтилен гликолевые эфиры под марками ОП-7и ОП-10, КонтактПетрова и др.) (см. 34, 17 ). Если же на металл, покрытый маслом, наложить электродный потенциал, краевые углы капель, образовавшихся на поверхности при погружении в щелочной раствор, уменьшаются пузырьки газа, выделяющиеся на электроде, захватывают капли и поднимают их на поверхность раствора. Полезно перемешивать электролит и повышать температуру до 60—80°С. Применяют плотности тока 3—10 а/дм (при обезжиривании ленты или проволоки до 50 а/дм ) напряжение 6—10 в, продолжительность 5—10 мин. Вторые электроды — никелированная сталь, просто сталь или даже корпус ванны. Растворы аналогичны указанным выше, примерно вдвое слабее. После обезжиривания — тщательная промывка. Электрохимическое обезжиривание бывает чаще катодным, иногда анодным, иногда комбинированным, т. е. с кратковременным переключением на анод. Основным преимуществом электрохимического обезжиривания является скорость и управляемость процесса, основным недостатком катодного способа — наводороживание металлов на катоде и ухудшение их механических свойств от этого. [c.341]

    Образование эмульсий связано с изменением поверхностного натяжения на границе раздела металла, масла и щелочного раствора. Поверхностное натяжение мыльных растворов снижается до 30—40 эрг см (для чистой воды оно составляет 73 эрг см ). По этой причине при погружении металлического изделия в щелочной раствор сплошная пленка масла на нем разрывается, и происходит собирание масла в отдельные капли. Последние при определенных условиях отрываются от металла и образуют эмульсию. Для облегчения эмульгирования к щелочному раствору добавляют поверхностно-активные вещества или эйульгаторы. В качестве эмульгаторов используются жидкое стекло, мыло, контакт Петрова , добавки ОП-7 или ОП-10 (полиэтилепгликолевый эфир) и др. [c.163]

    Образующиеся глицерин и соли карбоновых кислот растворяются в воде при повышенной температуре. Минеральные масла не растворяются в щелочных средах, однако они способны образовывать водные эмульсии в присутствии специальных веществ — эмульгаторов, понижающих поверхностное натяжение на границе масло — раствор, что облегчает отрыв масляной пленки от основного металла. В качестве эмульгаторов применяют мыло, жидкое стекло НааЗЮз, органические смачивающие поверхностно-активные вещества сиитанол ДС, сульфанол НП-3 и др. [c.276]

    Твердьпии Т.п. являются оксидные пленки иа пов-сти металлов и искусственные пленочные покрытия, формируемые на разл. материалах с целью создания приборов микроэлектроники, предотвращения коррозии, улучшения внеш. вида и т, п. Жидкие Т. п. разделяют газообразную дисперсную фазу в пенах и жидкие фазы в эмульси.чх образование устойчивых пен и эмульсий возможно только при наличии ПАВ в составе Т.п. Жидкие Т.п. могут возникать самопроизвольно между зернами в поликристаллич. твердых телах, если поверхностная энергия границы зерна превышает поверхностное натяжение на гратще твердой и жидкой фаз более чем вдвое (условие Гиббса-Смита). Газообразные Т.п. с заметным временем жизни могут возникнуть мeждJ каплей и объемной жидкостью в условиях испарения. [c.607]

    Коллоидные системы, дисперсные системы с частицами дисперсной фазы от 10 до 10 см. Коллоидные частицы, участвуя в интенсивном броуновском двих<ении, противостоят седиментации (оседание частиц на дно) в поле сил земного тяготения и сохраняют равномерное распределение по объему дисперсионной среды. Наиболее важны и многообразны коллоидные системы с жидкой дисперсионной средой. Их делят на лиофильные и лиофобные. В первых частицы дисперсной фазы интенсивно взаимодействуют с окружающей жидкостью, поверхностное натяжение на границе фаз очень мало, вследствие чего эти коллоидные системы термодинамически устойчивы. К лиофильным коллоидным системам относят мицеллярные (мицелла - коллоидная частица), растворы ПАВ (поверхностно активные вещества), растворы некоторых высокомолекулярных веществ, органических пигментов и красителей, критических эмульсий (образующиеся вблизи критической температуры смешения двух жидких фаз), а также водные дисперсии некоторых минералов. В лиофобных коллоидных системах частицы слабо взаимодействуют с дисперсионной средой, межфазное натяжение довольно велико, система обладает значительным избытком свободной энергии и термодинамически неустойчива. Агрегативная устойчивость лиофобных коллоидных систем обычно обеспечивается присутствием в системе стабилизирующего вещества, которое адсорбируется на коллоидных частицах, препятствуя их сближению и соединению (коагуляции - образованию агрегатов). Типичные лиофобные коллоидные системы - золи металлов, оксидов и сульфидов, латексы (водные дисперсии синтетических полимеров), а также гели (структурированные коллоидные системы с жидкой дисперсионной средой), возникающие при коагуляции и структурировании золей. [c.116]

    Очистку поверхностей от жиров растительного или животного про-исхоадения и восков проводят растворами щелочей. Минеральные масла в щелочах не растворяются, но в присутствии эмульгаторов (ПАВ, жидкое стекло Ыа2 810з и т.д.) они могут образовьшать водные эмульсии. Щелочные растворы для обезжиривания изделий из черных металлов имеют следуюнщй состав, г/л  [c.160]

    ПТФЭ (тефлон) не термопластичен, может применяться при температурах от —200 до -Ь275°С. Даже при повышенных температурах он устойчив к Действию всех агрессивных газов и жидкостей, за исключением расплавленных щелочных металлов, жидкого аммиака и свободного фтора. Тефлон не подвержен набуханию, он не хрупок и не горюч, но выше 400°С претерпевает деполимеризацию. В продажу он поступает в виде полуфабрикатов (пластины, трубки, шланги, прутки, фольга) или эмульсии, наносимой путем разбрызгивания, а также (с добавками) в виде затвердевающей пасты. Тефлон легко поддается токарной обработке, его можно резать и сверлить. Перед склеиванием тефлона поверхности деталей необходимо предварительно придать шероховатость. [c.39]

    КОЛЛОИДНЫЕ МЕЛЬНИЦЫ, см. Диспергирование. КОЛЛОИДНЫЕ РАСТВОРЫ, то же, что золи. КОЛЛОИДНЫЕ СИСТЕМЫ, Дисперсные системы с частицами дисперсной фазы от 10 до 10 см. Коллоидные частицы, участвуя в интенсивном броуновском движении, противостоят седиментаций в поле сил земного тяготения и сохраняют равномерное распределение по объему дисперсионной среды. Наиб, важны и многообразны К. с. с жидкой дисперсионной средой. Их делят ва лиофильные и лио-фобные. В первых частицы дисперсной фазы интенсивно взаимод. с окружающей жидк., поверхностное натяжение на границе фаз очень мало, вследствие чего зти К. с. термодинамически устойчивы. К лиофильным К. с. относятся мицеллярные р-ры ПАВ, р-ры нек-рых высокомол. в-в, орг. пигментов и красителей, критич. эмульсии, а также водные дисперсии нек-рых минералов. В лиофобных К. с. частицы слабо взаимод. с дисперсионной средой, межфазное натяжение довольно велико, сист. обладает значит, избытком своб. энергии н термодинамически неустойчива. Агрегативная устойчивость лиофобных К. с. сюычно обеспечивается присут. в сист. стабилизирующего в-ва, к-рое адсорбируется на коллоидных частицах, препятствуя их сближению и соединению. Типичные лиофобные К. с.— золи металлов, оксидов и сульфидов, латексы, а также гели, возникающие при коагуляции и структурировании золей. КОЛОРИМЕТРИЯ, см. Фотометрический аналпз. КОЛХИЦИНОВЫЕ АЛКАЛОИДЫ (трополоновые алкалоиды), выделены из нек-рых родов растений сем. лилейных (иНасеае). Включают ок, 30 представителей. [c.267]

    КРАСКИ, однородные суспензии пигментов в пленкообразующих в-вах. Могут содержать наполнители, р-рители, пластификаторы, сиккативы, отвердители и др. Образуют непрозрачные покрытия. Основой масляных красок служат олифы, эмалевых (см. Эмали) — лаки, клеевых красок — водные р-ры нек-рых полимеров, силикатных красок — жидкое стекло, эмульсионных красок — латексы синт. поли--черов (иногда эти К. наз. латексными), водные эмульсии алкидных смол и др. Особый вид К.— порошковые краски. Получ. смешение пигмента с пленкообразующим в смесителе, дезагрегация ( перетир ) смеси на валковой машине и разбавление густотертой К. в гомогенизаторе до рабочей вязкости или одностадийное диспергирование пигмента в пленкообразующем в шаровой или бисерной мельнице очистка готовой К. центрифугированием. Наиб, важные показатели К. степень перетира, цвет, укрывистость (способность перекрывать цвет подложки), содержание сухого остатка, скорость высыхания (отверждения). Примен. для отделки металла, дерева, пластмасс, бетона, в полиграфии и др. О методах нанесения см. Лакокрасочные покрытия. КРАСУСКОГО ПРАВИЛО эпоксидный цикл разрывается преим. по связи между атомом кислорода и менее замещенным углеродньич атомом  [c.281]

    Способы приготовления гидроперекисей и перекисей подробно изучены Хоукинсом [3]. Промышленное получение гидроперекиси кумола и ее дальнейшее использование в реакциях дают некоторые интересные примеры каталитических реакций. Кумол получается из пропилена и бензола в жидкой или паровой фазе в качестве катализатора используются кислоты или катализаторы Фриделя — Крафтса, нанример ВРз. Окисление кумола ведется в эмульсии или в растворе при температуре около 90° в присутствии солей металлов или слабых щелочей при малых степенях превращения для уменьшения разложения продукта. Помимо того что гидроперекись кумола используется в качестве катализатора полимеризации, она [c.462]

    Поскольку процессы окисления компонентов топлив сложны и многостадийны, их изучение представляет значительные трудности. Развитие процессов окисления сопряжено с образованием в топливе выпадающих из раствора жидкой (смолы) и твердой (осадки) фаз. Менее глубокие процессы могут ограничиваться образованием кислородсодержащих мономеров, достаточно хорошо растворяющихся в углеводородной среде топлива. Важен и состав продуктов окисления. Среди них могут быть коррозионноагрессивные соединения (кислоты, особенно низкомолекулярные), нейтральные или да>г пассивирующие, образующие на поверхности металлов защитные пленки. После достижения известной концентрации растворимые в топливе кислородные соединения будут способствовать образованию с водой прочных, неразрушаю-щихся в течение длительного времени эмульсий. Большинство этих явлений приведет в условиях эксплуатации топлив к большим или меньшим нарушениям в работе двигателя и его топливной системы. Термическая стабильность топлив характеризуется температурным барьером, за пределами которого скорость и глубина процессов окисления возрастают в недопустимой мере. [c.245]

    В качестве добавок, улучшающих гидроизоляционные свойства цементных растворов, применяются хлориды металлов, синтетические латексы, нитрит натрия, винилацетат, азотнокислый кальций, алюминат натрия, жидкое стекло натриевое, цёрезит, полиамидная смола, олигомер ТЭГ-17, битумные эмульсии и др. Добавки вводятся в цементный раствор в процессе его приготовления. Количество хлорного железа, необходимое на один замес в зависимости от плотного раствора, приведено ниже  [c.409]

    Получение. Атактич. П. получают радикальной полимеризацией в массе, эмульсии и суспензии, реже— в р-ре. Полимеризация в массе — основной производственный способ получения листовых материалов, особенно из метилметакрилата (см. Метилметакрилата полимеры. Органическое стекло). Для инициирования полимеризации широко используют перекиси, азосоединения, а также УФ- и у-облучение. Анионной полимеризацией в присутствии в основном металлоор-ганич. катализаторов в неполярных растворителях, щелочных металлов в жидком аммиаке, комплексов ароматич. углеводородов с щелочными металлами или др. получают изотактич. П. в присутствии металлоорганических катализаторов в полярных средах или каталитической системы А1(С2Н5)з — Т1С14 в толуольных р-рах при темп-рах ниже О °С — синдиотактические полпмеры. [c.91]

    Получена пресскомпозиция из мочевиноформальдегидной смолы и продукта конденсации эпихлоргидрина с соединениями общей формулы НЮ(СН2)п 1тОК, где К —метил или этил п = 2—6 т = 1 —6 [1579]. Приведен рецепт изготовления битумной эмульсии на оскове полиэтиленоксида и асфальта [1603]. Описано изготовление покрытий из эпоксидной смолы [1604] Для получения лаков из этиленоксидной смолы [1605] последнюю растворяют в смеси растворителей, состоящей, например, из ксилола, диацетонового спирта и ксиленола, и добавляют—50% от веса этиленоксидной смолы отверждаемой фенольной смолы Провода, покрытые этим лаком, обладают хо юшими механи ческими свойствами и исключительной диэлектрической прочностью. Бернхард [1606] привел данные о технологии литья эпоксидных смол. Эпоксидные смолы размягчаются при 50— 60° и переходят в жидкое состояние при 120—130°. Плавление эпоксидных смол производят при 130—140°. На 10 ч. эпоксидной смолы прибавляют 3 ч. отвердителя, после растворения которого эпоксидную смолу отливают в формы из различных металлов при 125—130°. Отверждение должно происходить без выделения летучих температура отверждения составляет 100—200° усадка при охлаждении составляет 0,5—2,3%. Эпоксидные смолы для литья применяют в чистом виде и с наполнителями (до 250% от веса смолы) кварцем, тальком, графитом. [c.53]

    Минеральные масла не растворяются в щелочных средах, однако они способны образовывать водные эмульсии в присутствии специальных веществ — эмульгаторов, понижающих поверхностное натяжение на границе масло — раствор, что облегчает отрыв масляной пленки от основного металла. В качестве таких эмульгаторов применяют жидкое стекло НагЗЮз, органические смачивающие поверхностно-активные вещества—синтанол ДС, сульфанол НП-3 и др. При погружении деталей в горячий щелочной раствор жировая пленка разрывается и образуются капли масла, которые под действием эмульгаторов, теплового движения жидкости, при перемешивании отрываются от металла и переходят в состояние эмульсии. Моющее действие ПАВ сводится [c.134]

    Основы немецкой классификации изложены в книге Gruppeneinteilung der Patentklassen , 4-е издание (1928 г.) которого имеется в русском переводе. В 1958 г. вышло 7-е издание этого труда. Немецкая классификация патентов аналогична принятой в Советском Союзе. Химические патенты относятся в основном к классу 12 Химические способы и аппараты, поскольку они не вошли в другие классы . Класс 12 разделяется в свою очередь на 18 подклассов 12а — Способы кипячения и оборудование для выпаривания, концентрирования и перегонки в химической промышленности 12Ь — Кальцинирование, плавление 12с — Растворение, кристаллизация, выпаривание жидких веществ 12d — Осветление, выделение осадков, фильтрование жидкостей и жидких смесей 12е — Адсорбция, очистка и разделение газов и паров, смешение твердых и жидких веществ, а также газов и паров друг с другом и с жидкостями 12f — Сифоны, сосуды, затворы для кислот, предохранительные устройства 12g — Общие технологические методы химической промышленности и соответствующая аппаратура 12h — Общие электрохимические способы и аппаратура 121 —Металлоиды и их соединения, кроме перечисленных в 12к 12к— Аммиак, циан и их соединения 121 — Соединения щелочных металлов 12т — Соединения щелочноземельных металлов 12п — Соединения тяжелых металлов 12о — Углеводороды, спирты, альдегиды, кетоны, органические сернистые соединения, гидрированные соединения, карбоновые кислоты, амиды карбоновых кислот, мочевина и прочие соединения 12р— Азотсодержащие циклические соединения и азотсодержащие соединения неизвестного строения 12q — Амины, фенолы, нафтолы, аминофенолы, аминонафтолы, аминоантраце-ны, оксиантрацены, кислородо-, серо- и селеносодержащие циклические соединения 12г — Переработка смол и смоляных фракций из твердых топлив, например сырого бензола и дегтя добывание древесного уксуса, экстракция угля, торфа и пр. добывание и очистка горного воска 12s — Получение дисперсий, эмульсий, суспензий, т. е. распределение любых химических веществ в любой среде, использование химических продуктов или их смесей как диспергирующих или стабилизирующих средств. Многие подклассы в свою очередь делятся на группы и подгруппы. [c.89]

    КОАЛЕСЦЕНЦИЯ — слияние капель жидкости в газовой среде (туманы) или в другой жидкости (эмульсии) илп пузырьков газа (нара) в жидкости под влиянием молекулярных сил, проявляющихся в поверхностной энергии. К. — самопроизвольный процесс, сопровождающийся при постоянной темн-ре понижением свободной поверхностной энергии на величину, нронорциональную убыли поверхности. Т. обр., К. — предельный случай процесса коагу.гя-ции, характерный для дисперсных систем с жидкими, т, е, легкоподвижными поверхностями раздела (туманы, пены, эмульсии). В случае твердых дисперсных систем — концентрированных суспензий (осадков), мелкозернистых твердых тел (металлов и сплавов) — процессы собирательной рекристаллизации аналогичны К. и состоят в объединении соседних кристалликов в один кристалл в результате тепловой подвижности атомов (молекул) с исчезновением поверхностей раздела. [c.305]

    Недостатком котла является большой расход металла на его изготовление. Так, например, котел мощностью 124 jiem (производительность около 100 ООО ккал1ч) весит (без нагревательных элементов) около 1620 кг удельный расход металла 16,2 кг ка каждые вырабатываемые 1000 ккал тепла. Другим существенным недостатком этих котлов является горизонтальное положение нагревательных элементов, что не всегда обеспечивает надежную скорость циркулирующей паро-жидкостной эмульсии в межтрубном пространстве нагревательного пакета. Это обстоятельство способствует прилипанию пузырьков пара к нижней (лобовой) поверхности нагревательных трубок, что может вызвать чрезмерное повышение температуры стенки нагревательного элемента и в конечном счете его пережог. Что же касается жидкостного котла этой конструкции, то гидродинамическая сторона его также имеет недостатки. Дело в том, что при диаметре котла, равном 1200 мм (фиг. 54), сечение для прохода жидкости в нем настолько велико, что скорость ее в котле практически равна нулю. Так что процесс нагревания жидкой дифенильной смеси в котле, несмотря на принудительную циркуляцию ее, практически протекает при свободной конвекции жидкости. Это обстоятельство значительно снижает теплотехнические показатели котла. При конструировании котлов с органическими теплоносителями нужно 78 [c.78]

    Удаление минеральных (неомыляемых) жиров, например смазочных масел, основано на их способности образовывать при воздействии щелочи мелкодисперсные эмульсии. При этом происходит разрыв сплошной пленки масла, частички жира собираются в капельки и, отделяясь от поверхности детали, остаются в растворе во взвешенном состоянии. Процесс разрушения сплошной пленки минерального масла и образования эмульсии облегчается при наличии в обезжирива ощем растворе специальных поверхностноактивных веществ — эмульгаторов. Эмульгаторами служат жидкое стекло, декстрин, канифоль, мыло, препараты ОП-7, ОП-10 и другие вещества. Добавление этих поверхностноактивных веществ даже в очень небольшом количестве увеличивает скорость обезжиривания в несколько раз. Обычная доза эмульгатора в щелочном обезжиривающем растворе составляет от 1 до 5 г/л. Наряду с эмульгаторами в обезжиривающие растворы вводятся соли щелочных металлов, которые, подвергаясь гидролизу, компенсируют расход щелочи в процессе обезжиривания. В ванну обычно добавляются кальцинированная сода, тринатрийфосфат, поташ и другие вещества. [c.65]


Смотреть страницы где упоминается термин Эмульсии жидких металлов: [c.112]    [c.281]    [c.408]    [c.460]    [c.89]    [c.129]    [c.286]    [c.352]    [c.93]    [c.518]    [c.515]    [c.198]    [c.42]    [c.259]    [c.508]    [c.250]   
Курс коллоидной химии (1976) -- [ c.369 ]




ПОИСК





Смотрите так же термины и статьи:

Жидкая эмульсия



© 2025 chem21.info Реклама на сайте