Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серная кис.юта как катализатор при

    В качестве окислителей могут быть использованы персульфат. аммония в присутствии катализаторов — солей серебра (I) или кобальта(П), висмутат натрия и перйодат калия. Реакцию окисления проводят в кислой среде определению мешают восстановители. Если хлориды присутствуют, то их предварительно удаляют выпариванием с азотной и серной кислотами. [c.494]


    При действии хлористых алкилов или олефинов на ароматические углеводороды или фенолы легко протекает реакция с образованием алкили-рованных соединений. Реакция алкилирования должна проводиться в присутствии различных катализаторов, к числу наиболее широко применяемых относятся хлористый алюминий, безводная фтористоводородная кислота, фтористый бор и серная кислота. При работе с -хлористым алкилом как алки-лирующим компонентом в качестве катализатора применяется хлористый алюминий и в некоторых случаях безводное хромное железо (реакция Фриделя-Крафтса). [c.226]

    Другой процесс промышленного получения кумола основывается на жидкофазном алкилировании бензола пропеном в присутствии серной кислоты как катализатора [76]. Исходные материалы должны обладать такой же чистотой, как и при газофазном алкилировании. Способ работы показан на схеме рис. 142. [c.231]

    Тиофен, который в последние годы производится в промышленных масштабах, также легко может алкилироваться каталитическим путем. Алкилирование тиофена бутенами или пентенами, а так>ке исключительно пригодным для этого циклогексепом может осуществляться пропусканием тиофена и олефинов или циклоолефинов над катализатором кремневая кислота — окись алюминия при 200° или над твердой фосфорной кислотой, как было выше описано для получения кумола, или также с серной кислотой. [c.231]

    Алкилирование с серной кислотой в качестве катализатора получило значение как способ производства алкилированного бензина, при этом изобутан алкилируется С3 — Са-олефинами. [c.253]

    Этерификацию проводят непрерывным методом. В медный котел, в котором находится небольшое количество серной кислоты в качестве катализатора, из расходных баков вводят приблизительно в стехио-метрическом соотношении спирт и ледяную уксусную кислоту. На котле смонтирована фракционирующая колонна, с верха которой непрерывно отгоняется азеотропная смесь амилацетата, амилового спирта и воды. Отгонку уксусной кислоты предотвращают обильным орошением колонны. [c.223]

    Первоначально фтористый водород применяли как катализатор алкилирования в ароматическом ряду [3, 35—43], а теперь он имеет большое значение как катализатор алкилирования в алифатическом ряду. Это объясняется большим расходом серной кислоты, особенно при алкилировании в системе пропилен — изобутан. Здесь расход [c.257]


    Дегидрогенизация считалась законченной, если при дальнейшем пропускании показатель преломления деароматизированного бензина не изменялся. Активность катализатора после опытов проверялась и оказалась почти прежней. Катализат не реагировал ни с бромной водой, ни со слабым щелочным раствором перманганата калия, что указывало на отсутствие в нем непредельных углеводородов. Объемный процент ароматических углеводородов, образовавшихся в. результате катализа, определялся взбалтыванием с двухкратным объемом 99% серной кислоты в течение 30 мин. Константы углеводородной смеси до и после катализа и удаления ароматических углеводородов, получившихся в результате катализа, сведены в табл. 1. Для выделения ароматических углеводородов, образовавшихся в результате катализа, сульфокислотный слой отделялся от смеси парафиновых и пента-метиленовых углеводородов, разбавлялся трехкратным объемом воды, и сульфокислоты гидролизовались по Кижнеру [11]. Ароматические углеводороды, получпвшиеся в результате гидролиза сульфокислот, отделялись от водного слоя, и после соответствующей промывки и сушки хлористым кальцием фракционировались над металлическим натрием кон-спгнти зт фракций даны в табл. 2. [c.63]

    Рунге с сотрудниками [78, 79] провели в 1952—1953 гг. обширные исследования по определению наиболее подходящих катализаторов для гидратации пропилена. С этой целью были изучены кислые катализаторы, такие, как серная кислота, нафталинсульфокислота, фосфорная кислота, кислые фосфаты, окись вольфрама без промотора и носителя, а также на различных носителях, например на активированном кислотой монтмориллоните. Показано, что серная кислота не подходит из-за нестойкости, а фосфатные катализаторы отличаются незначительной активностью. Фосфорные кислоты на носителях проявляют при средней крепости кислоты максимальную каталитическую активность, причем наилучшим носителем является крупнопористый силикагель. Выход в единицу времени на единицу объема составил 0,52 кг изопропилового спирта на 100 мл [c.62]

    Далее трехвалентный марганец окисляет диоксид серы, переходя снова в двухвалентный. Схема очистки отходящих газов этим методом приведена на рис. 22. Отходящие газы проходят башню, орошаемую разбавленной серной кислотой и барботеры, на рабо 1 лх тарелках которых размещен катализатор-пиролюзит. [c.60]

    При условии добавления небольших количеств воды для гидратации катализатора продолжительность его жизни достигает 700 ч 1 кг катализатора дает около 750—800 л кумола. Исходный бензол и пропилен должны быть очищены от серы. Содержание тиофена в бензоле допускается до 0,14%. Бензол предварительно очищается серной кислотой.  [c.269]

    Мы рассмотрим только задачу расчета двух- и трехстадийного реактора с подогревом перед первым адиабатическим слоем.Полная массовая скорость потока равна 7731 кг/ч такое количество исходной смеси заданного состава дало бы нри полном превращении 50 т 100%-п серной кислоты в день. Принятая система обозначений показана на рис. 111.16. Масса катализатора в п-м слое равна [c.243]

    Полимеризация в присутствии серной кпслоты. Действие серной кислоты как катализатора для полимеризащт олефинов ыло установлено еще А. М. Бутлеровым, который нашел, что прн действии изобутена на 70%-ную серную кислоту образуются ди- и триизо-бутены. [c.63]

    Соединения ванадия используются в химической промышленности в качестве катализаторов (производство серной кислоты), а также применяются в стекольной и других отраслях промышленности. [c.547]

    Катализаторы С — алкилирования. Из всех возможных кислотных катализаторов в промышленных процессах алкилирования применение получили только серная и фтористоводородная кисло — ты, некоторые свойства которых приведены ниже (для 100 % —ных кис/от)  [c.139]

    В течение некоторого времени в технике применялся способ получения изопрена из изобутена и формальдегида. Формальдегид взаимодействует с изобутепом в присутствии 20%-ной серной или 40%-ной фосфорной кислоты при комнатной температуре с примерно 60%-ным выходом 4,4-диметилдиок-сана-1,3, который затем при пропускании над фосфорнокислым катализатором при 220° разлагается на изопрен, формальдегид и воду. [c.92]

    Опубликована исчерпывающая работа [22], посвященная это- лу методу синтеза. В этой реакции принимают участие следующие четыре компонента ароматическое соединение, например фенол, эфнр фенола, производное пиррола или фурана нитрил кислота, например соляная или серная катализатор, например хлорид или бромид цинка, хлорид алюминия или железа (III) однако в некото-лрых случаях катализатора не требуется. [c.125]

    Серная кпслота применяется в настоящее время как катализатор при получении диизобутепа, который каталитическим гидрированием превращается в п,зооктан (2,2,4-триметилпентан) — широкоизвестный эталонный углеводород (октагговое число равно 100), применяемым для определения антидетонационных свойств карбюраторных топлив. [c.63]


    Применение некоторых катализаторов значительно ускоряет процесс сернокислотной гидратации. Для этой цели используются соли железа, кобальта, никеля, меди, платины, серебра [41, 42], а также соединения висмута [43, 44]. Сульфат серебра [45, 46] и соли меди [47—49] сильно ускоряют гидролиз сложных эфиров серной кпслоты. Рекомендуется применять в качестве катализаторов галогениды бора пли бораты в соединении с сульфатами никеля и других тяжелых металлов [50]. Необходимые для этого реакционные условия определены Поповым [51]. При высоком давлении и высокой температуре каталитическое действие проявляют сульфаты органических оснований, например изопроииламина, анилина, наф-ти.талшна, хинолнна [52], а также сульфаты и галогениды цинка, магния, бериллия [53] и алюминия [54]. Соли алюминия обладают каталитическим действием при высоком давлении и низких температурах в водном растворе. Наконец, следует упомянуть еще кремневую или борвольфрамовую кислоту и их соли [55], однако процессы с их участием протекают прн 200—300 °С под давлением уже, в газообразной фа.зе. [c.60]

    В присутствии водяного пара над серебряной сеткой как катализатором металлиловый спирт окисляется кислородом в метакролеин с 90%-пым выходом. Метакролеин образуется также с количественным выходом при нагреве метилглицерина с 12%-ной серной кислотой. [c.171]

    Присоединение окиси углерода и воды к олефинам в присутствии катализаторов, особенно концентрированной серной кислоты, с образованием карбоновых кислот разветвленного строения идет с исключительно хорошими выходами при определенных условиях даже в отсутствие давления. Целесообразно работать при температуре от О до 50° н при давлении окиса углерода 50—100 ат в присутствии 96—97%-нои серной кислоты. В этих условиях из нропена получают изомасляную кислоту, а из изобутена — триметилуксусную кислоту [52]. Реакция идет в строгом соответствиш с правилом Марковникова  [c.220]

    Рпс. 142. Схема жидкофазного алкилировапня бензола в кумол с серной кислотой в качестве катализатора. [c.230]

    Алкилирование бензола тетрамером пронена может проводиться также в присутствии серной кислоты, лучше 100%-ной, при 10—20° непрерывным способом. Компоненты энергично перемешивают в смесителе в течение 1 часа, а затем подают в разделитель, где кислота быстро отделяется от углеводорода. Серная кислота возвраш ается в процесс, а углеводородный С.110Й нейтрализуется и нерегопкой освобождается от избыточного бензола. Условия работы при алкилировании бензола тетрамером пропепа с серпой кислотой как катализатором следующие. [c.235]

    Когазин II содержит интересную во многих отношениях смесь парафиновых углеводородов с 10—20 углеродными атомами в молекуле. Кроме того, в нем содержится еще в среднем около 10% соединений, абсорбируемых смесью пятиокиси фосфора с серной кислотой, главным образом олефиновых углеводородов и кислородных соединений. Для превращени5г в насыщенные углеводороды эти соединения восстанавливают на сульфидных гидрирующих катализаторах, например сульфиде никеля и сульфиде вольфрама, при 300—350° и 200 ат. Так получают бесцветную и прозрачную смесь полностью насыщенных парафиновых углеводородов с различной длиной углеродной цепи, содержащих 15— 20% изопарафинов. Такая смесь высокомолекулярных парафиновых углеводородов является превосходным сырьем для химической переработки. [c.9]

    Смешанные богатые газы (при переработке упоминавщихся 250 м час угольной пасты образуется около 15 000 м 1час богатого газа на жидкой фазе процесса и 5000 ж /час а паровой) подвергают алкацид-пой очистке при давлеиии около 2 ат и дополнительно щелочной промывке для полного удаления остаточного сероводорода. Небольшие количества сероводорода в объединенных богатых газах получаются частично в результате расщепления сернистого карбонила и меркаптанов, еще содержащихся в богатых газах жидкой фазы после предварительной алкацидной очистки (см. стр. 33 оригинала), и частично за счет сероводорода, добавляемого для осернения катализатора бензинирования. Извлекаемый сероводород снова используется для осернения катализатора, а избыток перерабатывается на серную кислоту или элементарную серу. [c.43]

    В качестве катализаторов при получении галоидалкилов из спиртов применяют концентрированную серную кислоту, хлористый магний или хлористый цинк. Можно применять также хлористое железо и другие не растворимые в воде хлориды многовалентных металлов от хрома до висмута, как, например, олова или меди.  [c.193]

    Чаще всего алкилирование арилсульфонатов проводят олефинами в присутствии серной кислоты, безводного хлористого алюминия или фтористого водорода в качестве катализаторов [251] (см. второй том). В 1949 г. производство арилсульфоната на основе бензола составило около 66 000 т в пересчете на 100%-ное активное вещество, а к 1953 г. оно возросло приблизительно до 250 ООО г. [c.249]

    Опираясь на вычисленные отношения термодинамического равновесия для различных гексеновых изомеров в области от 300 до 1000 К (рис. 50), Баас и сотрудники показали, что для достижения максимальной конверсии 2-метилпентена-1 в 2-метилпентен-2 в каждый проход следует поддерживать как можно более низкую температуру. Исследования Эммета (105] подтвердили, что подобную изомеризацию легко осуществить в мягких условиях со слабокислыми катализаторами [10] и что сдвиг двойных связей при этом проходит очень селективно. Эти результаты подтверждаются и другими авторами. Описан метод, по которому можно изомеризовать 2-метилпентеп-1 прп комнатной температуре с 50% раствором серной кислоты, получив при этом равновесную смесь 2-метилпентена-1 и 2-метилпентена-2 [107]. [c.228]

    МОЖНО алкплировать изобутан пропиленом, получая изогептаны [15, 16]. После этого кислота еще разбавляется и в таком виде используется для алкилирования изопентана С - и Ст-олефинами, а также для селективного вымывания диолефинов. После этого кислота регенерируется. Регенерация серной кислоты определяет минимальную мощность алкилирования, обеспечивающую рентабельность установки. На меньших установках выгоднее работать только с фтористым водородом [17]. (При отсутствии обработки потери катализатора в присутствии фтористого водорода значительно уменьшаются [18].) [c.256]

    Вследствие нежелательной конденсации фенола с а-метилстиро-лом и а-кумиловым спиртом при разложении КМГП образуются смолы, для удаления которых проводят а) реакцию остатка с концентрированной серной кислотой и гидрирующее расщепление при 350 °С и давлении 50 кгс/см на кобальт-молибденовом катализаторе (носитель А12О3) с образованием фенола и различных углеводородов [364—365] б) сульфирование остатка серной кислотой и связывание формальдегида катиопобмеиными соединениями [366] в) термическое расщепление остатка при 240—400 °С с получением добавочного количества фенола [367]. [c.283]

    Исходный пропилен должен быть очнь чистым 099,5%), ни в коем случае не должен содержать азотных, фосфорных и серных соединений и ацетиленов. Этот метод дает выход в единицу времени на единицу объема около 100 катализатор, о котором подробных сведений не имеется, необходимо регенерировать каждые 2—10 дней. Исходным продуктом могут служить также и смеси пропан — пропилен. При использовании чистого пропилена конверсия составляет 43—44%, селективность 94—98%. После перегонки получаются очень чистые продукты 99,8%-ный этилен и 96,4%-ный бутен-2 (наряду с 3,46% бутена-1). Бутен-2 можно либо подвергнуть алкилированию, либо дегидрировать в бутадиен. В настоящее время бутен-2 в основном и используется для получения бутадиена. Дегидрирование можно осуществлять термически или лучше каталитически (выход 76,9%) [13] присутствие бутена-1 при этом нежелательно [14-16]. [c.327]

    Однако уже давно было замечено, что скорость электроосаждения, а также электрорастворения металлов группы железа зависит от pH раствора и присутствия в нем примесей. Р. X. Бурштейн, Б. Н. Кабанов и А. Н. Фрумкин (1947) высказали предположение о непосредственном участии ионов 0Н в кинетике этих процессов. По их мнению, ионы 0Н играют роль своеобразных катализаторов. Механизм реакций катодного осаждения и анодного растворения железа, кобальта и никеля с образованием промежуточных частиц типа РеОН, РеОН+ или Ре-Ре0Н+ рассматривался затем Хейслером, Бокрисом, Фишером и Лоренцом и многими другими авторами. Было предложено несколько схем, объясняющих такие экспериментальные данные, как характер зависимости скорости реакции от pH, небольшой наклон тгфелевской прямой в чистых растворах серной кислоты, его повыщение при переходе к растворам соляной кислоты и при введении добавок поверхностно-активных веществ и т. д. В качестве иллюстрации можно привести схему Бокриса [c.473]

    Экспериментальная часть. Мирзаанский бензин был выделен нами путем фракционирования мирзаанской нефти. Ароматические углеводороды удалялись 99% серной кислотой. Из деароматизированного бензина отбиралась фракция 95—122° и подвергалась дегидрогенизации ыа платинированном угле при 300—305° со скоростью 6 мл/час. Платинированный уголь был приготовлен по указанию Пак-кендорфа и оТедер-Паккендорф [9], Катализатор в количестве 33 г помещался в стеклянную трубку диаметром в 2 см длина слоя катализатора 60 см. Трубка нагревалась в электропечи типа Гереуса, температура которой измерялась термопарой и регулировалась терморегулятором. Активность [c.62]

    Дегидрирование деароматизированных фракций проводили при 310—315°С, скорость подачи фракции над катализатором была равна 6 мл/ч.ас. Полнота дегидрирования проверялась измерением показателей лучепреломления ка-тализатов. В процессе дегидрирования катализатор характеризовался высокой активностью. Катализаты не содержали ценасыщенны.х углеводородов (не обесцвечивали бромную воду и слабощелочной раствор перманганата калия). Образовавшиеся в результате дегидрирования гексагидроарома-тических углеводородов, ароматические углеводороды удалялись из катализатов дымящей серной кислотой (уд. в. 1,865). [c.71]

    Собственная ионизация жидкого HNO3 незначительна. С водой HNOg смешивается в любых отношениях. Его растворы — сильная кислота, называемая азотной. В лаборатории азотную кислоту получают действием концентрированной серной кислоты на нитрат натрия. Промышленное производство HNOg осуществляется по стадиям скисление HgN в N0 кислородом воздуха на платиновом катализаторе  [c.356]

    В 1932 г. В.Н. Ипатьев показал возможность взаимодействия считавшегося до того инертным изобутана с олефинами. В качестве катализатора были использованы сначал11 А1С1з, затем серная и фтористоводородная кислоты. Первая промышленная установка сернокислотного С —алкилирования была введена в эксплуатацию и США в 1938 г., а фтористоводородного — в 1942 г. Целевым продуктом вначале был исключительно компонент авиабензина и лишь в послевоенные годы на базе газов каталитического крекинга алкилирование стали использовать для улучшения мотор и ых качеств товарных автобензинов. Первая отечественная установка сернокислот — ного a/Jшлиpoвaния была введена в 1942 г. на Грозненском НПЗ. [c.137]

    Соотношение серная кислота сырье характеризует концентрации катализатора и сырья в реакционной смеси. Скорость процесса С — алкилирования в соответствии с законом действующих поверхностей должна описываться как функция от произведения концентраций кислоты и углеводородов на границе раздела фаз (то есть поверхностных концентраций). Соотношение катализатор сырье должно быть в оптимальных пределах, при которых достигается м<1ксимальный выход алкилата высокого качества. Оптимальное згачение этого отношения (объемного) составляет около 1,5. [c.144]

    Катализаторы О — алкилирования. Из предложенных гомогенных (серная, фосфорная, борная кислоты) и гетерогенных (оксиды алюминия, цеолиты, сульфоугли и др.) кислотных катализаторов в промышленных процессах синтеза МТБЭ наибольшее распространение получили сульфированные ионообменные смолы. В качестве полимерной матрицы сульфокатионов используются полимеры различного типа поликонденсационные (фенол — формальдегидные), полимеризационные (сополимер стирола с ди — винилбензолом), фторированный полиэтилен, активированное стекловолокно и некоторые другие. Самыми распространенными являются сульфокатиониты со стиролдивинилбензольной матрицей двух типов с невысокой удельной поверхностью около 1 м /г [c.149]

    В химической промышленности электрофильтры используют в производстве серной кислоты, горячего фосфора, фосфорной кислоты и др. В нефтеперерабатывающей и нефтехимической промышленности их широко применяют для очистки от частиц катализатора газов, выбрасываемых в атмосферу в процессах каталитического крекинга н дегидрирования, улавливания ожи-жен1юго катализатора в производстве высокооктанового бензина. [c.47]

    Серная кислота из башни выходит повышенной концентрации в результате многократной циркуляции, серную кислоту из бар-ботсров очишают от катализатора и наиравляют в узел сме-1леи ИЯ. [c.61]

    Жидкостно-контактный метод. Основан на окислении дноксида серы в жидкой фазе на поверхности катализатора, например активного угля. По мере увеличения концентрации серной [c.61]


Смотреть страницы где упоминается термин Серная кис.юта как катализатор при: [c.113]    [c.62]    [c.188]    [c.233]    [c.235]    [c.149]    [c.282]    [c.56]    [c.283]    [c.71]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте