Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Особенности квантово химических методов

    Особенности строения жидкостей определяются факторами ближнего и дальнего порядка Эффекты дальнего порядка тре ют учета коллективного влияния большого числа частиц. Эффекты ближнего порядка, по-видимому, главным образом связаны с парным взаимодействием частиц, образующих жидкость, и их можно изучать с помощью упрощенных моделей, в которых не учитывается окружение каждой такой пары Дпя их исследования могут быть с успехом применены квантово-химические методы [c.187]


    Книга предназначена для химиков-органиков — научных работников и преподавателей вузов. Особенно ее следует рекомендовать начинающим химикам, стремящимся овладеть квантово-химическими методами. [c.4]

    Для исследования влияния зарядов на атомах на фазовое поведение системы были рассчитаны спинодали для 2 и 2о, полученных с использованием всех перечисленных в табл. 1 квантово-химических методов. Результаты представлены на рис. 4. Очевидно, изменение зарядов в наибольшей степени проявляется в системе при малых плотностях и в критической области. Особенно заметны изменения для критических температур. [c.38]

    Современная химия достигла такого уровня развития, что существует целый ряд ее специальных разделов, являющихся самостоятельными науками. В зависимости от атомарной природы изучаемого вещества, типов химических связей между атомами различают неорганическую, органическую и элементоорганическую химии. Объектом неорганической химии являются все химические элементы и их соединения, другие вещества на их основе. Органическая химия изучает свойства обширного класса соединений, образованных посредством химических связей углерода с углеродом и другими органогенными элементами водородом, азотом, кислородом, серой, хлором, бромом и йодом. Элементоорганическая химия находится на стыке неорганической и органической химии. Эта третья химия относится к соединениям, включающим химические связи углерода с остальными элементами периодической системы, не являющимися органогенами. Молекулярная структура, степень агрегации (объединения) атомов в составе молекул и крупных молекул — макромолекул привносят свои характерные особенности в химическую форму движения материи. Поэтому существуют химия высокомолекулярных соединений, кристаллохимия, геохимия, биохимия и другие науки. Они изучают крупные объединения атомов и гигантские полимерные образования различной природы. Везде центральным вопросом для химии является вопрос о химических свойствах. Предметом изучения являются также физические, физико-химические и биохимические свойства веществ. Поэтому не только интенсивно разрабатываются собственные методы, но и привлекаются к изучению веществ другие науки. Так важными составными частями химии являются физическая химия и химическая физика, исследующие химические объекты, процессы и сопровождающие их явления с помощью расчетного аппарата физики и физических экспериментальных методов. Сегодня эти науки объединяют целый ряд других квантовая химия, химическая термодинамика (термохимия), химическая кинетика, электрохимия, фотохимия, химия высоких энергий, компьютерная химия и др. Только перечень фундаментальных наук химического направления уже говорит об исключительном разнообразии проявления химической формы движения материи и влиянии ее на пашу повседневную [c.14]


    Методы современной квантовой химии распространяются на все более сложные объекты. Квантово-химические расчеты позволяют описать не только молекулы, состоящие из большого количества атомов, природу ковалентной, ионной и других типов внутримолекулярных химических связей, но и в ряде случаев рассмотреть межмолекулярные взаимодействия и глубже понять особенности комплексных соединений, металлических и полупроводниковых кристаллов, сольватов, объединений взаимодействующих частиц в так называемые кластеры, промежуточных переходных состояний, возникающих в ходе химического превращения, и т. д. [c.48]

    Особенности строения сопряженных органических соединений рассмотрены ранее Характер я-МО в рамках простого метода молекулярных орбиталей Хюккеля (МОХ), а также диаграмма энергетических уровней простейшего алкадиена — бутадиена-1,3 — представлены в разделе 2 4 Квантово-химические расчеты для молекулы бутадиена методом МОХ [18] позволяют получить электронную диаграмму (см главу II) [c.332]

    Далее, поскольку глубокий механизм каталитических реакций — как гетерогенных, так и гомогенных — является электронным, то к их описанию можно приложить весь сегодняшний арсенал квантовой химии. Сюда относятся расчеты электронной структуры молекул, их реакционной способности, потенциальных поверхностей реакции и т. д. Специфика гетерогенного катализа, однако, состоит в том, что при контактных процессах в электронном механизме реакции непосредственное участие принимают твердые тела. Корректный учет взаимодействия субстрата с поверхностью катализатора значительно усложняет задачу, требует привлечения аппарата теории энергетической зонной структуры, теории поверхностных состояний и т. н. Несмотря на указанную трудность, число работ по квантовой химии гетерогенного катализа постоянно растет. И хотя в настоящее время такие работы чаще всего посвящены исследованию сравнительно небольших сорбционных комплексов или простейших модельных реакций, несомненно, что уже в недалеком будущем квантово-химические расчеты найдут широкое применение в прогнозировании гетерогенных катализаторов для процессов, представляющих практический интерес. На решение этой же задачи нацелены и широко развиваемые теперь методы корреляции кинетических и термодинамических параметров. К гетерогенно-каталитическим реакциям с учетом их некоторых особенностей уже применяют с определенным успехом уравнения линейных соотношений типа Бренстеда, Гаммета — Тафта, Воеводского — Семенова и аналогичные. Широко [c.5]

    Таким образом, наука о химической форме движения—химия вообще и органическая химия в особенности—не может быть сведена к квантовой механике. Основой изучения химической формы движения материи являются химические методы исследования ведущая роль в развитии химии принадлежит не физическим теориям, а теории химического строения. [c.32]

    Современный период развития органической химии характеризуется в области теории все большим проникновением методов квантовой механики в органическую химию. С их помощью химики пытаются решить вопрос о причинах того или иного проявления взаимного влияния атомов в молекулах. Взаимное влияние атомов, связанных между собой непосредственно, объясняют особенностями данной химической связи. Взаимное влияние атомов, непосредственно друг с другом не связанных, объясняют смещением электронной плотности в молекуле в момент реакции или особым состоянием, гибридизацией , орбит электронов в атомах. [c.14]

    Для общих испытаний светостойкости обычно используются образцы промышленных полимеров. При их изучении до и после фотолиза применяют обычные методы химии полимеров, в частности проводят разделение методами центрифугирования, гель-хроматографии и характеризуют такими параметрами, как молекулярная масса, выход гель-фракции, характеристическая вязкость -растворов и т. п. В исследованиях механизмов фотопревращений полимеров применяют, как правило, очищенные и хорошо охарактеризованные образцы. В данном случае стараются выделить различные факторы и изучить влияние каждого в отдельности. Для этого используют весь арсенал физико-химических методов органической химии и фотохимии, и особенно спектральные. Например, люминесцентные измерения позволяют установить мультиплетность и природу излучательных состояний и в целом охарактеризовать фотофизические процессы в полимере с их участием. Чаще всего при фотолизе используется монохроматический свет известной интенсивности, что позволяет (зная количество поглощенного света) находить квантовые выходы фотохимических реакций. [c.141]


    Середина XX столетия ознаменовалась революцией в физической химии. Почти все ее разделы начали переходить на уровень микроявлений, т. е. в суммарные термодинамические и формально-кинетические формулы стали вводить величины, характеризующие свойства индивидуальных молекул, атомов и электронов, в особенности их энергетику. Б значительной степени это связано с внедрением физических методов исследования в химический эксперимент, квантово-химических и статистических методов в химическую теорию. Если еще в 20-х годах физико-химическую науку разделяли на физическую химию и химическую физику, понимая нод последней описание физико-химических явлений на атомно-молекулярном уровне, то в дальнейшем грани между ними все более стирались. [c.5]

    Начиная с 50-х годов, получило развитие новое направление в разработке методов оценки реакционной способности молекул на основе представлений квантовой теории химической связи. Особенностью этого направления являются определение реакционных центров в молекулах исходя из молекулярной структуры и разработка методов оценки относительной реакционной способности молекул. Так, в методе Хюккеля реакционная способность молекул качественно характеризуется индексами реакционной способности плотностью электронного заряда, индексом свободной валентности, энергией делокализации и др. (см. 37). В методе МО ЛКАО была показана особая роль граничных молекулярных орбиталей. В 60-х годах Вудвордом и Хоффманом было сформулировано правило сохранения орбитальной симметрии в синхронно протекающих элементарных химических актах. Все эти положения получили логическое завершение в методе возмущенных молекулярных орбиталей (метод ВМО). [c.583]

    Основная цель расчетных методов в квантовой химии заключается в том, чтобы выявить особенности реакционной способности молекулы, ее химического поведения. [c.58]

    Задача интенсификации развития химии как науки и производства имеет ряд существенных особенностей по сравнению с задачами интенсификации других отраслей общественного производства. В общем случае ускорение научно-технического прогресса и рост производительности труда в химической промышленности происходят по всем пяти компонентам, которые, по К. Марксу, составляют производительные силы общества, а именно за счет совершенствования 1) специальных знаний и общей культуры че-ловека-труженика, 2) орудий труда, т. е. техники, 3) научных исследований, результаты которых материализуются в форме новой техники и технологии, 4) использования в производстве сил природы, т. е. естественных источников сырья, и 5) форм и методов организации производства. Но в отличие от научно-технического прогресса в других отраслях промышленности, в интенсификации химического производства особую роль играют первый и третий из названных компонентов, ибо именно они призваны обеспечивать своего рода разведку путей развития по существу всех остальных видов производства. В самом деле, например, для максимального повышения экономической эффективности различных видов специального и общего машиностроения, приборостроения и энергетики революционизирующее значение имеют 1) снижение массы и пространственных габаритов машин на единицу мощности 2) использование недефицитных видов сырья без снижения качества продукции 3) механизация и комплексная автоматизация производственных процессов на основе электроники, электротехники, квантовой электродинамики, теории информации и т. д. И, как видно, все эти факторы зависят в первую очередь от успехов химии, от качества разработанных в лаборатории и созданных в промышленности материалов. Ведь снижение массы машин на единицу мощности или поиск недефицитных видов сырья — это задача почти чисто химическая, причем теоретическая, поисковая. И в этой поисковой, разведочной роли состоит основная особенность интенсификации развития химии как науки и производства. [c.225]

    Понятие о методе молекулярных орбиталей. Более универсальным квантово-химическим методом описания химической связи является метод молекулярных орбиталей (ММО), развитый в трудах Леннарда—Джонса, Гунда и особенно Малликена. В этом методе состояние электронов в многоатомной системе описывается молекулярными орбиталялт (МО), подобно тому, как электроны в атомах характеризуются атомными орбиталями (АО). При этом и. АО и МО представляют собой одноэлектронные волновые функции атома или молекулы соответственно. Разница заключается в том, что АО — одноцентровые, а МО — многоцентровые орбитали. Итак, ММО — квантово-химический метод описания химической связи, рассматривающий молекулу и любую многоатомную систему как многоядерный атом , в котором электроны заселяются по молекулярным орбиталям. [c.88]

    Многие современные квантово-химические методы, особенно полуэмпирические, разработаны специально дпя расчета отдельных свойств молекулярных систем, т е хорошо удовлетворяют только одному ипи двум нз указанных требований Поэтому к выводам о механизме реакций, полученным 1фи помощи таких методов, нужно относиться с отфеделенной осторожностью [c.320]

    Если взять в целом взаимодействие диена и соединений одного переходного металла, на сегодняшний день неясно, что заставляет один и тот же металл давать столь разные продукты полимеры, димеры, тримеры, олигомеры. Такой ответ может быть получен, если квантово-химическими методами (ab initio или DFT) будут изучены модели АЦ на основе одного и того же переходного металла, например. Ni, дающие разные продукты реакции полимеры различной стереорегулярности, димеры, тримеры, олигомеры. При этом будут приняты во внимание особенности координации диенов (tj , Т] ), 7С-ст-равновесие концевого звена, транс-влияние, ч с-влияние, особенности кристаллической решетки, наличие и положение лигандов, противоиона и т. д. [c.324]

    Следует отметить, что выводы об ароматичности, основанные на ЭР, сильно зависят от применяемого квантово-химического метода расчета, особенно в пограничных случаях. Наглядным примером может служить дискуссия о природе электронной системы бицикло [6.2.0]декапентаена (43) (см. [50]), для которой одними методами была предсказана антиароматичность и одновременно диатропность [119], что могло, бы иметь принципиальное значение как отрицание обязательной взаимосвязи ме жду диатропностью и ароматичностью, а другими—слабая ароматичность [120]. Последнее совпадает с выводами из экспериментальных данных (ЯМР, рентгеноструктурных, термохимических) [50]. Во избежание подобных ситуаций предложено ароматическими называть лишь те системы, для которых расчет дает большую ЭР [121]. [c.40]

    В химической кинетике при изучении быстрых реакций и химических процессов в экстремальных условиях нашли широкое применение разнообразные физические методы исследования. Для обработки результатов измерения и решения разнообразных теоретических задач, включая квантово-химические расчеты, используют ЭВМ. Возвра-стает роль сложных физико-математических моделей, детально описывающих предреакционное состояние реагирующих частиц, особенно короткоживущих промежуточных частиц, таких, как свободные радикалы, ион-радикалы, возбужденные состояния молекул. [c.3]

    Таким образом, и вещества с дефицитом валентных электронов, по существу, выходят за границы применимости МВС. Факты, не объяснимые существующими теориями, — писал А. М. Бутлеров, — наиболее дороги для науки, от их разработки следует по преимуществу ожидать ее развития в ближайшем будущем . Другой метод квантовой химии — метод молекулярных орбиталей (ММО) — объясняет химическую связь в ковалентных веществах, а также в соединениях с избытком и с дефицитом валентных электронов, 36. Понятие о методе молекулярных орбиталей. Бо. 1ее универсальным квантовохнми-ческим методом описания химической связи служит метод молекулярных орбиталей (ММО), развитый в трудах Леннарда-Джонса, Г унда и особенно Малликена В этом методе состояние электронов в многоатомной системе описывается молекулярными орбиталями (МО), подобно тому как электроны в атомах характеризуются атомными орбиталями (АО). При этом и АО и МО представляют собой одноэлектронные волновые функции атома или молекулы соответственно. Разница заключается в том, что АО — одноцентро-Бые, а МО—многоцентровые орбитали. Итак, ММО — квантовохимический метод описания химической связи, рассматривающий молекулу и другие многоатомные системы, как многоядерный атом , в котором электроны заселяются по молекулярным орбиталям. [c.120]

    Начавшееся физическое изучение белковых молекул со временем приобретает исключительно важное значение. Физика привнесла в эту область строгость и глубину своих воззрений и концепций, количественные теоретические и экспериментальные методы. Квантовая механика, работы В. -Кеезома (19 6 г.), Д. Дебая (1920 г.), В. Гейглера и Ф. Лондона (1928 г.), Ф. Хунда (1928 г.), Э. Хюккеля (1930 г.), Дж. Леннарда-Джонса (1931 г.), Л. Полинга (1936 г.) и многих других физиков подвели черту под развитием классической органической химии и заложили основы современной теоретической химии (квантовой механики молекул или квантовой химии). Они показали, что помимо валентных взаимодействий атомов существуют и могут оказывать заметное влияние на химическое поведение и формообразование молекул, особенно макромолекул, ранее не принимавшиеся во. внимание невалентные взаимодействия атомов (дисперсионные, электростатические, торсионные, водородные связи). Для познания белков, чувствительных к внешним условиям, использование физических и физико-химических методов, гарантирующих, как правило, не только химическую, но и пространственную целостность молекул, имело важное, часто определяющее значение на всех этапах исследования белков от выделения и очистки до установления пространственной структуры и выяснения механизмов функционирования. [c.66]

    Строение бензола стало более понятным только при едовании современными методами Так, констатируя равенства С-С связей, рентгеноструктурный анализ, енно, не объясняет относительной химической ости бензола при крайней ненасыщенности, его ано-ной стабильности Особенности строения и свойств овятся понятными только при квантово-химическом едовании бензола [c.381]

    Особенностью химического метода возбуждения люминесценции является то, что эффективное значение квантового выхода хемилюминесценции может изменяться в завдсимости от условий опыта даже в тех случаях, когда истинное значение квантового выхода т) = Пх Па остается неизменным. Так, например, в реакции между парами натрия и хлором люминесценция возбуждается в результате последовательности реакций [c.13]

    Сущность упомянутых представлений состоит в следующем. Квантово-химические объяснения различной направленности валентностей атома углерода в трех указанных выше случаях и обоснование различия между а- и тс-связями могут быть получены на базе одного из приближенных методов квантовой химии—метода локализованных валентных пар. Наиболее существенной особенностью этого метода является то, что волновая функция для каждой пары валентных электронов, осуществляющих гомеополяриую связь между двумя атомами, строится из одноэлектронных волновых функций валентных электронов каждого из двух связанных атомов. [c.55]

    Второе направление, по которому физика вторглась в область структурной теории,— это применение методов квантовой механики. Сначала был решен коренной вопрос теории строения химических соединений — разработано новое учение о валентности и химической связи. Собственно в области органической химии уже в начале 30-х годов было введено представление о о- ил-связях, объяснено в грубых чертах электронное строение и энергетика бензола и сопряженных систем (включая радикалы типа трнфенилметила), объяснена пространственная направленность связей углерода, их тетраэдрическая, тригональная и дигональная направленность объяснено также отсутствие вращения вокруг двойной связи. В 30-е годы особенное развитие получил метод валентных связей, с помощью которого были получены впервые так называемые молекулярные диаграммы, выражающие проценты двоесвязанности и порядки связей. Эти величины эмпирически были сопоставлены с межатомными расстояниями, результатом чего явилось удачное предсказание еще не определенных межатомных расстояний (например, в нафталине). [c.349]

    Спектры поглощения и спектры люминесценции в видимой и УФ областях позволяют изучать основное и возбужденные электронные состояния молекул и переходы между ними. Эти спектры используются для идентификации соединений, определения их структуры, они дают также информацию о распределении электронной плотности в молекуле и ее изменениях. Эти данные являются опорными для теоретической химии и квантово-химических расчетов. Абсорбционная и люминесцентная спектроскопия широко применяются как высокочувствительные аналитические методы, особенно при исследовании растворов, они могут успешно служить для автоматизации контроля и упразления производственными процессами в химической и других отраслях промышленности. [c.293]

    Изучение очень важных для многих отраслей техники процессов горения и взрыва долго не имело серьезной теоретической основы. Лишь после того, как была создана квантовая теория и были достаточно развиты методы исследования строения и энергетических состояний молекул при высоких температурах (особенно неустойчивых ненасыщенных молекул и радикалов), теория горения и взрыва, как особая область химической кинетики, стала быстрх) развиваться. [c.16]

    Термодинамика играет исключительно важную роль в решении задач химической кинетики. Эта роль термодинамики особенно возросла с развитием экспериментальных методов атомной и молекулярной физики, сделавших возможным вычисление важных для кинетики термодинамических величин на основе статистики и квантовой механики. Одной иэ таких величин, в частности, является константа равновесия, которая с точки зрения химической кинетики прежде всего представляет самостоятельный интерес как величина, определяющая предел измепонип химической системы при заданных условиях протекания реакции константа рапнов( Сия имеет такжэ большое вспомогательное значение, так как на основании известного значения этой величины может быть вычислена константа скорости обратной реакции если известна константа скорости прямой реакции. [c.10]

    Макромолекулы — это не просто огромные молекулы, а качественно иные структурные единицы вещества. В то время как атомы являются электронно-ядерными системами первого порядка, молекулы и макромолекулы представляют собой квантовые системы второго и третьего порядка соответственно. На это указывают их электронные конфигурации (см. гл. VII, VIII). Последние выявляются статистико-термодинамическими, химическими, магнитными, электрофизическими, спектроскопическими и особенно рентгеноструктурными методами в сочетании с квантовомеханическими расчетами. Приближ енными квантовомеханическими расчетами при помощи ЭВМ определены электронные структуры многоатомных молекул и кристаллов. Отметим, что кристаллы являются макромолекулами соответствующих твердых соединений. Молекулы и макромолекулы можно рассматривать как системы, построенные из атомных остовов и валентных электронов. Понятно, что к каждому данному твердому соединению относится только одно твердое вещество, состоящее из бесчисленного количества одинаковых твердых тел. Последние представляют соб ой, таким образом, макромолекулы твердого вещества. [c.15]

    Первая часть учебника существенно переработана, обновлена и дополнена. Особенностью развития современной химии является использование методов прикладной квантовой химии для описания, понимания и предскгаания свойств разнообразных соединений и материалов. Поэтому в новой редакции книги данный раздел значительно расширен. В качестве примеров можнд привести параграфы, посвященные релятивистким эффектам в атомах, единой квантовохимической интерпретации валентности и степени окисления, промежуточным состояниям вещества, влиянии природы вещества на скорость химической реакции, которые написаны и включены в учебник впервые. [c.11]

    Особое место в развитии методов спектрального анализа занимает анализ веществ высокой чистоты, значение которого в различных областях техники и науки постоянно возрастает. Это радиоэлектроника, особенно полупроводниковая техника, квантовая электроника, космическая и квантовая техника, новые системы преобразования энергии, производство химических реактивов и др. Содержание п И1месей в ряде. материалов не должно превышать 10" —10 % и ниже. Для решения такой задачи привлекаются различные методы аналитического контроля, однако методы спектрального анализа обладают рядом преимуществ, например доступностью и простотой эксплуатации спектральных установок наряду с возможностью определения большого числа элементов одновременно, низкими пределами обнаружения н допустимой для этих объектов точностью анализа. [c.195]


Смотреть страницы где упоминается термин Особенности квантово химических методов: [c.367]    [c.486]    [c.486]    [c.365]    [c.11]    [c.378]    [c.91]    [c.133]    [c.165]    [c.89]    [c.483]    [c.165]   
Смотреть главы в:

Руководство по физической химии -> Особенности квантово химических методов




ПОИСК







© 2024 chem21.info Реклама на сайте