Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементарные реакции и кинетика полимеризации

    Наиболее важным методом изучения механизма полимеризации, как и для всех сложных реакций, является исследование кинетики этого процесса в различных условиях. Основная ценность кинетического метода заключается в том, что он позволяет количественно связать отдельные элементарные реакции с наблюдаемой суммарной реакцией. Эта связь осуществляется путем сопоставления эмпирически найденных кинетических закономерностей с теоретическими уравнениями, выведенными на основе той или иной совокупности предполагаемых элементарных реакций. Кроме того, кинетические исследования позволяют определить кинетические константы отдельных элементарных реакций, что открывает возможность в количественной форме исследовать зависимость между строением молекул и их реакционной способностью по отношению к тем или иным реакциям. Поэтому определение абсолютных значений констант скоростей элементарных реакций является одной из основных задач химической кинетики. [c.10]


    В частности, при исследовании эмульсионной полимеризации делается акцент на один из ключевых вопросов теории - механизм возникновения полимерно-мономерных частиц (ПМЧ). Одновременно с этим большое внимание уделяется изучению кинетики и механизма элементарных реакций, протекающих в ПМЧ, которые определяют молекулярные характеристики, микроструктуру образующихся полимеров и морфологию латексных частиц. [c.114]

    После того как был установлен цепной механизм полимеризации, возникла проблема изучения отдельных элементарных реакций этого процесса. Как и при изучении других сложных реакций, кинетика становится одним из основных методов изучения механизма полимеризации. [c.11]

    Другой метод в рамках ПРМ был разработан в конце 40-х годов Эвансом с сотр. [105] и Багдасарьяном [103] для теоретического истолкования кинетики элементарных реакций, имеющих место при полимеризации. Этот метод, получивший название метода энергий стабилизации (метод ЭС), впоследствии был развит в работах японских ученых [106]. В настоящее время метод ЭС, как и метод ЭЛ, принят в качестве основы для теоретического описания кинетики радикальных реакций различного типа. [c.64]

    Тепловые эффекты и изменения энергий Гиббса приведенных реакций хорошо согласуются с данными по механизму и кинетике элементарных реакций полимеризации этилена. В частности, находит термодинамическое объяснение практическое отсутствие передачи цепи на мономер и интенсивная передача цепи (как внутри-, так и межмолекулярная) на полимер, включая и образование третичных полимерных радикалов. [c.72]

    Несмотря на большое тело публикаций, посвященных изучению кинетики полимеризации в эмульсии, особенности реакции инициирования полимеризации в эмульсионных условиях остаются невыясненными, что отчасти связано с трудностями изучения элементарных реакций в гетерогенных условиях. В литературе крайне редко встречаются попытки сопоставления скоростей инициирования полимеризации в массе и эмульсии в сравнимых условиях. Имеющиеся данные [137, 138], которые относятся только к некоторым типам систем, однозначно указывают на то, что при переходе к эмульсионным условиям чаще всего резко увеличивается скорость инициирования. [c.40]

    Существование этих четырех типов элементарных процессов было установлено в результате детальных исследований кинетики и механизма полимеризационных процессов, проводящихся в последние 30—40 лет, и составляет одну из основ учения о полимерах. Закономерности протекания процессов полимеризации и свойства образующихся при этом полимерных веществ зависят от того, какие из этих четырех типов элементарных реакций и с какой относительной интенсивностью происходят в реакционной системе. Интенсификация или торможение любой из основных реакций позволяет воздействовать на скорость процесса полимеризации, на молекулярно-весовое распределение и на свойства синтезируемых полимерных материалов. [c.432]


    Рассмотрение общего случая кинетики полимеризации в присутствии веществ, реагирующих с полимерными радикалами, приводит к сложным математическим выражениям, трудно поддающимся анализу. Так как пас интересует кинетика полимеризации главным образом с точки зрения возможности определения кинетических констант отдельных элементарных реакций, то целесообразно ограничиться рассмотрением частных случаев и приближенных решений, позволяющих получить с достаточной точностью интересующие нас сведения. [c.148]

    Исследование кинетики ингибированной полимеризации в этих условиях открывает интересные возможности для выяснения детального механизма ингибирования и определения кинетических констант элементарных реакций, рассмотренных в начале этой главы. Дополнительные сведения, которые могут быть получены при сопоставлении чисто кинетических данных с результатами измерений длины полимерных цепей, будут рассмотрены в следующем разделе. Зависимость скорости полимеризации от начальной концентрации ингибитора и других факторов, определяющих скорость реакции, была исследована в работах ряда авторов [6, 12— 15]. В дальнейшем изложении мы будем в основном придерживаться работ [6, 13]. [c.154]

    Обобщенный подход к реакциям ионной полимеризации чрезвычайно труден. Это обусловлено не только гораздо большей ограниченностью сведений, имеющихся в данной области по сравнению со сведениями о процессе радикальной полимеризации. Существует ряд иных затруднений. В отличие от радикальных инициаторов функция ионных возбудителей не ограничивается участием в одной только реакции инициирования. Компоненты ионных возбудителей (анионы при катионной полимеризации и катионы при анионной полимеризации) активно влияют и на остальные элементарные стадии процесса, что накладывает существенный отпечаток на его кинетику. Характерной чертой ионной полимеризации является также крайне высокая чувствительность процесса к природе среды, изменение которой влияет не только на скорость элементарных стадий, но и на механизм реакции. Другая [c.289]

    Благодаря этому оба типа ионных процессов, несмотря па противоположный заряд растущих цепей, имеют общие черты. Это проявляется в существенном влиянии полярности среды на кинетику полимеризации и в зависимости скорости элементарных стадий процесса и микроструктуры полимера от природы противоиона. Известная аналогия между катионной и анионной полимеризацией имеется и в другом отношении, а именно, в возможности полного исключения реакций обрыва, что в свою очередь приводит к близости кинетики процесса в определенных системах анионного и катионного характера. Б то же время различие в заряде активных центров обусловливает избирательную способность многих мономеров полимеризоваться только по одному из двух ионных механизмов. Склонность к анионной полимеризации типична для мономеров ряда СН2=СНХ, содержащих заместители X, понижающие электронную плотность у двойной связи, например КОз, СК, СООК, СН=СН2. В наибольшей степени к анионной полимеризации способны мономеры, содержащие два подобных заместителя, например СН2=С(СК)2 или СН2=С(М02)з. Анионная полимеризация возможна также для насыщенных карбонильных производных и для ряда циклических соединений — окисей, лактонов и др. Инициаторами анионной полимеризации являются щелочные металлы, некоторые их органические и неорганические производные (металлалкилы, алкоксиды, амиды и др.), а также аналогичные соединения металлов II группы. Заключение об анионной природе активных центров основывается не только на качественных соображениях, но и на количественном анализе экспериментальных данных с помощью правила Гаммета. Это правило связывает значения констант скоростей реакци производных бензола с характеристиками их заместителей. Оно формулируется в виде уравнения [c.336]

    Однако меньшую изученность ионной полимеризации все же нельзя считать основной причиной отсутствия единого подхода к этой проблеме. Более того, ограниченность сведений о данной области сама по себе отчасти является следствием более важных к тому причин. Дело в том, что обобщенный подход к реакциям ионной полимеризации чрезвычайно труден. И трудности здесь обусловлены прежде всего недостаточной еще разработанностью теории катализа, в частности теории кислотно-основного катализа, которая далека от того состояния, какое характерно для цепной теории в целом. Теория катализа не дает еще для решения вопросов о механизме ионной полимеризации того, что дает цепная теория для разъяснения механизма радикальной полимеризации. Кроме того, в отличие от радикальных инициаторов, функция ионных возбудителей не ограничивается участием в одном только акте инициирования. Компоненты ионных возбудителей (анионы при катионной полимеризации и катионы — нри анионной) активно влияют и на остальные элементарные стадии процесса, что накладывает существенный отпечаток на всю его кинетику. [c.89]


    К. позволяет исследовать кинетику сверхбыстрых реакций (продолжительностью до 1 мксек), а следовательно, ее методы могут найти применение к ионной полимеризации, где скорости инициирования и роста цепи часто очень велики, а также при определении элементарных констант радикальной полимеризации термометрией нестационарной стадии. В обоих случаях наиболее удобны адиабатич. калориметры. [c.463]

    Природа растворителя сложным, а подчас противоречивым образом сказывается на механизме и кинетике элементарных реакций полимеризационного процесса. В некоторых случаях скорости отдельных реакций в зависимости от природы растворителя могут изменяться в разных направлениях и, таким образом, влияние среды на скорость полимеризации может не проявляться. [c.57]

    В большинстве случаев кинетика суспензионной полимеризации описывается закономерностями, характерными для радикальной полимеризации, протекающей в гомогенных условиях, хотя. существуют некоторые особенности, обусловленные сравнительно высокой дисперсностью реакционной системы. Уже в ранних работах, [158] отмечалось, что скорость расходования мономеров прл суспензионной полимеризации обычно несколько выше, чем при полимеризации в массе. Многие авторы связывают это с влиянием дисперсного состояния реакционной системы на скорости некоторых элементарных реакций полимеризации. [c.113]

    С другой стороны, нормальная кинетика может быть нарушена в этих процессах элементарными реакциями, протекающими на границе раздела фаз (инициирование в поверхностном слое капелек при эмульсионной полимеризации, обрыв цепей при попарных столкновениях бисерин и т. п.). Эти нарушения характерны уже для второго статистического класса. [c.255]

    Трактовка кинетических закономерностей при изотермической полимеризации е-капролактама в терминах автоускорения в настоящее время, видимо, является общепринятой. В этом отношении заведомо непригодны для описания кинетики полимеризации уравнения 1-го, 2-го или иного порядка по. .мономеру. Однако способ аналитического представления функции / ) не обязательно сводится к выражению (2.14). Так, в работе [50] наблюдали те же качественные эффекты, которые выше формально трактовались как автоускорение, но для их количественного описания -была предложена схема элементарных реакций, которая приводила к кинетической функции вида [c.36]

    Каталитическая полимеризация олефинов является сложным процессом, состоящим из нескольких последовательных элементарных реакций, каждая из которых в большей или меньшей степени влияет на наблюдаемую общую скорость полимеризации. При математическом описаний кинетики полимеризации необходимо исходить из схемы, которая учитывала бы зависимость общей скорости полимеризации от скорости промежуточных элементарных процессов, а также от изменения многочисленных внешних параметров (температуры, концентрации реагентов и т. д.). В общем случае в процессе каталитической полимеризации могут быть выделены следующие стадии 1) образование активных центров из компонентов катализатора 2) инициирование 3) рост (продолжение) цепи 4) ограничение цени 5) дезактивация активных центров 6) регенерация катализатора. [c.134]

    Особое вним ание заслуживают системы, в которых образующийся полимер по причине несовместимости с собственным мономером по ходу полимеризации выделяется в отдельную фазу. Такое поведение характерно для винилхлорида, акрилонитрила, тет-рафторэтилена, акриловых мономеров, этилена и некоторых других мономеров. Выделение конденсированной полимерной фазы может иметь место и при полимеризации другцх мономеров в растворе в присутствии осадителя. Возникновение новой фазы и поверхности раздела между фазами может вызвать изменения в, кинетике полимеризации, связанные с перераспределением компонентов полимеризационной системы по фазам и соответственно с изменением скорости-протекания элементарных реакций. Нельзя исключить также влияние физических факторов — морфологии полимерной фазы, ее набухаемости и проницаемости —на кинетику процесса. . / [c.69]

    Влияние вязкости. Проведение гомогенной полимеризации обусловливает многократное по сравнению с исходной смесью возрастание вязкости реакционного раствора. Между тем известно, что элементарные стадии полимеризации, особенно стадия обрыва цепи, диффузионно контролируемы, что выражается в уменьшении констант скорости элементарных реакций и изменении кинетики процесса в целом. [c.47]

    Именно эти две элементарные реакции вносят новый элемент в кинетику процесса. Скорости расхода мономеров согласно основным допущениям, принятым в полимеризации (см. гл. I), т. е. без учета расхода мономеров в реакции инициирования и передачи цепи равны [c.191]

    При изучении характера зависимостей средней степени полимеризации от параметров процесса сразу же выяснилось, что механизм полимеризации более сложен, чем считалось вначале. Оказалось необходимым ввести представления о новых типах элементарных реакций. Так, при изучении кинетики полимеризации разбавленных растворов мономеров в инертных растворителях выяснилось, что средняя степень полимеризации зависит от природы и концентрации растворителя. Для объяснения этого явления был предложен механизм, включающий элементарную реакцию передачи цепи . Суть этой реакции заключается в том. что растущий полимерный радикал может взаимодействовать с молекулой растворителя (или примеси) так, что рост полимерной цепи прекращается, но зато образуется новый свободный радикал, способный вести полимеризацию  [c.53]

    Как показывает анализ экспериментальных данных (см. гл. 2), элементарные реакции, протекающие при деструкции гетероцепных полимеров, как правило, аналогичны реакциям, наблюдаемым при синтезе этих полимеров поликонденсацией [29—31]. Поэтому, казалось бы, при рассмотрении деструкции можно использовать результаты теоретического исследования кинетики поликонденсации [13]. Однако, как указывает Уолл [14], при изучении процесса деструкции необходимо использовать граничные условия, отличные от условий полимеризации (поликонденсации), поскольку исходной системой является не мономер, а полимерные молекулы различных размеров. Поэтому теоретический анализ кинетики деполимеризации (за некоторыми исключениями) значительно труднее и сложнее, чем анализ кинетики полимеризации. В данном разделе изложены результаты теоретического исследования кинетики деструкции гетероцепных полимеров, имеющиеся в литературе, а также оригинальные результаты, полученные авторами. [c.129]

    Процессы образования и превращения молекул полимеров протекают в результате химических реакций их активных центров. Как правило, число таких элементарных реакций сравнительно невелико, поэтому их обычно можно характеризовать всего несколькими константами. Так, процесс радикальной полимеризации описывается константами скоростей элементарных реакций инициирования, роста, обрыва и передачи цепи. Целью расчета кинетики этого процесса является вычисление по значениям указанных констант скорости полимеризации и молекулярномассового распределения ее продуктов. [c.39]

    При расчетах полимеризационных процессов обычно пользуются принципом Флори, предполагая независимость констант элементарных реакций от длины реагируюш их радикалов. Такое допущение, по-видимому, является разумным для описания многих реальных процессов, так как рассчитанные на его основе характеристики совпадают с их экспериментальными значениями. Однако можно привести пример гомогенной радикальной полимеризации, который заведомо не подчиняется принципу Флори. Таким процессом является фотоинициированная полимеризация метилметакрилата в присутствии ортофосфорной кислоты, где наблюдается незатухающий пост-эффект [8—9], при котором полимеризация после прекращения обучения продолжается с постоянной скоростью до почти полного исчерпания мономера в системе, что свидетельствует об отсутствии диффузионных затруднений в реакции роста цепи в ходе процесса. Однако для того, чтобы объяснить незатухающую пост-полимеризацию в этой гомогенной системе, необходимо допустить уменьшение константы скорости реакции обрыва цепи с ростом длин рекомбинирующих радикалов. Причиной этого может служить то, что данная реакция подчиняется закономерностям диффузионной кинетики. [c.209]

    Скорость полимеризации в эмульсии и строение образующегося полимера, очевидно, будут определяться теми же реакциями, что и при полимеризации в массе или в растворе, но эти элементарные реакции могут протекать в различных частях полимеризационной системы в воде, в каплях мономера, на поверхности раздела капля мономера—водная фаза, в мицеллах эмульгатора и, наконец, в полимерно-мономерных частицах, образующихся в процессе полимеризации. Поэтому для понимания механизма данного процесса необходимо знать не только кинетику каждой элементарной реакции, но и место, где эти реакции происходят (т. е. топографию процесса). [c.356]

    Медведев с сотрудниками обратили внимание на изменение скорости полимеризации и числа полимер-мономерных частиц в зависимости от конверсии мономеров и отметили, что теория Смита — Эварта не учитывает влияния адсорбционных слоев эмульгатора на скорость протекания элементарных реакций полимеризации. Количество частиц с конверсией мономеров резко уменьшается, средний диаметр их пропорционален степени конверсии, в то время как общая поверхность частиц остается постоянной. По теории Медведева скорость полимеризации обусловлена большой скоростью образования свободных радикалов инициатора и снижением энергии активации распада инициатора полимеризации в слоях эмульгатора на поверхности раздела фаз. При изучении кинетики полимеризации показано, что скорость полимеризации линейно зависит от суммарной поверхности всех полимер-мономерных частиц. Это позволяет считать, что полимеризация протекает в адсорбционных слоях эмульгатора, в которых концентрация мономера и инициатора является наибольшей. Адсорбционные слои эмульгатора определяют не только устойчивость системы, но и скорость образования радикалов и место протекания полимеризации, [c.149]

    Так как на гель-хроматограммах отражаются все изменения ММР, связанные с глубиной полимеризации, метод может быть использован для исследования кинетики реакций, протекающих по радикальному или ионному механизму. При этом либо устанавливают взаимосвязи между молекулярными характеристиками и свойствами полимера, либо определяют вид кинетической схемы полимеризации и вычисляют констарггы элементарных реакций. В этой связи применение нашли два основных метода исследования  [c.114]

    Рассмотренная выше классификация по эмульгатору основана па представлении, что эмульгатор при всей своей специфичности действия на кинетику ЭП не принимает непосредственного участия в элементарных реакциях полимеризационного процесса. Для большинства полимеризационных систем это допущение оправдывается. Однако было показано [32—36], что эмульгаторы некоторых типов или продукты их разложения могут образовывать окисли-т 1ьно-восетаповитсльные иницшр ующие системы с иерекисным инициатором и таким образом влиять на процесс полимеризации. [c.13]

    Тюдёш [31] рассмотрел особенности кинетики полимеризации в растворах с точки зрения предложенной им концепции горячих радикалов . В элементарном акте экзотермической реакции выделяется энергия, равная сумме теплоты реакции и энергии активации. Для реакции роста цепи при полимеризации эта величина составляет 20—25 ккал1молъ. В результате реакции образуется радикал, обладаюш ий избытком энергии,— горячий радикал . Тюдёш предположил, что существует определенная вероятность для этого радикала вступить в реакцию с мономером без энергии активации. Эта вероятность определяется соотношением скоростей дезактивации колебательного возбуждения и вступления в реакцию с мономером. Скорость дезактивации зависит от типа молекул, окружающих горячий радикал, т. е. от состава реакционной смеси. Эта концепция может быть выражена в количественной форме, если написать уравнения стационарности для холодных и горячих радикалов  [c.40]

    Прежде чем анализировать те последствия, к которым приво дит элементарный процесс передачи цепи с разрывом в процессах полимеризации и сойолимеризации, необходимо строго доказать его существование, т. е. показать, что в реальных условиях константа скорости реакции (6) соизмерима с константой скорости роста цепи (кр) или в некоторых случаях даже больше кр. В противном случае в кинетике полимеризации эта реакция большого значения иметь не будет, хотя понятна ее решающая роль в дальнейших превращениях уже готового полимера. [c.435]

    Уравнения (1)—(4) вместе с дополнительными соотношениями, касающимися других процессов передачи цепи, оказались полезными не только при количественной трактовке многочисленных экспериментальных результатов, но и послужили ценной и гибкой основой для решения проблемы й более сложных згсловиях. Это стало очевидным, когда столкнулись с некоторыми аномалиями , происходившими из-за появления границы раздела фаз в гетерогенной полимеризующейся системе. Поскольку большинство новых катализаторов имеет гетерогенный характер, целесообразно показать, как осаждение в ходе реакции нерастворимого полимера в виде гелеобразной или порошкообразной твердой фазы влияет на дальнейшее протекание реакции и как это изменение отражается на кинетике процесса. Общая основа идей и выражений оказалась также полезной для описания в совершенно адекватном виде явлений таких истинно гетерогенных процессов, как реакции суспензионной и эмульсионной полимеризации. В этих случаях необходимо только ввести соответствующие ограничения и условия, касающиеся геометрических позиций, в которых были бы возможны различные элементарные реакции или по крайней мере там, где они могли бы иметь место с наибольшей вероятностью. [c.20]

    Константы скорости роста цепи на Ц.— Н. к. могут достигать 10 —10 л (мол-сек). Энергия активации этого элементарного акта может находиться в пределах 21—63 кдж моль (5—15 ккал моль). Скорость полимеризации в присутствии Ц.— Н. к. обычно падает со временем вследствие постепенного восстановления переходного металла. При проведении процессов в галоген-содержащ,их растворителях (напр., Hg lj, gHg l, 2H4 I2) или добавлении в систему полигалоидных соединений можно наблюдать стационарную скорость полимеризации, т. к. в системе осуществляются окислительные реакции переходного элемента. На скорости процессов также сказывается полярность растворителя. При использовании нек-рых Ц.— Н. к. скорость полимеризации пропорциональна электрич. проводимости системы. Для гетерогенных каталитич. систем кинетика полимеризации сильно зависит от дисперсности катализатора. [c.439]

    Брутто-кинетика. Как показано выше, кинетика элементарных реакций, в значительной степени зависит от конкретного типа эмульсионной системы. Это находит отражение и в брутто-кине-тике эмульсионной полимеризации. Кривая конверсия — время для большинства эмульсионных систем состоит из трех участков. Первый, обычно сравнительно небольшой участок (до конверсии 5—10%) характеризуется увеличением скорости реакции, что связано с формированием ПМЧ. Второй участок —участок постоянной скорости —в зависимости от типа мономера продолжается до конверсии 50—70%, Третий участок характеризуется снижением скорости эмульсионной полимеризации. Наибольший интерес преД ставляет второй участок, поскольку именно на данном этапе эмульсионной полимеризации образуется основная масса пот лимера. [c.131]

    II др.), а также методы измерения активности антиокислителей и катализаторов кинетики расиада и э( )-фективности инициаторов радикальной полимеризации и окисления. Измерения X. нсиользуют и в исследованиях механизма и кинетики различных процессов (обнаружение промежуточных продуктов, определение скоростей химпч. превращения, относительных и абсолютных концентраций атомов и свободных радикалов, относительных и абсолютных значении констант скорости элементарных реакций, изучение процессов передачи энергии). Корреляцию между интенсивностью X. и скоростью реакции можно использовать в целях контроля промышленных химико-тех-нологич. процессов. [c.312]

    При изучении полимеризации адсорбированных мономеров одним из наиболее интересных является вопрос о связи особенностей адсорбированного состояния молекул мономеров и растущих макрорадикалов с особенностями кинетики полимеризации и структуры образующихся полимерных цепей. Как будет показано ниже, на константы скоростей элементарных реакций оказывают влияние как общие особенности адсорбированного состояния (такие, например, как пониженная размерность реакционной зоны и связанные с этим особенности в протекании процессов диффузии, отличия в конформационном поведении полимерных цепей от их поведения в растворе и т.п.), так и факторы, связанные с конкретными механизмами адсорбвд1и (строение и прочность адсорбционных комплексов, возможность и природа латеральных взаимодействий и т.п.). [c.24]

    В предыдущем изложении материала неоднократно подчеркивалось, что полученные выводы применимы только при исследовании процесса полимеризации на его начальной стадии, при небольших глубинах протекания реакции. Такой подход характерен для большинства исследований механизма и кинетики радикальной полимеризации. Он обусловлен тем, что на более глубоких стадиях превращения мономера физические свойства полимеризационной системы резко изменяются, что, безусловно, должно оказывать значительное влияние на характер протекания элементарных реакций и на всю кинетику процесса в целом. Однако технология синтеза полимеров связана именно с получением предельных или, во всяком случае, высоких значений конверсии мономера в конечный продутст. Это оправдывает растущий интерес к изучению кинетики полимеризации в промышленных условиях и прежде всего при глубоких степенях конверсии, так как только таким путем можно на основании научного подхода рассчитать оптимальный технологический процесс. [c.85]

    Цепь радикала в результате увеличивается еще на одно мономерное эвено. По аналогичной схеме реакция роста цетн развивается и дальше. Полимерная цепь (или как принято говорить, материальная цепь) увеличивается с каждым актом присоединения молекулы мономера. Таким образом, в кинетику полимеризации вводится новое понятие о материальных цепях. Одновременно сохраняется понятие кинетической цепи. Длина материальной цела и дл1ина кинетической щели (число элементарных актов, инициированных одним первичным радикалом) могут не совпадать. [c.42]

    При изучении характера зависимости средней стапени полимеризации от параметров процесса сразу же выяснилось, что механизм радикальной полимеризации более сложен, чем считалось вначале. Поэтому потребовалось ввести представления о новых тшах элементарных реакций. Так, при изучении кинетики полимеризации в разбавленных растворах мономеров оказалось, что средняя степень полимеризации зависит от природы растворителя. Для объяснения этого явления Флори предложил вклю чять в кинетическую схему элементарную реакцию передачи цепи. Суть этой реакции заключается в том, что растущий макрорадикал взаимодействует с молекулой растворителя (или другого реагента) и рост макрорадикала прекращается, но зато образуется новый свободный радикал, апособный вести полимеризацию  [c.44]

    Цепь радвкала в результате увеличивается еще на одно мономерное звено. По аналогичной схеме реакция роста цепи развивается и дальше. Если в предыдущей главе в разделе Цепные реакции мы говорили о стадии продолжение цепи в переносном смысле, то здесь цепь (материальная цепь) растет буквально. Таким образом, в кинетику полимеризации вводится новое понятие — материальная цепь . Но одновременно сохраняется понятие кинетической цепи . Тем самым создается некоторая двойственность представлений, так как длина материальной цепи (длина макромолекулы) и длина кинетической цепи (число элементарных актов, инициированных одним первичным радикалом) могут не совпадать. [c.51]

    До сих пор мы говорили о механизме процесса полимеризации, протекающего в кинетической области в изотермических условиях. В этом случае перечисленные выше элементарные реакции (ишщии-рование, рост, передача и обрыв цепи) будут определять все кинетические закономерности процесса полимеризации. Однако в реальной реакционной системе физические условия будут резко изменяться в течение процесса по мере накопления высокомолекулярных продуктов. Представим себе радикальную полимеризацию жидкого винилового мономера, например стирола. Вязкость жидкого стирола при 50 °С составит 0,5 спз. Образующийся полимер будет растворяться в мономере, и к концу процесса при конверсии 80—90% реакционная смесь будет представлять собой концентрированный раствор полимера, вязкость которого может достигать 10 —10 спа. Столь сильное возрастание вязкости, безусловно, окажет влияние на характер массопередачи и теплопередачи, а эти факторы э свою очередь должны повлиять на кинетику процесса. Даже в том случае, когда полимер нерастворим в мономере (как, например, при полимери-захщи акрилонитрила), накопление твердой фазы может привести К созданию диффузионных затруднений для макрорадикалов и молекул мономера, а следовательно, повлияет на кинетику процесса. [c.54]

    Подробное изучение кинетики кислотной полимеризации К-фенилэтиленимина Кагия и др. [112] позволило определить константы скорости составляющих ее элементарных реакций — инициирования, роста, переноса и обрыва цепей  [c.136]


Смотреть страницы где упоминается термин Элементарные реакции и кинетика полимеризации: [c.75]    [c.13]    [c.33]    [c.439]    [c.466]    [c.804]    [c.36]    [c.182]    [c.103]   
Смотреть главы в:

Высокомолекулярные соединения -> Элементарные реакции и кинетика полимеризации




ПОИСК





Смотрите так же термины и статьи:

Кинетика и механизм радикальной полимеризации в начальных стадиях Элементарные реакции цепного механизма радикальной полимеризации и основные кинетические уравнения

Реакции полимеризации

Реакции элементарные



© 2025 chem21.info Реклама на сайте