Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Детекторы в газовой хроматографии пламенно-ионизационный ПИД

    Газовый хроматографе пламенно-ионизационным детектором. [c.185]

    Типы данных, с которыми чаще всего приходится иметь дело в аналитической химии, делятся на два обширных класса а) цифровые, т. е. дискретно квантованные значения, например pH раствора, в определенный момент времени, константа скорости обратной реакции или радиоактивность соединения, меченного радиоактивным углеродом или тритием на определенной стадии его распада, и б) аналоговые, или непрерывно меняющиеся значения, например поглощение образца как функция длины волны в ИК- или УФ-спектре или изменение силы тока в пламенно-ионизационном детекторе газового хроматографа. [c.210]


    Хроматограф аналитический газовый с пламенно-ионизационным детектором. [c.104]

    В наибольшей степени удовлетворяет всем требованиям капиллярной хроматографии пламенно-ионизационный детектор [77]. Изобретение его совпало по времени с открытием капиллярной хроматографии — первые сообщения об этих исключительно важных достижениях появились в 1958 г. Начиная с этого времени свойства и характеристики пламенно-ионизационного детектора интенсивно изучались, и в настоящее время данные о нем суммированы во многих статьях, обзорах и пособиях [73—79]. Чувствительность пламенно-ионизационного детектора составляет 10 —10 г сек. Газовый объем детектора включает объем самого пламени ( 3—5 мкл) и объем подводящей коммуникации, который в хорошо выполненном детекторе не превышает 10—15 мкл. Процессы ионизации в пламени протекают столь быстро, что постоянная времени детектора, определяемая этими процессами, не превышает нескольких миллисекунд. Таким образом, по чувствительности, величине собственного объема и быстродействию пламенно-ионизационный детектор в полной мере удовлетворяет требованиям капиллярной хроматографии. Конструкция детектора весьма проста, и это определяет его невысокую стоимость. Один из ранних вариантов конструктивного оформления детектора показан на рис. 63. Линейность характеристики пламенно-ионизационного детектора очень высока, а диапазон концентраций, в котором сохраняется прямая пропорциональность между количеством вещества и током детектора, достигает няти-шести порядков. [c.145]

    Далее, сверхкритическая флюидная хроматография позволяет использовать большее число различных детекторов, включая предназначенные преимущественно как для жидкостной хроматографии (УФ-детектор, флуориметр), так и для газовой хроматографии (пламенно-ионизационный, масс-спектрометр). Кроме того, капиллярная сверхкритическая флюидная хроматография в отличие от капиллярной жидкостной хроматографии, по-видимому, хорошо соотносится с возможностями современной технологии. [c.130]

    Основное преимущество газовой хроматографии перед жидкофазной в следующем благодаря во много раз большей скорости диффузии молекул разделяемых компонентов в газовой фазе и соответственно большей скорости сорбции и десорбции можно значительно ускорить продвижение проявителя и тем самым ускорить процесс разделения. Так, анализ пятикомпонентной смеси летучих углеводородов, спиртов, жирных кислот, эфиров и т. д. на газовом хроматографе с высокочувствительным детектором (например, с пламенно-ионизационным) может быть проведен за пять минут. Методами же жидкофазной хроматографии для этого потребуется значительно больше времени, несмотря на достигнутые успехи в ускорении процесса разделения этим методом. [c.23]


    Наиболее часто в практике газовой хроматографии используется ионизационно-пламенный детектор в последнее время получили распространение детекторы электронного захвата, пламеннофотометрический и термоионный. [c.52]

    Анализ следов веществ методом газовой хроматографии с программированием температуры. Одновременное определение остатков гербицидов монурона и диурона. (Т-ра 75—212° НФ апьезон L на хромосорбе W детектор катарометр или пламенно-ионизационный.) [c.109]

    Анализ осуществляли на газовом хроматографе со стеклянной колонкой н стеклянным вводом. Детектор — пламенно-ионизационный. Колонку заполняли апиезоном К (20%) на кизельгуре. Скорость газа-носителя (азота) [c.189]

    Схема работы с капиллярной колонкой и пламенно-ионизационным детектором хроматографа Цвет-1-64 показана на рис. 36. В этом случае хроматограф действует следующим образом. Газ-носитель азот с панели подготовки газов (ППГ) течет с заданной скоростью в испаритель пробы. Затем он разделяется в тройнике. Часть потока поступает в капиллярную колонку, а другая часть — во сто крат большая доля — направляется через боковой и-образный капилляр в атмосферу. Тройник, капиллярная колонка и и-образный капилляр с подобранным газовым сопротивлением очерчены на рисунке пунктиром. Они составляют систему, называемую делителем потока. [c.80]

    Дзержинский ОКБА выпускает малогабаритный переносной хроматограф IIM-4, предназначенный для качес пенного и количественного анализа органических и неорганических примесей н газовых смесях Хроматограф может применяться для определения утечки газов из газопроводов, технологического оборудования, а также а экспедициях и поисковых партиях. Все узлы хроматографа выполнены облегченными и малогабаритными. Температура термостата колонок. )0—200°С. Хроматограф снабжен пламенно-ионизационным детектором и катарометром. Микропроцессорное устройство преобразует сигналы детекторов в числовые значения, пропорциональные концентрации нещества. По совокупности основных показателей хроматограф, ПМ-4 превосходит зарубежные аналоги. [c.63]

    Лабораторный газовый хроматограф Цвет-2-65 предназначен для анализа сложных органических смесей. Для регистрации результатов анализа в этом хроматографе используется высокочувствительный пламенно-ионизационный детектор, работающий в дифференциальном режиме. Принцип работы хроматографа основан на использовании метода газо-адсорбционной и газо-жидкостной хроматографии. В нем используются набивные аналитические колонки длиной 100—300 см, внутренний диаме.р 0,4 см. Хроматограф может работать как в изотермическом режиме, так и в режиме линейного программирования температуры колонок. Испаритель обеспечивает быстрое и полное испарение жидкой смеси, так как в нем устанавливается температура, равная или выше температуры кипении наиболее высококипящего компонента пробы. Максимальная температура испарителя достигает 450°С при любой температуре термостата. [c.243]

    Основной недостаток самописцев — ограниченная линейная область, меньшая, чем у большинства детекторов, применяемых в газовой хроматографии. Самописцы могут регистрировать концентрации, значения которых лежат в пределах двух порядков, тогда как линейная область отклика пламенно-ионизационного детектора втрое больше. Именно по этой причине большое внимание уделялось разработке методов регистрации сигналов детекторов без применения переключения диапазонов. К приборам такого типа относятся, н частности, цифровые интеграторы. [c.234]

    Универсальные газовые хроматографы имеют термостат большого объема, два одновременно работающих детектора — пламенно-ионизационный и катарометр. Позволяют решать сложные задачи, [c.235]

    В настоящее время газовые хроматографы широко применяют для контроля и автоматизации в промышленности. Они состоят из трех основных элементов дозатора, трубки и детектора. Дозатор обеспечивает однократное или периодическое нанесение порции газовой смеси. Трубка содержит адсорбент, на котором имеется возможно большее различие адсорбируемости компонентов. Газовая смесь после трубки поступает на детектор—прибор, регистрирующий сумму концентраций компонентов. Детекторы измеряют какие-либо свойства смеси (теплопроводность, теплотворную способность, электропроводность пламени, ионизационный ток и пр.). [c.309]

    Газовый хроматограф с пламенно- Кварцевые лодочки, 4 шт. ионизационным детектором и Слюдяные пластинки, 4 шт. пиролитической ячейкой Пинцет [c.249]

    Другой широко распространенной группой детекторов, применяющихся во многих марках газовых хроматографов, являются детекторы, действие которых основано на измерении тока, з/ юат проходящего через ионизированный газ между двумя электродами. К этой группе относятся детекторы, в которых ионизация молекул может осуществляться под действием электрического разряда в вакууме либо в пламени при наличии электрического поля или под действием радиоактивного излучения. Наиболее распространен пламенно-ионизационный детектор. Работа его основана на том, что пламя чистого водорода почти не содержит ионов и поэтому обладает очень малой электропроводностью (фоновый ток порядка Ю А). При наличии газов или паров анализируемых веществ (за исключением СО, СО2, OS, Sj, H.jS, О2, Н2О, инертных газов) происходит ионизация пламени, возникают ионы и радикалы, электропроводность пламени резко возрастает (ток порядка 10- А), что и служит индикатором на присутствие в газе-носителе анализируемых веществ. Схема одного из пламенно-ионизационных детекторов приведена на рис. 38. Элюат смешивают с водородом и подают в сопло горелки, куда поступает очищенный воздух. Горение [c.93]


    Детектор ионизации пламени со щелочным металлом, известный под названиями термоионный , натриевый или фосфорный , является. модификацией ионизационно-пламенного детектора. Предложен для использования в газовой хроматографии в 1964 г., в Советском Союзе выпускается с 1969 г. До настоящего времени это один из наиболее высокочувствительных и селективных детекторов на фосфорорганические вещества. Кроме того, получили все большее распространение варианты термоионного детектора, проявляющие высокую чувствительность и селективность к азот-и галогенсодержащим веществам. [c.67]

    Дзержинским ОКБА разработаны аналитические газовые хроматографы с цифровым заданием режима работы серии Цвет-500 . Модель Цвет-530 этой серии имеет два детектора катарометр и пламенно-ионизационный. Хроматограф имеет в своем составе криогенное устройство для поддержания в термостате колонок температур от —99° до 399°С. Для определения микропрнмесей в газах хроматограф оснащен обогатительным устройством, где обогащение производится путем низкотемпературной адсорбции или конденсации. В хроматографе используются стальные и стеклянные насадочные колонки, а также стеклянные капиллярные колонки. Двухканальная схема газа-носителя позволяет устанавливать одновременно две насадочные колонки. Температурный ре -ки.м изотермический и линейное программирование температуры. С помощью интегратора осуществляется обработка информации при работе с пламенно ионизационным детектором и катарометром. [c.63]

    Хроматограф состоит из термостата с элементами системы термостатнрова-ния, двух детекторов, катарометра и пламенно-ионизационного (ДИП), испарителя, газового крана-дозатора, блока управления, панели подготовки газов, блока питания пламенио-иопнзационного детектора и контроля температуры, высокоомного преобразователя (ПВ-5), блока питания катарометра, терморегулятора. Запись хроматограмм осуществляется автоматическим электронным потенциометром ЭПП-09МЗ. [c.245]

    В 1963 г. Карман и Гиффрида [185] сообщили о подобном явлении, которое они наблюдали в пламенно-ионизационных детекторах газового хроматографа при одновременном добавлении в пламя щелочного металла и фосфорсодержащих соедине- [c.276]

    В настояще главе подробно описаны лишь часто применяе-.мые в газовой хроматографии детекторы (12 типов детекторов). Наибольшее внимание уделяется рассмотрению новых, еще мало изученных и недостаточно полно освещенных в литературе детекторов. Так как описания работы детекторов теплопроводности и пламенно-ионизационных детекторов встречаются практическ в каждой книге по газовой хроматографии и в каждом обзоре по детекторам, дается лишь более подробное рас-С-мотрение параметров, от которых зависит их стабильная работа и чувствительность. Следует за четить, что пз детекторов, которые представлены в табл. 5, только первые десять выпускаются промышленностью в Советском Союзе или за рубежом. [c.153]

    Прибор ХПИ-21, принцип действия которого ос1Юван на обычном методе проявительной газовой хроматографии с ионизационно-пламенным детектором, укомплектован высокочув-ствительны.м динамическим электрометром со шкалой по току О—10- 2 А. [c.307]

    Открытие капиллярной хроматографии (1957 г.) и разработка необходимых для нее новых высокочувствительных и малоинерционных детекторов (ионизационЦого и пламенно-ионизационного) существенно распшрили возможность использования газовой хроматографии. [c.54]

    Наиболее распространенным методом детектирования в препаративной хроматографии является отвод на детектор части газового потока из колонны, которая затем или возвращается в основной поток (байпасный детектор), или сбрасывается в атмосферу (детектор со сбросом). Эти схемы включения используют в большинстве выпускаемых препаративных хроматографов, причем в качестве детекторов применяют обычные аналитические детекторы с высокой чувствительностью, вследствие чего в одном приборе можно разместить наряду с препаративной и аналитическую колонну. В последнее время кроме катарометров стали широко использовать ионизационные детекторы, главным образом, пламенно-ионизационные, что значительно расширяет аналитические возможности приборов и полностью исключает инверсию пика. Однако при направлении в детектор части газового потока возникает возможность запаздывания в показаниях детектора по сравнению с фактическим состоянием потока газа, поступающим в сборник фракций В детектор со сбросом с помощью тройника направляется часть потока, величина которого регулируется вентилем после детектора. [c.151]

Рис. 8-1. Нанесение газохроматографически разделенных веществ на пластинку с сорбентом для тонкослойной хроматографии (ТСХ). Стеклянную дозирующую трубку с платиновой спиралью (проволока диаметром 0,5 мм), питаемой источником мощностью 50 Вт, можно нагреть до 200° С. — хроматографическая колонка 2 — термостат колонки з — пламенно-ионизационный детектор газового хроматографа 4 — трансформатор с регулируемым напряжением (например, 6А, 20 В) 5 — пластинка с сорбентом для ТСХ в — платиновая спираль Рис. 8-1. Нанесение <a href="/info/1676278">газохроматографически разделенных</a> веществ на пластинку с сорбентом для <a href="/info/5718">тонкослойной хроматографии</a> (ТСХ). Стеклянную дозирующую трубку с <a href="/info/760687">платиновой спиралью</a> (<a href="/info/403892">проволока диаметром</a> 0,5 мм), питаемой <a href="/info/325169">источником мощностью</a> 50 Вт, можно нагреть до 200° С. — <a href="/info/8039">хроматографическая колонка</a> 2 — <a href="/info/141476">термостат колонки</a> з — пламенно-ионизационный детектор газового хроматографа 4 — трансформатор с регулируемым напряжением (например, 6А, 20 В) 5 — пластинка с сорбентом для ТСХ в — платиновая спираль
    К установке соответствующего микрореактора между выходом колонки и детектором газового хроматографа иногда прибегают в количественном газохроматографическом анализе, преследуя цель повьш1ения чувствительности (снижения предела обнаружения интересующего соединения). В качестве наглядного примера можно привести метанизацию оксида углерода, легко осуществляемую с количественным выходом на слое никелевого катализатора при температуре 350-400°С в атмосфере водорода с последующей регистрацией образующегося метана пламенно-ионизационным детектором [277]. В качественном анализе постколоночная дериватизация применяется для повьш1е-ния информативности показаний используемых детекторов, даже таких мощных, как масс-спектрометр [273] в системах ГХ— МС (см. раздел 1У.2). [c.288]

    Очевидно также, что чем симметричнее структура исходного углеводорода, тем меньше количество (число) образующихся изомеров. Своеобразный характер метиленирования открывает широкие возможности использования этой реакции для получения углеводородных смесей, содержащих весьма труднодоступные для обычного синтеза структуры. Особого успеха в расшифровке смесей, полученных метиленированием, можно ожидать только при использовании газовой хроматографии и высокоэффективных капиллярных колонок. Дело в том, что для получения смеси, состоящей только из ближайших гомологов, а реакция проводится так, что в каждой молекуле замещается только один водородный атом, глубина метиленирования обычно не превышает 2—3%. Однако использование капиллярных колонок и чувствительного пламенно-ионизационного детектора позволяет легко анализировать подобные смеси. Удачное применение метода метиленирования для анализа смесей изомерных нонанов показано в работе [119]. [c.291]

    Газовые хроматографы серии Цвет-500М производства Дзержинского ОКБА — это хроматографы исследовательского типа. Они применяются для аналитического контроля производственных процессов, а также для разнообразных исследовательских работ. Основными отличительными чертами хроматографов этой серии является цифровое (кодовое) задание режимов анализа, автоматизированная обработка выходной информации с помощью встроенной линии ЭВМ, Алфавитно-цифровое печатающее устройство по окончании анализа выдает отчет, содержащий данные о параметрах хроматографического пика и концентрации анализируемых компонентов. Хроматограф Цвет-500М имеет блочномодульную конструкцию, снабжен пятью детекторами двойным пламенно-ионизационным, пламенно-фотометрическим, катарометром, детектором постоянной скорости рекомбинации, термоионным, а также иони.зационно-пламенным, предназначенным для работы с капиллярными колонками (микро-ДИП), [c.63]

    В газовой хроматографии применяется несколько десятков различных типов детекторов. Из универсальных наиболее широкое распространение получили детектор по теплопроводности (каторо-метр), пламеиио-ионизационный и аргоно-ионизациопный. Из селективных наиболее широко исиользуется детектор электронного захвата, термоионный и пламенно-фотометрический. [c.299]

    Газовый хроматограф Цвет-1-64 представляет собой лабораторный прибор, изготовленный в обыкновенном (не взрывозащищен-ном) исполнении. Предназначен он для анализа смеси органических (с концентрацией от 1 10" до 10%) и неорганических (от ЫО" до 100%) веш,еств, кипящих до 350—400° С и не содержащих агрессивных примесей, способных разрушать стальные детали прибора. Он состоит из трех блоков 1) датчика, состоящего из термостата, катарометра, детектора пламенно-ионизационного (ДИП), испарителя жидкой пробы, газового крана-дозатора 2) блока управления БУ-2, состоящего из панели подготовки газов, усилителя ПВ-2М для ДИП, терморегулятора, блока питания детектора ДИП, блока питания катарометра 3) автоматического самопишущего потенциометра ЭПП-09. Действие прибора основано на использовании методов газо-адсорбционной и газо-жидкостной хроматографии на набивных (аналитических), микронабивных и капиллярных колонках в изотермическом режиме. [c.170]

    Термостат. Воздушный термостат хроматографа с принудительной циркуляцией воздуха служит для поддерживания колонок при оптимальной температуре разделения анализируемой смеси. Температуру термостата можно устанавливать на заданном уровне в пределах 30—300° С. и поддерживать постоянной с точностью 0,5 град. В термостаге находится катарометр, работающий при температуре колонки. Газ-носитель перед попаданием в хроматографическую колонку подогревается до температуры термостата, проходя через змеевик внутри термостата. Затем он поступает в сравнительную ячейку катарометра, газовый кран, испаритель, хроматографическую колонку и, наконец, либо в горелку пламенно-ионизационного детектора, входной штуцер которого введен в термостат, либо в измерительную камеру катарометра. Выход измерительной камеры катарометра соединяется с линией сброса. Линия газа-носителя в термостате выполнена из нержавеющей стальной трубки, внешний диаметр 2 мм, толщина стенки 0,5 мм. [c.175]

    Препаративный автоматический высокотемпературный ПАХВ-02. Разработан СКВ института нефтехимического синтеза АН СССР. Может быть использован в качестве аналитического хроматографа, работающего пэ конверсионной схеме с использованием пламенно-ионизационного детектора. Предназначен для разделения хроматографическим методом смеси органических веществ и накопления заданного компонента с помощью автоматического пробоотборного устройства. Хроматографические колонки для аналитических целей — внутренний диаметр 4—Ьмм, длина 1 м, препаративные — диаметр 12—24 мм. Из отдельных секций можно собрать колонки длиной от 2 до 25 Л1. В качестве детектора используется катарометр. В комплект прибора входит интегратор для определения площадей пиков хроматограммы, записываемой самописцем ЭПП-09. Изотермический температурный режим колонок от 50 до 350° С. Рабочий объем жидкой пробы 0,1—3 мл, газовой 100 и 200 мл. Число ловушек [c.257]

    Цвет-2000 — газовые аналитические лабораторные хроматографы, предназначенные для качественного и количественного аналнза веществ с температурой кипения до 450°С. Хроматографы этой серии снабжены пятью детекторами пламенно-ионизационным, электронозахватным, термоионным (на фосфор и азот), пламенно-фотометрическим и катарометром. Температурный режим — изотермический и программирование температуры от —100 до 400°С. Колонки аналитические стеклянные и стальные, а также стеклянные капиллярные. Для хроматографа характерна максимальная степень автоматизации благодаря наличию нстроенной ЭВМ. [c.63]

    Особенно важно применение газовой хроматографии при определении ничтожных примесей в основных продуктах химической промышленности. Решение этой задачи приобретает особенно большое значение в связи с широким развитием производства полимерных материалов, для синтеза которых необходимы мономеры высокой чистоты. Анализ примесей и микропримесей производится с помощью высокочувствительных пламенно-ионизационных детекторов. [c.240]

    Таким образом, в условиях равновесной хроматографии и при практически не адсорбирующемся И не сильно сжатом газе-носителе удерживаемый объем малой (нулевой) дозы адсорбата представляет собой константу Генри адсорбционного равновесия. Так как современные детекторы (пламенно-ионизационный, электроноза-хватный, масс-спектрометриче ский) обладают весьма высокой чувствитель-ностью (на уровне пикограммов), метод газовой хроматографии позволяет непосредственно измерить константу Генри. На рис. 7.3 показано, что время удерживания малых доз прак- -- [c.137]

    Для газовой хроматографии предложено большое число детекторов — около 50. Однако на практике применяются только некоторые из них. Комплект современного универсального хроматографа включает 4-6 детекторов. Наибольшее распространение в силу универсальности, превосходных характеристик и высоких эксплуатационных качеств получили ионизационно-пламенный детектор и детектор по теплопроводности, входящие в состав почти всех хроматографов. Кроме того,. широко используются селективные детекторы, позволяющие определять в сложных смесях только соединения определенного состава, К ним в первую очередь относятся детекторы. электронного захвата, термоионный и пламенно-фотометрический, исгюльзование которых упрощае 1 расшифровку хроматограмм, повышает чувствительность, значительно сокращает время анализа и объем пробы исследуемой смеси. Такие достоинства селективных детекторов являются основной причиной их широкого применения при анализе сложных смесей биологического или природного происхождения и загрязнения окружающей среды. [c.35]

    Детектор электронного захвата (ДЭЗ) по частоте использования занимает одно из ведущих мест. Универсальные газовые хроматографы, как правило, комплектуются этим детектором наравне со стандартными детекторами — ионизационно пламенным и по теплопроводности. Столь быстрое и широкое распространение ДЭЗ получил в связи с необходимостью измерения весьма малых количеств хлорсодержаших пестицидов в продуктах растительного и животного происхождения. Он успешно применяется для определения малых концентраций галоген-, кислород- и азотсодержащих веществ, некоторых металлорганических соединений и других веществ, содержащих атомы с явно выраженным сродством к электрону [c.61]


Смотреть страницы где упоминается термин Детекторы в газовой хроматографии пламенно-ионизационный ПИД : [c.67]    [c.102]    [c.35]    [c.150]    [c.211]    [c.89]   
Аналитическая химия Том 2 (2004) -- [ c.251 ]




ПОИСК





Смотрите так же термины и статьи:

Газовая хроматография детекторы

Газовая хроматография хроматографы

Хроматограф газовый

Хроматография газовая



© 2022 chem21.info Реклама на сайте