Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Понятие о квантовой химии

    Во многих учебниках химии понятия и термины вводятся на основе представлений теории строения атома Бора такое положение затрудняет изучение основ квантовой химии. Поэтому в дальнейшем не применяются такие, например, термины, как круговые (эллиптические) орбиты электронов. В то же время представления об электронном облаке и электронных оболочках находят применение при квантовомеханическом описании строения атомов. [c.39]


    Приближенные способы решения уравнения Шредингера для систем, состоящих из многих ядер и электронов, интерпретация полученных решений в удобных и общепринятых терминах и понятиях, изучение и прогнозирование свойств молекулярных систем, новых веществ и материалов является объектом изучения специального раздела химии — квантовой химии. [c.100]

    Постоянное сокращение доли химических дисциплин, наблюдающееся, к сожалению, в учебных планах всех инженерных вузов, привело автора к мысли об объединении всех теоретических курсов химии, традиционно читаемых на разных кафедрах и в разное время, в единый курс, основанный на современных фундаментальных понятиях квантовой химии, химической термодинамики, статистической термодинамики и химической кинетики. [c.3]

    Вариационный принцип играет в квантовой химии особую роль, так как именно он лежит в основе большинства современных вычислительных методов квантовой химии. Введем некоторые понятия и сформулируем основные утверждения вариационного метода, обращая внимание на те детали, которые присущи квантово-химическим приложениям. Полное изложение метода дано, например, в [31]. [c.41]

    Квантовая химия объяснила природу химической связи, насыщаемость валентностей и их пространственную направленность, природу кратных связей, строение бензола и других бензоидных соединений, — перед всем этим прежняя теоретическая химия отступала. Таким образом, огромное влияние квантовой химии на развитие теории строения органических соединений не подлежит никакому сомнению. Но стала ли квантовая химия органичной частью той теоретической химии, к которой прибегает химик-органик в своей непосредственной работе по синтезу и анализу интересующих его органических соединений, по изучению протекания органических реакций Можно ли сравнить в этом отношении квантовую химию с классической теорией химического строения, со стереохимией, с традиционной физической химией Попытаемся ответить на этот вопрос, но сначала несколько слов о самом понятии квантовой химии.  [c.96]

    При изучении вопросов образования химической связи часто используют не чисто атомные 5-, р-, с1- и т. д. одноэлектронные функции, а некоторые определенные их линейные комбинации — гибридные функции. Прежде чем выяснить содержание и смысл последних, обратимся к важному понятию квантовой химии, непосредственно основанному на атомных состояниях — перекрыванию атомных функций. [c.28]


    Основным понятием квантовой химии, т. е. квантовой механики молекул, является понятие волновой функции Ч (г , г ,. . г ) всех входящих в молекулу электронов [1—3]. Квадрат абсолютной величины этой функции (т. е. величина заведомо положительная) есть вероятность того, что эти электроны находятся в точках с координатами г ,. . ., г . Сама же волновая функция при разных значениях координат электронов бывает ж положительной, и отрицательной, и даже комплексной. Это соответствует экспериментально доказанному представлению об электроне как о частице, обладающей волновыми свойствами. [c.7]

    Орбитали 0,, 02 воплощают идею о взаимодействии каждого валентного электрона в атоме бериллия с соответствующим ls-электроном в атоме водорода. Выбор угла а и был продиктован этими соображениями. При этом оказьшается, что локализованные на связях Ве—Н молекулярные орбитали со,, 02 представляют собой линейную комбинацию s—p гибридизованных атомных орбиталей бериллия и ls-вол-новых функций атома водорода. Такая конструкция МО напоминает соответствующее выражение (4.23) для LiH. На этом примере можно проследить возникновение понятия о валентном состоянии атома в пределах заданной молекулярной структуры. Первоначально это понятие было введено в квантовую химию в качестве априорного предполагалось, что проигрыш в энергии, связанный с возбуждением 2s 2р атома бериллия, будет в дальнейшем скомпенсирован вьшгрышем в энергии при формировании в данном примере двух химических связей Ве-Н. Отметим, что замена в определителе Слейтера орбиталей 2og, 1а их линейной комбинацией со,, 602 является вполне корректным преобразованием, переход же от со,, СО2 к со,, С02 представляет собой уже некоторую аппроксимацию. В литературе подробно изложено построение sp -и sp -гибридизованных орбиталей см. [9], [12], [20]. [c.229]

    Применение ингибиторов позволяет формировать на поверхности. металла защитну ю адсорбционную пленку, значительно снижать агрессивность коррозионных сред, влиять на кинетику электродных процессов, способств) я замедлению коррозии. Высокоэффективные и технологичные ингибиторы. механохимической коррозии могут быть созданы только посредством реализации методологии, имеющей под собой глубокую научную основу, которая представляет собой синтез понятий механохимии, электрохимии, квантовой химии и коррозионной механики о процессах, происходящих на поверхности напряженного металла в ингибированном электролите. [c.29]

    Рассмотрим основные характерные особенности квантовой механики. Чем раньше читатель освоит эти основные понятия, тем ему легче будет в дальнейшем применять на практике достижения квантовой химии. [c.29]

    Образование химической связи. Понятие о квантовой химии [c.100]

    Понятие о квантовой химии. В самом общем виде квантовая химия — это приложение современной квантовой теории для рещения химических проблем. Она занимается изучением строения и физико-химических свойств молекул, радикалов, комплексов н кристаллов на основе представлений современных квантовых теорий, в частности квантовой механики. Квантовая химия охватывает учение о природе химической связи, об электронной структуре молекул и других объектов исследования химии, а также вскрывает взаимосвязь между структурой и свойствами, включая реакционную способность веществ. Квантовая химия — современное учение о химическом и кристаллохимическом строении вещества, а также взаимосвязи между строением и свойствами на основе представлений и методов квантовой механики. Таким образом, квантовая химия представляет собой дисциплину на стыке физики и химии и имеет первостепенное значение для всей современной химии.. [c.88]

    Учение о строении вещества излагается на основе представлений квантовой химии. При изучении теории химических процессов широко используются понятия химической термодинамики, в частности решение вопроса [c.5]

    Квантовая химия дала всем толкованиям понятия валентности свое обоснование. А историко-логический анализ развития всего учения о валентности позволил создать систему понятий валентности [17], которую можно представить следующим образом. [c.57]

    Базисные функции представления. Для приложений теории трупп в квантовой химии чрезвычайно важным является понятие базисных функций (базиса) представления. Пусть мы имеем набор некоторых функций координат Ф1, Фа, группу операций [c.29]

    Легкость расчетов по методу Хюккеля привела к тому, что внедрение языка и понятий квантовой теории в органическую химию в основном велось на основе изучения свойств я-сопряженных молекул. Вероятно, и в настоящее время теория сопряженных соединений является наиболее разработанной областью квантовой химии. В данной главе ставится цель объяснить, как и в какой мере с помощью расчетов можно изучать и прогнозировать свойства 7г-сопряженных систем. Будем использовать, как правило, метод МОХ, так как его применение не требует ЭВМ и вполне оказывается достаточным иметь микрокалькулятор. Метод МОХ позволяет осуществить расчеты в полной мере и пояснить принципы, на которых основаны и расчеты более сложными методами ССП МО. [c.255]


    С момента своего возникновения квантовая химия была связана главным образом с изучением электронного строения молекул, т.е. электронного распределения в стационарных состояниях, а также состава входящих в волновую функцию молекулярных орбиталей, взаимного расположения уровней энергии занятых и виртуальных орбиталей и т.п. Были предприняты многочисленные попытки интерпретировать такие понятия классической теории, как валентность, химическая связь, кратность химической связи и др. Одновременно были введены и многие новые понятия, такие как гибридизация, а- и л-связи, трехцентровые связи и т.д., часть из которых прочно вошла в язык современной химической науки, тогда как другие оказались менее удачными и сейчас уже хорошо забыты. К тому же и содержание большинства понятий, возникающих внутри квантовой химии, заметно трансформировалось с течением времени. В квантовой химии было введено большое число различных корреляций между экспериментально наблюдаемыми для вещества и вычисляемыми для отдельных молекул величинами. Сама по себе химия является в существенной степени корреляционной наукой, базирующейся прежде всего на установлении соответствия между свойствами соединений и их строением и последующем предсказании требуемой информации для других соединений. По этой причине богатейший набор информации о строении, в том числе электронном строении соединений, предоставляемый квантовой химией, оказался как нельзя кстати для дальнейшего активного развития химической науки. Так, на основе квантовохимических представлений была развита качественная теория реакционной способности молекул, были сформулированы правила сохранения орбитальной симметрии, сыгравшие важную роль при исследовании и интерпретации реакций химических соединений. [c.4]

    Вместе с тем для химика, не имеющего специальной подготовки, монография отнюдь не представляет собой книгу для легкого чтения. Это учебное пособие и пособие достаточно серьезное, где встретится много новых понятий и немало трудных мест. Но его изучение позволит ориентироваться в современной химической литературе, которая все больше и больше насыщает ся языком квантовой химии поэтому усилия, затраченные иа чтение этой книги, будут оправданны. [c.6]

    Справедливо заметил Заградник следует иметь в виду, что химия, несмотря на внушительные успехи теории, не перестала быть экспериментальной наукой, и что центр интересов в ней был и все еще сосредотачивается в изучении превращения веществ. Сознавая этот факт, мы видим, что химик-экспериментатор не может быть вполне удовлетворен возможностями, предоставляемыми ему современной квантовой химией. Эти возможности относятся, например, к интерпретации ЯМР и ЭПР спектров, циркулярного дихроизма и электронных спектров, к вычислению дипольных моментов И длин связей. Все эти возможности привлекательны и полезны, и химики их ценят, однако они не имеют отношения к основному вопросу химии, к ее сути, а именно к теории химической реакционноспособности [111, с. 88]. Видимо, целесообразно различать понятия квантовой ХИМИЙ в широком смысле слова, как квантовой теории атомов, и молекул, и в узком смысле слова, как науки, предметом которой являются частицы и их свойства, интересующие химика. Приведем примеры определения квантовой химии в том и другом смысле. К определениям квантовой химии в широком смысле слова относится цитированное выше определение Веселова, а также следующее определение Клементи под квантовой химией мы понимаем те аспекты атомной и молекулярной химии и физики, которые были [c.97]

    Специфика химической кинетики состоит в том, что элементарные процессы, лежащие в основе сдожного процесса, сопровождаются разнообразными сопутствующими явлениями (неизотермичность, неравновесность, перенос тепла и массы и т. д.), что приводит к тому, что химическая кинетика как научная дисциплина в сущности являет собой комплекс взаимосвязанных проблем на стыке термодинамики, квантовой химии (или кинетики элементарных реакций), газодинамики, статистической физики и классической механики. В связи с этим и само понятие химическая кинетика часто определяют по-разному. В самом узком смысле слова — это учение о механизме сложного процесса и его особенностях. В несколько более широком смысле — это учение об общих закономерностях любых процессов, связанных с изменением химического состава реагирующей системы независимо от причин, вызывающих это изменение,— радиоактивный распад, некоторые биологические задачи и т. д. (В атом случае для описания явлений, не связанных с изменением химиче- [c.3]

    В самом деле, что заставляет теоретиков, занимающихся изучением строения молекул, немало сил тратить на обсуждение проблем локализации молекулярных орбиталей, выбора оптимального анализа заселенностей и т. д. Ведь в принципе расчет можно провести, используя делокализованные (канонические) молекулярные орбитали, или х<е ограничиться одноцентровым базисом, в результате чего при стандартном анализе заселенностей вся электронная плотность окажется отнесенной к одному атому молекулы. Однако в обоих случаях результаты расчетов не удается интерпретировать в рамках традиционных химических представлений, т. е. в терминах химических связей, неподеленных электронных пар и т. д. И дело не только в необходимости учета старых, давно известных фактов типа аддитивности и трансферабель-ности многих молекулярных свойств, дело еще в стремлении согласовать квантовомеханическое описание с определенным исторически сложившимся стилем химического мышления. Но мы слишком забежали вперед, вернемся к нашей теме и посмотрим, как в квантовой химии рождается понятие молекулярной структуры. [c.106]

    Не каждое используемое в теории понятие имеет своего, как говорят методологи, референта ( представителя ) в объективной реальности. Примерами таких понятий в квантовой химии могут служить резонансные структуры, обменное взаимодействие, переходное состояние в химической кинетике, которое, кстати, тоже спектроскопически ненаблюдаемо, и т. д. Но отсюда не следует, что такие понятия не имеют большого смысла и должны быть изгнаны из теории. [c.174]

    Строение вещества рассматривается иа основе представлений квантовой химии. Прн изложении теории химических процессов широко используются понятия химической термодинамики, в частности детально рассмотрено значение величин АС°, ЛЯ° и Л5° для решения вопроса о направлении протекания химических процессов. В третьей, части систематически представлена химия. элементов. При этом главное внимание уделено соединениям, имеющим значительное практ1 ческое применение, знание свойств которых необходимо хпмику-технологу. Сведения о других соединениях, а также о физико-химнческн с свойствах веществ сосредоточены в основнбмм в дополнениях к разделам. В начале разделов указаны характерные степени окисления рассматриваемых элементов и. их важнейшие соединения, па которые следует обратить особое внимание. [c.5]

    В первой главе приводится ряд обидах математических понятий. Основной курс квантовой химии начинается со второй главы, которая посвящена общей теории многоэлектронных систем. При изложении теории атомов в третьей главе используется легко алгоритмизируемый детерминантный метод Слейтера. Теории электронного строения молекул посвящена четвертая глава. [c.3]

    Правда, этот шаг назад ие оказал существенного влияния на судьбы структурной химии. Идеи о различной сродствоемкости , или энергоемкости, связей одержали верх. Уже с конца 1920-х годов появились такие электронные теории, которые служили преддверием квантовой химии и которые гакладьшали в понятие структуры молекулы и электронное содержание, и в то же время энергетическую неэквивалентность связей. Это были теории электронных смещений — мезомерии, электронной таутомерии, резонанса. [c.90]

    В 1926—1927 гг. появились работы в области квантовой химии. Здесь нет возможности говорить о том большом потоке быстро сменяющихся событий, который хара1ктеризует темпы развития квантовой химии. Поэтому можно указать только на ее основные положения, затрагивающие понятие структуры в химии. Положения эти следующие  [c.90]

    Как видно из положений 2—4, квантовая химия вкладывает приниципиально новое содержание в понятие химической структуры. Во-первых, это понятие распространяется уже не только иа мо- [c.92]

    Ч. А. Коулсон, — это наука экспериментальная, в которой окончательная модель построена на основе элементарных понятий. Роль квантовой химии—усвоить эти понятия и показать, каковы существенные черты поведения химических систем... Всякое приемлемое объяснение должно быть дано с точки зрения отталкивания между несвязывающими электронами, дисперсионных сил между ядрами атомов, гибридизации орбит и ионного характера. Совершенно не имеет значения, если в крайнем случае ни одно из этих понятий не будет охарактеризовано точно, поскольку химия сама действует па некотором уровне глубины [17, с. 169]. [c.98]

    В теории групп вводится полезное понятие класса сопряженных элементов. Элемент О,- называется сопряженным с элементом 0 , если найдется элемент X, такой, что XGiX- = Gj. Сопряженные элементы образуют класс. С помощью таблицы (2.1) получаем, что элемент О сам по себе составляет к асс, другой класс составляют элементы Оз и Оз, третий — элементы О4, 0 , Ов-В связи с использованием теории групп в квантовой химии мы будем часто рассматривать точечные группы симметрий. Это такие группы, элементами которых являются преобразования пространства, которые оставляют неподвижной одну точку и преобразуют некоторые геометрические фигуры сами в себя. [c.17]

    Метод МОХ — простейший расчетный качественный метод квантовой химии. Метод имел и продолжает иметь важное значение в процессе внедрения понятий и языка квантовой xhmi-ih во все ОС1ЮВНЫС представления о строении, свойствах и реакциях химических соединений. Детальный обзор приложений метода МОХ дан в следующей главе. [c.253]

    Таким образом, и вещества с дефицитом валентных электронов, по существу, выходят за границы применимости МВС. Факты, не объяснимые существующими теориями, — писал А. М. Бутлеров, — наиболее дороги для науки, от их разработки следует по преимуществу ожидать ее развития в ближайшем будущем . Другой метод квантовой химии — метод молекулярных орбиталей (ММО) — объясняет химическую связь в ковалентных веществах, а также в соединениях с избытком и с дефицитом валентных электронов, 36. Понятие о методе молекулярных орбиталей. Бо. 1ее универсальным квантовохнми-ческим методом описания химической связи служит метод молекулярных орбиталей (ММО), развитый в трудах Леннарда-Джонса, Г унда и особенно Малликена В этом методе состояние электронов в многоатомной системе описывается молекулярными орбиталями (МО), подобно тому как электроны в атомах характеризуются атомными орбиталями (АО). При этом и АО и МО представляют собой одноэлектронные волновые функции атома или молекулы соответственно. Разница заключается в том, что АО — одноцентро-Бые, а МО—многоцентровые орбитали. Итак, ММО — квантовохимический метод описания химической связи, рассматривающий молекулу и другие многоатомные системы, как многоядерный атом , в котором электроны заселяются по молекулярным орбиталям. [c.120]

    Знания Э. п. достаточно для расчета средних значений таких величин, как, напр., дипольный момент молекулы. Э. п. часто использ. для построения молекулярных электростатич. моделей, опирающихся на понятие об эффективных зарядах атомов и порядках связей. Эти понятия — основа большого числа качеств, и полуколичеств. теорий хим. связи, что и определяет роль Э. п. в квантовой химии как осн. средства интерпретации квантовомех. результатов в духе классич. представлений. [c.700]


Смотреть страницы где упоминается термин Понятие о квантовой химии: [c.97]    [c.51]    [c.168]    [c.47]    [c.264]   
Смотреть главы в:

Общая химия -> Понятие о квантовой химии

Общая и неорганическая химия 1997 -> Понятие о квантовой химии

Общая и неорганическая химия -> Понятие о квантовой химии




ПОИСК





Смотрите так же термины и статьи:

Образование химической связи. Понятие о квантовой химии

Основные понятия и методы квантовой химии

Понятия в химии

Химия квантовая



© 2025 chem21.info Реклама на сайте