Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изомеры и радикалы

    Существует четыре изомерных иодистых алкила состава С Нд (по числу изомеров радикала С Нд)  [c.298]

    Это положение правильно при отсутствии изомерии радикала-заместителя. [c.199]

    Изомерия спиртов определяется изомерией радикала и положением гидроксильной группы. [c.81]

    В ряде случаев квантово-химические расчеты подтвердили экспериментально найденное распределение плотности неспаренного электрона в радикал-ионе [94]. Кроме того, СТС спектра ЭПР может служить экспериментальной основой проверки и подтверждения справедливости сложных квантово-химических вычислений строения органических молекул и радикалов. СТС спектра ЭПР может служить также для идентификации данного типа радикалов, дать представление о копланарности и изомерии радикал-анионов, а также позволяет оценить скорость переходов в различные состояния и частоту вращения отдельных фрагментов радикал-анионов. Изменение формы компонент СТС можно применить и для изучения сверхбыстрых реакций переноса электрона между радикал-ионом и исходной молекулой. При анализе констант СТС радикал-ионов удается установить ряд относительной акцепторной способности различных групп и молекул и оценить передачи влияния заместителей через ядра радикал-ионов. [c.27]


    Бирадикальный механизм находится в соответствии с общей нечувствительностью реакции к растворителям и катализаторам. Он также правильно предсказывает течение реакции в случаях возможного образования двух изомеров, основываясь на двух факторах, которые более детально обсуждаются в разделе, посвященном сополимеризации. Одним из них является ожидаемая тенденция, что такая реакция идет через образование наиболее резонансно стабильного радикала [например, один непарный электрон, конъюгированный с карбонильной группой в реакции 15)]. Другим фактором является способность полярных резонансных структур повышать стабильность переходного состояния радикалов, это ведет к образованию того же изомера, что и предсказанный на основе полярного механизма. Отмечалась также близкая аналогия между радикальным механизмом и термическим инициированием процесса, наблюдающихся в некоторых случаях реакции полимеризации [36]. В качестве аргумента против такого механизма было выставлено то, что инициаторы радикалов, подобные перекиси бензоила, не ускоряют реакцию Дильса-Альдера. Однако это фактически не относится к обсуждаемому вопросу, так как реакция включает стадию (15), являющуюся процессом термического образования бирадикала, который в большей степени, чем любой другой процесс, мог бы быть инициирован присоединением посторонних радикалов по двойной связи. [c.181]

    Если исключить соединения, обладающие заметным о-эффектом, то становится очевидным, что для всех групп преобладающим направлением ориентации является о-п-положение. За исключением нескольких групп, таких, как нитро-, циано- и карбометокси, существует, очевидно, лишь слабый направляющий эффект хотя преобладает о-/г-ориентация, все же образуется значительное количество и., и-изомера. Следовательно, ориентация такова, что мы должны назвать свободный фенильный радикал активным замещающим агентом с малой избирательностью. [c.465]

Рис. 4.4. Зависимость температуры кристаллизации монометилзамещенных изомеров парафиновых углеводородов от положения замещающего радикала в основной углеводородной цепи Рис. 4.4. <a href="/info/749919">Зависимость температуры кристаллизации</a> монометилзамещенных <a href="/info/1014166">изомеров парафиновых</a> углеводородов от положения замещающего радикала в <a href="/info/1488411">основной углеводородной</a> цепи
    В настоящее время установлено, что свойства присадок зависят не только от характера содержащихся в них функциональных групп и элементов, но и от расположения в молекуле и от структуры молекул самих присадок. Так, изомеры алкилфенолов в зависимости от положения алкильного радикала в бензольном кольце существенно различаются по антиокислительной эффективности. Таким образом, главная задача исследователей при синтезе присадок с заданными свойствами заключается во введении в состав молекул присадок отдельных элементов и функциональных групп в требуемом сочетании и определенном положении их в молекуле. [c.9]


    В химии углеводородов до настоящего времени нет общепринятой единой номенклатуры для обозначения пространственного расположения заместителей в стереоизомерах. Ряд авторов использует систему отсчета расположения заместителей относительно какого-нибудь радика.па, пространственная ориентация которого обычно определяется термином цис. Так, изображенный ниже изомер по этой номенклатуре называется г цс,г цс,т/)анс-1,2-диметил-3-этил-циклопентаном. [c.9]

    Понижение температуры обычно приводит к увеличению содержания в равновесных смесях наиболее устойчивого изомера. При низких температурах, как и в случае углеводородов ряда циклопентана, основную роль в термодинамической устойчивости пространственных изомеров будет играть их относительная энтальпия, определяемая количеством скошенных (бутановых) взаимодействий, присущих изомерам, имеющим аксиальную ориентацию заместителей (как уже было указано, для метильного радикала эта величина составляет 1800 кал/моль). Роль энтропийного фактора в общем уровне свободной энергии становится меньшей, и в равновесных смесях преобладает один наиболее устойчивый стереоизомер. [c.39]

    Так как при переходе от жидкого изооктана к кристаллическому (т. пл. —107,4°) не происходит упрощения ИК-спектра, то это означает, что изооктан существует только в виде одного пространственного изомера. В этом изомере,третичный атом водорода сильно экранирован и мало доступен атаке со стороны свободного радикала, что и объясняет его пониженную реакционную способность. [c.221]

    Предпочтительное образование диена с указанным расположением двойных связей определяется структурой анион-радикала 14, который в данной системе оказывается наиболее стабильным среди всех его возможных изомеров с различной локализацией анионного центра. [c.53]

    Изомерия углеродного радикала  [c.98]

    Изомерия карбоновых кислот обусловливается изомерией радикала кислоты, т. е. положением карбоксильной группы, которая может находиться либо у первичного, либо у вторичного, либо у третичного углерода. В двух последних случаях углеродная цепь обязательно будет разветвленная, как это видно на приведенных примерах диметилуксус-ной и диметилэтилуксусной кислот (стр. 117). [c.118]

    Изомерия аминов определяется изомерией радикала и положением аминогруппы. Простейщие амины метиламин H3NH2 и этиламин СНз— H2NH2 изомеров не имеют последующие амины имеют изомеры. Так, состав 3H9N отвечает двум первичным аминам, одному вторичному и одному третичному  [c.305]

    Изомерия галогенопроизводных определяется изомерией радикала и положением галогена в углеродной цепи. Начинается изомерия галогеиопроизводных с третьего члена ряда, в то время как у предельных углеводородов — с четвертого, поэтому число изомеров у галогеноалкилов больше, чем у соответствующих углеводородов. Например, бутан С4Н10 имеет два изомера, а хлористый бутил — четыре изомера (см. табл. 10). [c.74]

    Функциональная группа альдегидов всегда расположена в начале углеродной цепи, поэтому изомерия альдегидов определяется только изомерией радикала. В соответствии с предельными углеводородами первые три альдегида (муравьиный, уксусный, пропионовый) изомеров не имеют, а альдегид с четырьмя атомами углерода в молекуле, как и бутан, имеет два изомера один нормального строения и одни — нзостроения  [c.103]

    Изомерия кетонов определяется изомерией радикала и положением функциональной группы. В отличие от ранее рассхмотрен-ных классов соединений изомерия кетонов начинается от соединений, содержащих в молекуле не четыре, а пять атомов углерода. [c.111]

    Изомерия предельных кислот, так же как и предельных углеводородов, определяется изомерией радикала. Простейшие три кислоты с одним, двугля и тремя атохмами углерода в молекуле изомеров не имеют. [c.115]

    JH. Для изомеризации угол поворота должен быть значительно большим, по-видимому равным 180°. Такой поворот требует большей энергии активации. В согласии с этим было найдено, что энергия активации реакции изомеризации больше, чем для реакции обмена на 3800 кал/моль. Эта величина близка к энергии активации взаимных превращений поворотных изомеров радикала (б), но она в несколько раз превышает энергию активации взаимных превращений поворотных изомеров этана, которая была определена по спектрам дейтерированных Этанов и близка к 1000 кал/моль [183]. Причина такого различия была неясна. Она лежит во взаимодействии объемистых атомов йода или во взаимодействии неспаренного электрона с электронами связи С—С. Для выбора между этими двумя объяснениями Штейнметц и Нойес [672] изучили цис-транс-изомеризацию дибромэтиленов в присутствии радиоактивного брома. В этом случае фотохимическая реакция протекает слишком быстро для кинетических исследований, но скорость тер- [c.543]

    Устойчивый при низких температурах СНзКО, изомер СН2 = N011 и димер были выделены из реакции N0 радикалами СН3 [34]. Пропилен также может легко отдавать атом водорода радикалу Н с образованием ВН и относительно устойчивого аллиль-иого радикала. [c.98]


    В работах Смита и Бэрвелла [14], а также Соважа с сотр. [9, 10], предлагается другой путь образования стереоизомерных циклоалканов. Эти авторы полагают, что промежуточной стадией гидрирования может быть адсорбированный по диссоциативной схеме радикал (VI), который далее реагирует с образованием как цис-, так и 7-ранс-изомера  [c.29]

    Видно, например, что наиболее благоприятным для г ис-присоединения водорода является положение двойной связи в 1,2-диметилциклогексене (ряд а). В то же время при гидрировании 1,2- и 2,3-диметилциклопенте-нов (ряд з) цис- и гранс-изомеры образуются в одинаковом соотношении. Это свидетельствует о том, что в избранных условиях взаимная изомеризация этих циклоалкенов протекает гораздо быстрее, чем их гидрирование. Длина и объем радикала, расположенного непосредственно у двойной связи, фактически не сказываются на. стереоселективности гидрирования циклогексенов (ряд в). Этот вывод, по-видимому, следует считать предварительным, поскольку среди изученных углеводородов отсутствует 1-трет-бутил-4-метилциклогексен. Объемистый радикал, находящийся у двойной связи, может в определенной мере ее экранировать, изменяя стереоселективность гидрирования. Определенное влияние оказывает объем радикала, находящегося в положении 4 к двойной связи (ряд б) при гидрировании 4-трет-бу-тил-1-метилциклогексена образуется гораздо меньше г с-изомера, чем в случае 1,4-диметилциклогексена. Естественно, что указанные закономерности могут изменяться с изменением условий эксперимента. [c.33]

    При реакции несимметричного диена с несимметричным диенофилом возможно образование двух структурных изомеров. Но в этой области имеется недостаточно работ, чтобы могли быть сделаны широкие обобщения. Отмечено, однако, что если в системе, указанной выше, К-метильный радикал, то образуется г ыс-о/)то-конфигурация. Микс и Рэгсдаль [94] при конденсации пиперилена (1,3-пентадиена) с акрилонитрилом и метил-акрилатом обнаружили в обоих случаях образование орто-шзомеров в количестве, в семь раз большом, чем жета-изомеров, что согласуется с электронной тоорней  [c.467]

    Таким образом, в углеводородах ряда циклогексана термодинамическая устойчивость стереоизомеров будет зависеть от числа аксиально ориентированных заместителей, подобно тому как в углеводородах ряда циклопентана устойчивость связана с числом г ис-вицинальных взаимодействий. Энергия перехода аксиально ориентированного метильного радикала в экваториально ориентированный, равная 1800 кал1молъ, определяет, что в равновесии в системе е нри комнатной температуре будет находиться около 95% метилциклогексана с экваториальной ориентацией метильного радикала (см. рис. 9). При двух заместителях, например, в диметил-циклогексанах, количество диаксиальных изомеров будет еще меньшим и конформационное равновесие в системе аа ее практически [c.28]

    Экспериментальное определение равновесия между этими сте-реоизомерами показало заметно большую устойчивость экзо-изомеров [33]. Различие в устойчивости эндо- и экзо-изомеров связано с пространственным взаимодействием замещающего радикала и связи 1—6 (вернее, эи5о-атома водорода при С-6 ) второго циклонентанового кольца. Правда, из-за искажения планарной формы циклопентановых колец взаимодействие это меньше, чем в г ис-1,2-диметилциклопентане, что находит свое отражение в относительно большей концентрации неустойчивого (эндо) изомера (см. табл. 20). [c.65]

    В соответствии с известным правилом диенового синтеза радикал В занимает главным образом эндо-полотеаие. Более трудным является прямой синтез ангулярного 1-метилнорборнана. Использование метилциклопентадиена не приводит к получению однозначных продуктов, так как метилзамеш енные циклопентадиены суш,ествуют в виде двух легко переходяш их друг в друга изомеров [76]  [c.274]

    В работах, посвященных метиленированию циклических углеводородов, прежде всего было показано, что реакция протекает и здесь по тем же закономерностям, что и в углеводородах с открь[той цепью. В табл. 77 приведены результаты метиленирования этилциклопентапа и метилциклогексана, указывающие на хорошее совпадение количества ожидаемых и образующихся при метиленировании углеводородов. Следует обратить также внимание на то, что при метиленировании этилциклопентапа получаются не все теоретически возможные гомологи состава Сд, а лишь те углеводороды, которые могут образоваться при замещении водородных атомов в исходном углеводороде на метильный радикал (например, в образовавшейся смеси изомеров отсутствуют три-метилциклопентаны, синтез которых метиленированием этил-циклопентана, естественно, невозможен). Это обстоятельство и определяет отмеченную выше специфичность в получении смесей изомеров следующего очередного гомолога. Типичная хроматограмма продуктов метиленирования приведена на рис. 80. Метиленирование осуществлялось в кварцевой пробирке объемом около 2 мл, снабженной рубашкой для непрерывного охлаждения водой. Источником облучения служила водородная лампа типа ПРК-2. Реакционная смесьнредставляла собой раствор диазометана в исходном углеводороде. Диазометан получался в самом опыте взбалтыванием нитрозометилмочевины, водного раствора щелочи и исходного углеводорода. Подробности эксперимента описаны [c.292]

    Сульфирование фталевых кислот. Ароматические соединения, содержащие два направляющих в лета-положение радикала, сульфируются чрезвычайно трудно. При нагревании фталевой кпслоты с серным ангидридом в запаянной трубке при 100—105 образуется лишь небольшое количество 4-сульфокислоты [269, 270]. Лучшие результаты получаются в автоклаве и при более высокой температуре [271] или при пропускании серного ангидрида через фталевый ангидрид, нагретый до 190 —210° в стеклянной аппаратуре [272]. Продукт, получаемый нагреванием смеси фталевого ангидрида и 20—25%-ного олеу ма [270] до 190—210° и пропусканием через нее серного ангидрида, содержит кроме 4-сульфокислоты [239 д] небольшое количество 3-изомера. Соли обоих изомеров [273] подробно изучены. В присутствии солей ртути [274] сульфирование идет скорее и 3-сульфокислота становится главным продуктом реакции. При действии серного ангидрида и сульфата ртути [c.42]

    Уже в течение первых десятилетий XIX в. число известных органических веществ начало возрастать с каждым годом. Было установлено, что многие органические соединения обладают значительно более сложным строением, чем неорганические вещества, и открыто явление изомерии (см. стр. 27). Это поставило перед исследователями, казалось бы, неразрешимую задачу объяснить и систематизировать все многочисленные новые явления. Великие ученые того времени — Берцелиус, Дюма и Либих ясно видели все значение стремительно развивающейся органической химии и пытались вместе с другими исследователями постепенно систематизировать все вновь открытые соединения и рассмотреть их с какой-нибудь определенной точки зрения. Это стремление нашло свое выражение в теории радикалов и ее предшественнице — этериновой теории. Первоначально термином радикал обозначали атом или группу атомов в кислородных соединениях, а именно остаток , не содержащий кислорода. Позднее это понятие было расширено, и название радикал стали применять также для групп атомов в соединениях, не содержащих кислорода, при условии, если эти группы атомов отвечали некоторым определенным условиям. По определению Либиха, радикал представляет собой не-изменяющуюся составную часть ряда соединений и может быть замещен в этих соединениях какими-нибудь другими простыми телами из соединений радикала с каким-либо простым телом это последнее может быть выделено и замещено эквивалентным количеством других простых тел . [c.18]

    Аналогичные выводы следуют и из работы Наталис [121] который показал, что при электронной бомбардировке этиле новых углеводородов типа К—СН = СН—К, где К и К — ме тильный, этильный, втор-пропильпый и трег-бутильный ради калы, отношение интенсивностей пиков молекулярнь(х ионов транс- и цыс-изомеров по мере увеличения радикала возрастает. Наблюдаемый эо[)фект связан с освобождением при ионизации цис-изомера с большим алкильным радикалом избыточной энергии, что способствует более быстрому распаду образующегося иона. Авторами на масс-спектрометре МХ-1304 было проведено исследование масс-спектров цис- и гранс-изомеров пентена-2. Оказалось, что при энергии электронов 70 эв кривые распределения обоих изомеров практически идентичны, но при 20 эв количество ионов, содержащих 5 атомов углерода для транс-пентена-2 примерно на 20% больше, чем для цис-пентена-2, что позволяет идентифицировать эти изомеры. [c.60]

    В процессе исследования сланцевого керосина возникла задача идентификации тиофенов с молекулярным весом 126— 154. Так как известно лишь небольшое число соединений такого типа, то метод прямого сравнения оказался непригодным. Рассмотрение масс-спектров тиофенов и гомологов бензола позволило установить зависимость между распределением интенсивностей пиков ионов и положением заместителей в кольце. Характерными оказались максимальный пик, пик молекулярного нона М+, ппк на единицу меньше молекулярного (М—])+, пик ионов (М—31)+ и пики ионов с массами 85,84, 79, 78, 59, 43, 41. Например, в масс-спектрах 2,5-диметилтио-фена и изомеров метилтиофена максимальные пики соответствуют ионам (М —1)+ с массой 111 и 97, соответственно. При замене метильного радикала на этильный появление максимальных пиков обусловлено образованием ионов (М—15)+ с массами 97 (2-этилтиофен), 125 (2,5-диэтилтиофен) и 153 (2, 3, 5-трнэтилтиофен). В отличие от производных тиофена в спектрах алкилбензолов, содержащих как метильные, так и этильные радикалы, максимальные пики соответствуют ионам (М—15)+ с массами 91 (1, 4-диметилбензол, этилбензол), 119 (1, 4-диэтилбензол) и 153 (1,3,5-триэтилбензол). Комбинируя эти корреляционные признаки с особенностями масс-спектров производных тиофенов,полученных метилированием и гидрированием, а также ртутных производных, удалось установить структуру гомологов тиофена в диапазоне молекулярных весов 126—154 и моно- и дизамешенных бензолов с молекулярным весом 120—148. [c.119]


Смотреть страницы где упоминается термин Изомеры и радикалы: [c.235]    [c.98]    [c.69]    [c.245]    [c.281]    [c.43]    [c.127]    [c.102]    [c.110]    [c.36]    [c.49]    [c.53]    [c.67]    [c.76]    [c.126]   
Смотреть главы в:

Краткая история химии -> Изомеры и радикалы




ПОИСК





Смотрите так же термины и статьи:

Изомерия алкогольных радикалов

Изомерия изомеры радикалов в цикле

Изомерия радикалов

Изомерия радикалов Метамерия



© 2025 chem21.info Реклама на сайте