Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радиоактивность взаимодействие с веществом

    Радиохимическая чистота может быть исследована различными методами, но наиболее важными из них являются бумажная хроматография и тонкослойная хроматография (см. с. 92—97). После завершения разделения на хроматограмме определяют распределение радиоактивности. Количество вещества, наносимого на хроматограмму, часто крайне мало (вследствие высокой чувствительности обнаружения радиоактивности), и поэтому надо быть особенно осторожным в интерпретации результатов в связи с возможностью возникновения артефактов. Кроме хроматографии, для разделения может быть использован электрофорез (см. с. 114—118). Как упоминалось выше, иногда может оказаться полезным добавление к самому радиофармацевтическому соединению или к ожидаемым примесям носителей, т. е. соответствующих нерадиоактивных соединений. Существует, однако, опасность, что прибавленный неактивный носитель радиоактивного фармацевтического вещества может взаимодействовать с радиохимической примесью, что в свою очередь может привести к заниженной оценке этих примесей. Другой подходящий метод— наблюдение за биологическим распределением инъецированного радиофармацевтического вещества в испытании на животных. [c.83]


    Приготовление стабильных газовых смесей малой концентрации в баллонах имеет определенные трудности, так как в процессе хранения и использования состав смеси может изменяться из-за взаимодействия вещества с примесями кислорода и влаги в газах-разбавителях, процессов адсорбции на стенках баллона, конденсации, диффузии. Поэтому поведение газовых смесей было нами специально изучено с использованием метода радиоактивных индикаторов. Для этой цели синтезированные по указанному выше методу алкильные соединения теллура и селена, содержащие радиоактивные изотопы и Зе вводились в состав смесей. [c.144]

    Радиационная обстановка в местах, где ведутся работы с радиоактивными веществами, оценивается приборами, принцип действия которых состоит в регистрации изменений эффектов, возникающих в процессе взаимодействия излучения с веществом. [c.59]

    Электроны отличаются от других частиц меньшей массой и, следовательно, более высокой скоростью при заданной энергии. Некоторые типы излучения возникают при радиоактивном распаде, а также как вторичная эмиссия при взаимодействии излучения с веществом. Следовательно, находящиеся в эксплуатации технические материалы обычно подвергаются действию смешанного излучения. Тем не менее результат облучения можно объяснить преобладающим влиянием одного какого-либо вида излучения. [c.156]

    АДСОРБЦИЯ — поглощение газов или растворенных веществ из раствора поверхностью твердого тела нли жидкости. А.— один из видов сорбции. Происходит под влиянием молекулярных сил поверхностного слоя адсорбента. В некоторых случаях молекулы адсорбата (вещества, которое поглощают) взаимодействуют с молекулами адсорбента и образуют с ними поверхностные химические соединения (см. Хемосорбция). При постоянной температуре физическая А. увеличивается при повышении давления или концентрации раствора. Процесс, обратный адсорбции, называется десорбцией. А. сопровождается выделением теп 1а. При повышении температуры А. уменьшается. А. применяется в промышленности для разделения смесей газов и растворенных веществ, для осушки и очистки газов (например, воздуха в противогазах), жидкостей (этиловый спирт очищают от сивушных масел активированным углем). А. играет большую роль во многих биологических и почвенных процессах. Большое значение имеет адсорбция радиоактивных элементов стенками посуды или поверхностью других твердых тел, что приводит к трудностям во время проведения эксперимента и к радиоактивному загрязнению. [c.8]


    Однако, результаты полевых и лабораторных геохимических исследований, показывают, что поведение радионуклидов здесь является более сложным, т.к., во-первых, изотопный состав радионуклидов пока не стабилизировался и формирование промежуточных продуктов радиоактивного распада заведомо не завершилось во-вторых, - при взаимодействии этих продуктов с подземными и технологическими водами образуется сложное сочетание различных соединений, состав и устойчивость которых зависят от ряда геохимических факторов состава, растворимости и сорбционных свойств вмещающих пород, значений окислительно-восстановительного потенциала в потоке флюидов, активности карбонатных анионов, изменений равновесия в соединениях углерода, состояния органического вещества и т.д. в-третьих, - в окрестностях зон ПЯВ формируется ряд геохимических барьеров, которые могут служить накопителями радиотоксичных изотопов. Поэтому, с одной стороны, неосторожное вскрытие этих барьеров может усугубить радиационную опасность промысла, а с другой, - эти барьеры при разумном с ними обращении могут сыграть роль защитных экранов, способствующих оздоровлению радиационной и экологической обстановки. С этих позиций идеология всеобщей промывки промысла, обеспечивающей якобы разбавление концентрации радионуклидов до безопасного уровня, считается неприемлемой. [c.84]

    Аналитические признаки — такие свойства анализируемого вещества или продуктов его превращения, которые позволяют судить о наличии в нем тех или иных компонентов. Характерные аналитические признаки — цвет, запах, угол вращения плоскости поляризации света, радиоактивность, способность к взаимодействию электромагнитным излучением (например, наличие характеристических полос в ИК-спектрах поглощения или максимумов в спектрах поглощения в видимой и УФ-области спектра) и др. [c.13]

    Фотографические методы регистрации излучения могут применяться и при изучении очень слабой радиоактивности. Так, проводя микроскопическое изучение фотоэмульсии под микроскопом, можно вывести заключение о характере процессов, происходящих при столкновении частиц, ядер атомов, о взаимодействии космического излучения с веществом и т. п. Метод толстослойных эмульсий в основном применяется в ядерной физике. [c.116]

    Для сравнения биологического действия различных типов радиоактивного излучения введена величина относительной биологической эффективности (ОБЭ), согласно которой биологическая эф< ктивность рентгеновского или у-излучения принята равной единице. Поскольку ионизирующее действие у-лучей, как было Показано в гл. 3, обусловлено вторичными электронами, образующимися при взаимодействии у-квантов с молекулами вещества, ОБЭ электронного и позитронного излучений также будет равно единице. Для а-частиц и протонов (с энергией 10 МэВ) ОБЭ в 10 раз выше по сравнению с у-излучением ОБЭ нейтронов в зависимости от энергии колеблется в пределах 2,5—10 МэВ. [c.126]

    Все методы, применимые для детектирования 7-, /3- и рентгеновского излучения, основаны на взаимодействии этих излучений с веществом. В табл. 8.4-3 дан обзор обычных методов детектирования наряду с их наиболее важными техническими характеристиками. Отличное временное и энергетическое разрешение полупроводниковых детекторов ставит их вне конкуренции в 7-спектрометрии. В настоящее время инструментальный активационный анализ выполняется исключительно, а радиохимический активационный анализ — более чем на 90% с помощью 7-спектрометров высокого разрешения. Детальное описание всех методов детектирования и измерения радиоактивного излучения имеется в превосходной книге Нолла [8.4-4]. [c.102]

    При взаимодействии нейтронов с веществами, формирующими атмосферу, наибольшее значение имеют реакции, протекающие на ядрах азота и аргона с образованием радиоактивного изотопа аргона-41 и углерода-14. В воздухе в период испьгганий ядерного и термоядерного оружия образовалось 220 ПБк углерода-14 (природное образование-1 ПБк). [c.312]

    Радиоактивные превращения могут быть связаны с излучением заряженных частиц, процессом электронного захвата или процессом изомерного перехода. Заряженные частицы, излучаемые из ядер, могут быть альфа-частицами (ядра гелия с массовым числом 4) или бета-частицами (электроны с положительным или отрицательным зарядом, р— или рн- со- ответственно последние известны как позитроны). Излучение заряженных частиц из ядра может сопровождаться гамма-излучением, имеющим ту же физическую природу, что и рентгеновское излучение. Гамма-лучи испускаются также в процессе изомерного перехода (ИП). Рентгеновские лучи, которые могут сопровождаться гамма-лучами, испускаются в процессе электронного захвата (ЭЗ). Позитроны уничтожаются при взаимодействии с веществом, причем этот процесс сопровождается испусканием двух гамма-лучей, каждый из которых имеет энергию 0,511 мэВ. [c.64]

    В настоящее время разработан целый ряд физических методов для" определения не только зольности, но и содержания в ТГИ минеральных компонентов а) микроскопическое определение содержания минеральных компонентов по их рельефу, цвету, степени блеска, т.е. по оптическим признакам (см. гп. 1) б) рентгеноскопический, использующий особенности рассеивания рентгеновских лучей различными минеральными веществами в) радиоизотопный, основанный на взаимодействии атомов минеральных примесей с радиоактивным излучением изотопов. [c.46]


    При взаимодействии радиоактивного излучения с веществом обязательным процессом является взаимодействие излучения с электронами атомных оболочек. При этом возможно частичное поглощение излучения, его рассеяние и отражение. Методы анализа, основанные на измерении абсорбции или изменении направления ядерного излучения в результате взаимодействия с веществом, хотя и не универсальны, но в ряде случаев могут быи. полезны, особенно при определении одного из компонентов бинарной смеси. В зависимости от типа излучения различают у -абсорбционный, Р -абсорбционный и нейтронно-абсорбционный методы. Кроме того, следует упомянуть методы, основанные на отражении уЗ-частиц и на замедлении нейтронов. Существуют и другие методы [c.381]

    Появление вакуумных приборов,возникновение радиотехники и совершенствование других технических средств изучения физических явлений привело в конце прошлого столетия к открытию электронов, рентгеновских лучей и радиоактивности. Появилась возможность исследования отдельных атомов и молекул. При этом выяснилось, что классическая физика не в состоянии объяснить свойства атомов и молекул и их взаимодействия с электромагнитным излучением. Исследование условий равновесия электромагнитного излучения и вещества (М. Планк, 1900 г.) и фотоэлектрических явлений (А. Эйнштейн, 1905 г.) привело к заключению, что электромагнитное излучение, помимо волновых свойств, обладает и корпускулярными свойствами. Было установлено, что электромагнитное излучение поглощается и испускается отдельными порциями — квантами, которые теперь принято называть фотонами. [c.11]

    В первой части Справочника даны понятия и определения радиоактивности, приведены основные законы радиоактивного распада и взаимодействия ядерного излучения с веществом, принципы детектирования, дозиметрии и защиты от ядерных излучений, сведения о радиотоксичности радионуклидов, рассмотрены вопросы обеспечения радиационной безопасности. Приведены также таблицы, в которых представлены ядерно-физические свойства для большинства радионуклидов. [c.2]

    Радиоактивные вещества. Взаимодействие различных видов из.чучения с веществом [c.15]

    Общая характеристика взаимодействия радиоактивных веществ с поверхностью [c.184]

    Определенной особенностью обладают загрязняющие радиоактивные вещества, которые находятся в виде жидкости. В данном случае адгезия жидкости и смачивание — две стороны одного и того же явления, именуемого адгезионным взаимодействием между жидкостью и твердым телом (поверхностью). Поверхности олеофильные (а по отношению к воде — гидрофильные) хорошо смачиваются и у них большая равновесная работа адгезии. Олеофобные (а по отношению к воде — гидрофобные) поверхности плохо смачиваются и реализуют незначительную адгезию. Смачивание поверхности определяется величиной краевого угла 0 (рис. 11.1). Условия равновесия капли на поверхности можно выразить при помощи уравнений [27]  [c.184]

    В табл. 63 приведены характеристики некоторых наиболее часто применяемых изотопов различных элементов. Большое и разнообразное применение метод меченых атомов нашел при химических исследованиях. С помощью этого метода изучают взаимодействие катализаторов с реагирующими веществами, строение молекул, механизм химических реакций, взаимодействие между раствором и осадком, диффузию в твердых телах, различные процессы, протекающие в растительных и животных оргаиизмах. На основе применения радиоактивных изотопов Ан. Н. Несмеяновым были разработаны новые методы определения давления насыщенного пара чистых веществ и парциальных давлений пара растворов, дающие возможность определять столь малые значения их, как 10 —10 мм рт. ст. и даже ниже. В настоящее время, бла- <, годаря большей доступности искусственно получаемых радиоак-тивных изотопов некоторых элементов, метод меченых атомов B eff более широко используется в исследовательских работах в раз- личных областях естествознания и техники. Он применяется для наблюдения за ходом производственных процессов, для контроля качества продукции, используется при автоматизации производства, применяется в медицине и сельском хозяйстве. [c.543]

    Для определения концентрации веществ в большинстве иммунохимических методов к анализируемому раствору, содержащему определяемое соединение и его меченый аналог, добавляют реагент в количестве, намного меньшем необходимого по уравнению (7.12). Как немеченые, так и меченые соединения взаимодействуют с реагентом практически одана-ково, поэтому отношение их концентраций будет одним и тем же в растворе и в связанном состоянии. При этом возможность применения метода во многом определяется доступностью меченого антигена и соответствующих антител. Для введения метки используют различные реагенты радионуклиды, ферменты, красящие вещества, флуоресцентные и хеми-люминесцентные зонды, ионы металлов. До последнего времени в качестве маркеров антител применяли радиоактивные изотопы этот метод назьшается радиоиммунохимическим анализом (РИА). При этом степень [c.298]

    При взаимодействии радиоактивного излучения с веществом происходят процессы ионизации и возбуждения атомов и молекул. Фотоны и частицы с достаточно высокой энергией могут вызвать ядерные реакции. Однако преобладающий процесс — взаимодействие излучения с электронами атомных оболочек и электрическим полем атомного ядра. При подобном взаимодействии частицы или фотоны теряют энергию или часть ее. Некоторые столкновения приводят к изменению направления движения частицы. Это значит, что радиоактивное излучение абсорбируется и рассеивается веществом. Указанные процессы взаимодействия положены в основу методов обнаружения а-, Р- и у-излучения. На этом же принципе основаны методы радиометрического анализа веществ без их разру шения [1,2, 6]. [c.304]

    В бесконечном пространстве Вселенной из вещества, выброшенного ири взрывах и измененного в процессах радиоактивного распада и взаимодействия с излучением, в определенных условиях снова образуются звездные тела — звезды следующего поколения. В звездах этого тина содержание тяжелых элементов больше, чем в веществе, из которого они образовались. Эволюция их состава также связана с протеканием ядерных процессов, аналогичным описанным. С каждым новым поколением звезды все более обогащаются тяжелыми элементами. Мировое вещество находится в вечном движении, разрушении и обновлении. В свете этих представлений Солнце является звездой третьего поколения. Выделяемая им энергия отвечает процессам азотно-углеродного цикла, приводящего к накоплению гелия. На рис. 183 показаны этаиы зволюиии звезды. [c.427]

    Эти свойства ясно указывают, что вещество представляет собой соль — бромистый тропилий. Простота ИК.-спектра соединения, в котором имеются лишь четыре достаточно интенсивные полосы, согласуется с высоко симметричной структурой шести-л-электронного иона. М, М. Шемякин (1958) доказал эквивалентность всех семи углеродных атомов тропилия. Из бензола и СНгЫг реакцией Бюхнера был получен меченый по метиленовой группе тропилиден, превращенный затем в меченый бромистый тропилий. При взаимодействии этой соли с бромистым фенилмагнием получили меченый фенилциклогептатриен, ко-горый окисляли перманганатом калия до бензойной кислоты. Если заряд в тропилиевом ионе полностью делокализован, то радиоактивность бензойной кислоты должна составлять 14,3% от радиоактивности исходного бромида тропилия экспериментально найденная величина оказалась равной 13,4%. [c.489]

    Бнологическое действие излучения. Как будет подробнее рассмотрено в гл. 12, одним из химических следствий взаимодействия радиоактивного излучения с веществом является изменение химического состава облученных молекул и, в частности, образование свободных радикалов. Таким образом, облучение живого вещества ведет к прямым нарушениям биохимических функций клеток и тем самым оказывает влияние на жизнедеятельность организма. [c.125]

    Абсорбция (от лат. absorptio — поглощение) — поглощение (растворение) веществ жидкостями или твердыми телами. В отличие от адсорбции поглощение веществ происходит во всем объеме поглотителя. А. связана с растворением веществ в поглотителе или с химическим взаимодействием (хемосорбция). А. используется в промышленности для разделения газовых смесей, очистки газов, получения различных продуктов (серной кислоты посредством А. SO3. соляной кислоты — А. газообразного НС1), разделения смесей веществ, в радиохимии и аналитической химии для разделения смесей элементов, выделения в чистом виде радиоактивных элементов. [c.4]

    Лучи, испускаемые радиоактивными элементами, проникают в свинец на несколько сантиметров космические лучи имеют более короткую длину волны (а возможно, и другую природу) и проникают в землю на сотни метров. Радиоволны, характеризующиеся значительно большими длинами волн, не взаимодействуют с веществом, если оно не обладает проводимостью. Лауэ первый показал, что рентгеновские лучи имеют длину волны такого же порядка величины, как межатомные расстояния в кристаллах, и что эти расстояния MOHIHO вычислить из наблюдаемой интерференционной картины. [c.26]

    Расширение объектов исследования и все возрастающие требования современной промышленности к чистоте материалов и к комплексному использованию сырья привели к разработке новых, более точных, быстрых и высокочувствительных методов определения марганца. Наиболее существенным достижением в аналитической химии марганца явилось использование ней-троно-активационного метода. Благодаря высокому значению поперечного сечения реакции радиационного захвата тепловых нейтронов природным изотопом Мп, этот метод позволяет определять марганец из очень малых количеств исследуемых проб и без их разрушения. Это имеет принципиально важное значение при анализе уникальных проб космического происхождения, что способствует решению ряда важнейших космогонических проблем, таких как нуклеосинтез, ядерная эволюция вещества Солнечной системы, а также созданию геохимической модели земной коры и верхней мантип. Большой интерес представляют работы по нейтроно-активационному определению ничтожно малых количеств радиоактивного Мп, образующегося в метеоритах и породах лунной поверхности за счет ядерных взаимодействий с космическими лучами. Этот изотоп позволяет изучать вариации интенсивности космических лучей и солнечной активности за последние десять миллионов лет. [c.5]

    По данным [1031, в отличие от [101], некоторые другие органы крыс также способны в незначительной степени связывать диазепам. Немеченый диазепам и другие бенздиазепины вытесняли его радиоактивный аналог, который был связан с митохондриями печени, почек и легких крыс. Вещество Ro 4884, которое очень слабо вытесняло диазепам, связанный с мембранами мозга, обладало чрезвычайно выраженной способностью вытеснять диазепам, связанный с митохондриями почек. В то же время клоназепам — сильный ингибитор взаимодействия диазепама с мембранами мозга — слабо влиял на сродство последнего к митохондриям почек. Специфическое связывание Н-диазепама с препаратами толстого и тонкого кишечника, а также скелетных мышц не выявлено. Трипсин химотрипсин полностью подавляли специфическое связывание диазепама с препаратами мозга и почек. Таким образом, рецепторы для бенздиазепинов отличаются от всех известных в мозгу рецепторов, с которыми взаимодействуют нейромедиаторы. [c.263]

    В биологических системах ионы металлов образуют жомплёксы с лигандами, имеющими донорные атомы О, S и N, например с аминокислотами, белками, ферментами, нуклеиновыми кислотами, углеводами и липидами. Многие заболевания вызываются либо недостатком или избытком в организме незаменимых ионов металлов, либо попаданием в ткани токсичных веществ, опасных металлов или радиоактивных веществ. С точки зрения биохимии болезни вызываются либо несбалансированностью в организме взаимодействий ион - лиганд, либо конкуренцией чуждых для организма веществ с нормальными компонентами тканей [ 121. [c.269]

    Представление о химической природе рецептора на первых этапах получается на основании косвенных данных. Так, анализ влияния структурной модификации гормона на его биологическую активность позволяет делать определенные выводы о свойствах участка связывания в молекуле рецептора. В последнее время широкое распространение получил радиолигандный метод изучения взаимодействия гормон — рецептор, основанный иа использовании меченных радиоактивными изотопами гормонов и их структурных аналогов. Метод дает возможность определять такие параметры, как сродство к гормону, количество и локализацию рецепторов в клетке, взаимосвязь между процессами связывания гормона с рецептором и индукцией им биологического ответа клетки. Биологически активные соединения, взаимодействующие с рецепторами, обычно подразделяются на агонисты — вещества, связывающиеся с рецепторами и индуцирующие биологический ответ, и антагонисты — вещества, связывающиеся с рецепторами, но не вызывающие биологического ответа, а, напротив, препятствующие связыванию и действию агонистов. [c.239]

    В зависимости от физико-химических взаимодействий между поверхностью загрязняемого объекта и радиоактивным веществом имеют место адгезионный, адсорбционный и ионообменный процессы радиоактивных загрязнений. Адгезионное взаимодействие между радиоактивными веществами и поверхностью объекта является одной из основных причин радиоактивного загрязнения. Такие загрязнения часто наблюдаются при аварийных аэрозольных выбросах радиоактивных веществ в виде высокодисперсионных частиц (аварии в Уиндскейле 1957 г. и Чернобыле 1986 г.) [c.184]

    Уравнение Гиббса связывает между собой основные параметры, характеризующие адсорбцию, — Г, с, Г и о, оно определяет возможность протекания адсорбции как самопроизвольного процесса за счет снижения поверхностного натяжения. В зависимости от природы адсорбционных сил различают физическую и химическую адсорбцию. При этом химическую адсорбцию называют хемосорбцией. При физической адсорбции радиоактивные вещества сохраняют свою индивидуальность, и взаимодействие между радиоактивным веществом и адсорбентом осуществляется за счет межмолекуляр-ных сил (сил Ван-дер-Ваальса). Поэтому физическая адсорбция обратима, практически не зависит от химического соединения радионуклида и уменьшается с ростом температуры. Теплота, выделяющаяся при физической адсорбции, составляет всего 10-40 кДж/моль, в то время как при хемосорбции она достигает 400 кДж/моль и более. В результате хемосорбции молекулы или ионы радиоактивного вещества образуют с адсорбентом, т. е. с загрязненным объектом, поверхностные химические соединения, и, следовательно, хе-мосорбцию можно рассматривать как химическую реакцию на поверхности раздела фаз. [c.185]

    Способы дезактивации разделяют также на физикомеханические и химические. Например, механическое воздействие щетки, струи песка, воздуха или химическое взаимодействие дезактивирующего раствора с радиоактивным веществом, которое можно иетенсифици-ровать температурой, электрическим полем, вибрацией. [c.188]


Смотреть страницы где упоминается термин Радиоактивность взаимодействие с веществом: [c.6]    [c.42]    [c.53]    [c.24]    [c.169]    [c.406]    [c.86]    [c.279]    [c.7]    [c.206]    [c.88]    [c.4]    [c.189]   
Методы практической биохимии (1978) -- [ c.189 ]




ПОИСК







© 2025 chem21.info Реклама на сайте