Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитическая полимеризация с серной кислотой

    Каталитическая димеризация олефинов. Продуктом полимеризации изобутилена в присутствии разбавленной серной кислоты является смесь триметилпентенов, состоящая примерно из четырех частей 2,4,4-триме- [c.222]

    Ацидолиз. Один из способов получения безводной акриловой кислоты заключается в нагревании метилакрилата с 98%-ной М. к. в присутствии каталитических количеств серной кислоты и гидрохинона как ингибитора полимеризации [6]. [c.328]


    Вскоре после этого (1934 г.) был запатентован [169] процесс каталитической полимеризации изобутана (эта реакция была открыта Бутлеровым) с холодной серной кислотой в качестве катализатора. При этом получался продукт, почти целиком состоящий из 2,4,4-триметилпентена-1 и 2,4,4-триметилпентена-2. Гидри- [c.56]

    Наряду с высокими адсорбционными свойствами, активный уголь, как уже отмечалось, обладает в ряде случаев реакционной способностью. Каталитическую активность угля используют при получении фосгена из окиси углерода и хлора, соляной кислоты из хлора и воды, серной кислоты из кислорода, сернистого ангидрида, воздуха и воды. Активный уголь ускоряет реакцию полимеризации непредельных углеводородов и это свойство используют для удаления диоле-финов из бензина [52]. [c.299]

    Кроме полимеризации некоторых простых олефинов, разбавленная серная кислота каталитической гидратацией образует спирты. В случае изобутилена баланс между этими двумя реакциями представляет практический интерес. Абсорбированное количество является функцией водного содерн ания кислоты для наибольшей части олефина, присутствующего в растворе как третичный бутиловый спирт [385]. Однако этот раствор, если его оставить на несколько дней или тотчас же при нагревании до 80—100° С дает свободную кислоту и димер-тримерную смесь 1386] более короткое время реакции при более высокой температуре способствует образованию более летучих полимеров. Летучесть конечных полимеров можно контролировать, регулируя перед нагреванием кислотность раствора [387]. В открытой системе не весь абсорбированный изобутилен нолимеризуется часть его переходит в отходящий газ. Количество перешедшего в газ изобутилена опять-таки зависит от кислотности. Низкая кислотность способствует высокому газообразованию более высокие кислотности дают больше полимера, но он содержит меньше димеров. Это соотношение приведено на рис. П-5, который иллюстрирует взаимодействие в системе изобутилен — 63,5 %-пая серная кислота (кислота такой концентрации, полностью загруженная в изобутилен при комнатной температуре, титруется до получения 30 г НаЗО на 100 мл раствора). [c.113]

    В условиях каталитической полимеризации наиболее легко в реакцию вступает изобутилен, затем -бутилены, пропилены и труднее всех этилен. Сырьем для промышленных установок каталитической полимеризации служат углеводородные фракции Сз и С, содержащие пропилен и бутилены. Пропан-пропиленовая и бутан-бутиленовая фракции газов термического и каталитического крекингов, коксования, пиролиза и других процессов могут подвергаться полимеризации вместе или раздельно. Катализатором обычно служит серная или фосфорная кислоты. [c.19]


    Смесь бутан-бутиленов каталитического и термического крекинга составляется таким образом, чтобы соотношение изо- бутана и бутиленов в сырье, поступающем на алкилирование, в среднем составляло 1,2—1,25 1. При этом серной кислоты расходуется 21%. При уменьшении отношения изобутана к бутиленам в сырье расход серной кислоты повышается за счет побочных реакций (полимеризации и т. п.). [c.173]

    Если же включить в состав завода установки коксования, каталитического крекинга, каталитического риформинга, алкилирования изобутана бутиленами и полимеризации пропиленовой фракции крекинг-газов, то можно получить автомобильный бензин (до 205° С) с октановым числом 72, а выход его составит 30,5% на нефть. При этом же варианте переработки нефти на заводе получится около 6,4% на нефть ценных углеводородных газов, которые можно использовать как сырье для химической промышленности (не считая 0,6% сероводорода для производства элементарной серы или серной кислоты). [c.12]

    Каталитическую полимеризацию в присутствии серной кислоты можно вести только для сырья, свободного от примесей стирола, так как в противном случае будут получены темные смолы с низкой температурой размягчения. Светлые смолы с высокой температурой размягчения получают только при использовании в качестве катализатора хлорида алюминия и, предпочтительно, при использовании узкой фракции. [c.317]

    Полимеризация в присутствии хлорида алюминия. Хлорид алюминия отличается от широко применяемых катализаторов - фосфорной и серной кислот - более высокой каталитической активностью, большей избирательностью и применяется главным образом, например, при получении полиизобутиленов. [c.45]

    Катионообменные смолы (катиониты)—гетерополикислоты, состоящие из высокомолекулярной матрицы и катионогенных групп (чаще всего 50зН, СООН, РО3Н2, АзОзНг) и обладающие каталитическими свойствами [17]. Основой в большинстве случаев является полистирольная матрица, которую получают суспензионной полимеризацией с последующим сульфированием серной кислотой (в случае присутствия сульфокислотной группы). В зависимости от условий образуются гелеобразные либо макропористые полимеры, а при использовании полистирола с полипропиленом — формующиеся катализаторы. Наряду с поли-стирольной основой применяют и другие, например, силоксано-вые и фторопластовые. Активность катализатора определяется как свойствами полимерной основы, степенью сульфирования, так и размерами зерна катализатора, степенью его пористости, термической стабильностью и кислотностью.  [c.26]

    К гомогенным каталитическим реакциям относятся реакции, протекающие в газовой фазе и в растворах. Сюда относится катализируемая оксидом азота реакция окисления диоксида серы кислородом, применяющаяся в камерном и башенном способах производства серной кислоты, реакции омыления эфиров и инверсии сахара, ряд реакций разложения и полимеризации. [c.342]

    Для каталитической полимеризации в промышленной практике обычно применяют один из двух катализаторов фосфорную или серную кислоту. [c.269]

    Каталитическая полимеризация с серной кислотой. Известны два варианта сернокислотной полимеризации бутан-буте-новой фракции холодный и горячий процессы. Оба эти процесса [c.274]

    Гомогенно-каталитические реакции особенно распространены при проведении процессов в жидкой фазе. К таким процессам относятся ускоряющиеся под действием водородных ионов реакции этерификации и гидролиза сложных эфиров, инверсии сахаров, мутаротации глюкозы, а также катализируемый некоторыми анионами и катионами распад перекиси водорода в водных растворах. Кроме того, гомогенно-каталитическими являются реакции полимеризации олефинов в жидкой фазе под действием серной кислоты, полимеризация олефинов в жидкой и паровой фазах в присутствии трехфторнстого бора или фтористого водорода и многие другие. [c.276]

    Полимеризация в присутствии кислых катализаторов в настоящее время находит лишь ограниченное применение. Из большого числа катализаторов этого типа чаще всего используют каталитические системы, содержащие серную кислоту. [c.283]

    Серная кислота способствует каталитической полимеризации непредельных соединений [c.77]

    В реальных условиях, кроме морского или почвенно-эрозионного аэрозоля, атмосфера содержит значительное число мелких, субмикронных частиц. Наиболее тонкодисперсная фракция аэрозолей в атмосфере генерируется процессами газохимических реакций с образованием кластеров. В реальной атмосфере наиболее широко распространенным компонентом этого типа аэрозолей являются соединения серы, благодаря чему он получил название сульфатного. В стратосфере сульфатный аэрозоль продуцируется процессами фотохимических реакций с образованием частиц растворов серной кислоты. Среди других компонентов к этому типу источника аэрозолей принадлежат частицы воды или водных растворов, генерируемые в процессе ионной гидратации. В промышленных районах в результате ионных реакций образуются частицы сажи. Причем сам процесс полимеризации частиц сажи может происходить как путем образования кластеров, так и каталитически на поверхности уже существующих частиц субмикронной фракции. Далее обратимся к анализу процессов генерации сульфатного аэрозоля, имея в виду его широкую распространенность. [c.15]


    Кроме каталитической полимеризации в присутствии твердого фосфорнокислотного катализатора применялась также полимеризация в присутствии серной кислоты в двух вариантах при низкой (25—30° С) и высокой (90° С) температурах. Кислота концентрации 60—70% оказывает сильное коррозионное [c.228]

    Процессы А —обессоливание и перегонка Б—ароматизация В—каталитический риформинг Г — каталитический крекинг Д — контактное коксование (испарение) Е —газофракционирующая установка Ж — гидроочистка 3—термический крекинг И — алкилирование К — полимеризация Л — депарафинизация М — синтез на базе атака и пропана Н —синтез сульфонола О — окисление П — подача на крекинг отходов масляного производства Р — производство серной кислоты. [c.413]

    Интересно отметить, что з присутствии каталитических количеств серной кислоты скорость полимеризации МВП—МЭТСК сильно увеличивается (рис. 5). Такое же увеличение скорости полимеризации наблюдается и при введении в систему КаН804. Выяснение роли Н 304 и КаНЗО в полимеризации МВП—МЭТ(Ж проводится в настоящее время. [c.14]

    Алкилсульфокислоты. При контактировании изобутилена с такими алкилсульфокислотами [621, как метил-, итил- и бутилсульфокислоты, а также смешанные алкилсульфокислоты, нри 30—70 и атмосферном давлении образовывались димеры, тримеры и тетрамеры с преобладанием тримеров. Содержание в сульфокислотах до 12% серной кислоты мало влияет или совсем не влияет на течение реакции нолимеризащш при температурах ниже 70. Активность этих кислот как катализаторов полимеризации изобутилена приблизительно эквивалентна каталитическому действию 75 %-ной серной кислоты. Хотя при применении серной кислоты как катализатора полимеризации изобутилена концентрация ее имеет решающее значение, тем пе менее для алкилсульфокислот были получены приблизительно одинаковые результаты при применении кислот с колебаниями концентраций в широких пределах — от 80 до 100%. [c.194]

    Вторичный бутиловый спирт. Вторичный бутиловый спирт образуется при поглощенпп бутена-1 или бутена-2 78—80%-ной серной кислотой, после чего следуют разбавление и гидролиз. Более высокие концентрации кислоты вызывают значительную полимеризацию. Вторичный бутиловый спирг конвертируется в метил-этилкетон путем каталитического окисления или дегидрирования. [c.578]

    Полимеризация кислыми катализаторами в настоящее время находит лишь ограниченное применение. Из большого числа катализаторов этого типа [3, с. 42] в промышленности используются только каталитические системы, содержащие серную кислоту. Концентрированная N2864 была применена при синтезе первого описанного в литературе высокомолекулярного ПДМС. Полимеризация Д4 в присутствии 1—3% (масс.) Н28О4 проходит при комнатной температуре за 2—8 ч, после чего в полимер добавляют воду (около 50% от массы взятой кислоты). При этом молекулярная масса полимера резко падает, а затем в процессе выдерживания (дозревания) в течение 20—60 ч медленно возрастает до нужного значения (4- 6)-10 . Дозревший полимер отмывают от кислоты водой и сушат. Аналогично полимеризуют другие циклосилоксаны. Электроноакцепторные или стерические емкие заместители замедляют полимеризацию. [c.473]

    В переработке нефти широко применяются разнообразные каталитические процессы. Наиболее широко применение катализаторов в процессах синтеза, а именно при полимеризации олефи-но В (катализат0 0ы серная кислота, фосфорная ислота активированные отбеливающие глины соли фосфорной кислоты и др.) при алкилирования (катализаторы серная иислота, фтористоводородная кислота, хлористый алюминий). [c.118]

    Такие ценпые реакции могут протекать с участием либо свободных радикалов, либо ионов кapбoгпIЯ . Ниже будут описэны господствующие в настоящее время представления о механизме упомянутых выше цепньлх реакций. К реакциям, протекающим с участием свободных радикалов, в первую очередь относятся такие процессы, как термическая полимеризация, термический крекииг и термическое алкилирование. В противоположность этому, реакции с участием ионов карбония являются каталитическими и протекают в присутствии сильных кислот (безводного хлористого алюминия, фтористого водорода, серной кислоты, фтористого бора, фосфорной кислоты, гидросиликата алюминия). При этом температуры реакций, как правило, невелики, за исключением температуры при каталитическом крекинге. К последним реакциям принадлежат каталитическая полимеризация, каталитическое алкилирование, каталитическая изомеризация парафиновых углеводородов и часто встречающаяся при различных превращениях олефинов побочная реакция переноса водорода от одпой молекулы олефина к другой. [c.333]

    Получены многокомпонентные полимерные системы. Системы на основе концентратов асфальто-смолистых соединений и диеносодержащих кубовых остатков получены конденсацией прн температуре 100-170 " С в присутствии концентрированной серной кислоты, как каталитического и сульфирующего вещества [36] На основе асфальта деасфальтизации гудрона и смол от производства изопрена (зеленого масла) получены олигомеры Асмол и Асмол2 [37,38]. Другая группа полимерных систем получена неглубокой термической полимеризацией стирола в среде высокомолекулярной ароматической фракции арланской нефти при температурах до 200 - 250 °С [39], Химизм процесса в обоих случаях крайне сложен и мало изучен, тем не менее, отдельные де1 али процесса удается выявить. Реологическими исследованиями и спектральными методами определена энергия активации вязкого течения На рис 5 4 показана зависимость среднечисловой молекулярной массы, определенной по крио-скопическим данным от эффективного ПИ Для обоих систем, чем выше молекулярная масса, тем ниже ПИ. Известно, что с ростом степени конденсации я-электронных систем уменьшается ПИ и растет СЭ. Эти результаты означают увеличение доли полисопряженных ароматических систем в ходе полимеризации [c.102]

    Примеси меркаптанов раньше удаляли, например, промывкой раствором едкого натра. В настоящее время бензины, полученные каталитическим крекингом, не содержат серы. Обессеривание же дизельного горючего проводят теперь только каталитически, например, путем обработки водородом на молибденовых катализаторах при 360° и приблизительно 15 аг, в результате чего сера превращается в сероводород (гидрофинированне). Диолефины, являющиеся особенно вредной примесью в моторном топливе, удаляют либо промыванием 90 /о серной кислотой, либо полимеризацией над каолином при температуре 120— 250° под давлением. Моторное топливо, содержащее олефины, часто стабилизуют добавкой антиоксидантов, чтобы не понижать выход бензина и иметь воз.можность оставить в бензине олефины, необходимые для достижения высокого октанового числа. [c.93]

    Каталитическое действие фтористого бора и серной кислоты на реакцию полимеризации изобутилена впервые изучал А. М. Бутлеров, затем С. В. Лебедев. Ими были получены три-, тетра- и пентамеры изобутилена. [c.201]

    Особенностью ДКГ является повышенное содержание свобод ой серной кислоты и сульфокислот.Поэтому следует предполагать повышенную реакционную способность в процессах катионной полимеризации и каталитических процессах с участием ионов водорода. Олигомерные смолы отличаются повышенным содержанием непредельных соединений - диенов и олефинов,примерно в 3,5 разабольшим,чем в смоле пиролиза,что подтверждает высокие малеиновые и йодные числа Od и 0С2.Это подтверждают [c.143]

    Химические процессы обычно осуществляют в потоке, т. е. струе газа, проходящей через реактор с заданной температурой. Последний может быть пустым или со слоем зернистого катализатора. Примерами реакций, осуществляемых в потоке, могут служить крекинг нефтепродуктов, гидрокрекинг, каталитическое алкилнрова-ние, полимеризация, гидро- и дегидрогенизация углеводородов, галогенирование, нитрование окислами азота, синтез аммиака, контактный способ получения серной кислоты, каталитический ри-форминг и т. п. [c.447]

    Ремиз и Фрост [1543] получали трет-бутиловый спирт гидратацией изобУТилена при температуре 85—95° растворами, содержащими 10—30 вес. % серной кислоты и 2—3% сульфата серебра. При пропускании газа над каталитическим раствором с большой скоростью выход спирта составлял 2—3 кг на 1 кг смеси серной кислоты с сульфатом серебра. Повышение температуры или концентрации кислоты способствовало более интенсивному протеканию процессов полимеризации. (См. также работу Катсуно [1007].) [c.321]

    После первых опытов Бутлерова, обнаружившего полимеризацию (олигомеризацию) изобутилена в присутствии серной кислоты и фтористого бора, в начале XX века В.Н. Ипатьевым бьша установлена возможность некаталитической высокотемператзфной полимеризации этилена при высоком давлении, а также полимеризации этилена и изобутилена в присутствии глинозема, хлоридов цинка и алюминия. Разработка нанесенного фосфорнокислотного катализатора позволила создать основы первого промышлешюго процесса полимеризации олефинсодержащих газов каталитического крекинга с получением полимербензина. [c.911]


Смотреть страницы где упоминается термин Каталитическая полимеризация с серной кислотой: [c.226]    [c.10]    [c.88]    [c.46]    [c.313]    [c.60]    [c.568]    [c.28]    [c.156]    [c.103]    [c.13]    [c.6]    [c.6]   
Смотреть главы в:

Технология переработки нефти и газа -> Каталитическая полимеризация с серной кислотой

Технология переработки нефти и газа -> Каталитическая полимеризация с серной кислотой




ПОИСК





Смотрите так же термины и статьи:

Каталитическая полимеризация

Полимеризация кислот

Полимеризация серной кислотой



© 2024 chem21.info Реклама на сайте