Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение реакции алкилирования для синтеза

    Рассмотренные выше процессы, вероятно, представляют собой наиболее значительные направления применения реакций алкилирования а-роматических углеводородов в нефтяной промышленности в настоящее время. Это обозрение значительно расширилось бы, если бы включить все возможности, открываемые научными исследованиями, и, в частности, исследования в области нефтехимического синтеза. [c.513]


    Применение реакции алкилирования для синтеза 1G5 [c.165]

    Восстановительное алкилирование альдегидами и кетонами в избытке аммиака дает первичные амины При недостатке аммиака образуются вторичные и третичные амины Пример практического применения реакции в синтезе диафена ФП дан выше в этой главе [c.858]

    ПРИМЕНЕНИЕ РЕАКЦИИ АЛКИЛИРОВАНИЯ ДЛЯ СИНТЕЗА [c.164]

    Важный случай применения реакции алкилирования по Фриделю— Крафтсу — это замыкание циклов [217]. Наиболее широкораспространенный метод состоит в нагревании с хлоридом алюминия ароматического соединения, содержащего в подходящем положении галоген, гидрокси- или олефиновую группу, как, например, при синтезе тетралина  [c.352]

    Окисление углеводородов является одним из основных направлений современного нефтехимического синтеза [1, 2], роль которого в развитии органической химии трудно переоценить. В настоящее время в промышленности осуществляется каталитическое жидкофазное окисление высших парафиновых углеводородов в высшие алифатические спирты и кислоты [3]. В последние годы большой интерес проявляют исследователи к жидкофазному автоокислению углеводородов кислородом воздуха в гидроперекиси При этом особое внимание привлекает автоокисление алкилароматических углеводородов и некоторых их производных в гидроперекиси. Это объясняется легкостью синтеза алкилароматических углеводородов на основе реакции алкилирования, как показано в главе И, легкостью окисления многих из них в гидроперекиси и широким применением последних в качестве инициаторов процессов полимеризации и исходного сырья в производстве мономеров для получения синтетических каучуков, пластических масс, синтетических волокон и других продуктов, важных для народного хозяйства. [c.244]

    Суммированы основные работы за 1965—1970 гг. по новым реакциям электрохимического синтеза органических соединений и новым идеям в области интенсификации процессов электросинтеза. Рассмотрены реакции анодного окисления углеводородов, спиртов, альдегидов, кетонов, карбоновых кислот и соединений других классов, реакции анодного замещения и присоединения — галоидирование, цианирование, нитрование, гидроксилирование, алкоксилирование, сульфирование, карбоксилирование, алкилирование и др. Приведены сведения об образовании элементоорганических соединений при анодных и катодных процессах. Рассмотрены катодные реакции восстановления без изменения углеродного скелета — восстановление непредельных ароматических, карбонильных, нитро- и других соединений с кратными связями, образование кратных связей при восстановлении, катодное удаление заместителей, а также реакции гидродимеризации и сочетания, замыкания, раскрытия, расширения и сушения циклов, в том числе гетероциклов. Рассмотрены пути повышения плотности тока, увеличения поверхности электродов, совмещение анодных и катодных процессов электросинтеза, применение катализаторов — переносчиков, пути снижения расхода электроэнергии и потерь веществ через диафрагмы. Описаны конструкции наиболее оригинальных новых электролизеров. Таблиц 2, Иллюстраций 10, Бйбл, 526 назв. [c.291]


    Реакция алкилирования органических соединений олефинами , заложен фундамент весьма перспективного направления органического синтеза — использование реакции алкилирования в присутствии катализаторов на основе ВРд для разработки направленного синтеза ранее труднодоступных, но крайне важных соединений, которые могут найти применение как ядохимикаты, бактерицидные и противоопухолевые препараты. [c.163]

    Реакция Фриделя — Крафтса может быть использована для синтеза ароматических реакционноспособных олигомеров [1]. В литературе имеются указания [2] на возможность применения ее для получения фосфорсодержащих полимеров при совместной поликонденсации хлорметилированных ароматических соединений с триарилфосфатами. Эти соединения имеют незамещенные активированные положения в фенильных ядрах и поэтому могут участвовать в реакциях алкилирования. Однако конкретные данные по условиям проведения такой реакции отсутствуют. С другой стороны, от введения фосфора в олигомер следует ожидать повышения огнестойких свойств продуктов, полученных на основе таких фосфорсодержащих олигомеров. [c.53]

    Сырьевые потоки должны обезвоживаться. Этилхлорид должен осушаться перед применением в силикагелевых адсорберах, циклогексан и бензин должны обезвоживаться азеотропной осушкой до содержания влаги менее 10 мг/л. Все эти продукты, а также масло перед подачей в производство должны быть проанализированы на содержание влаги повторно с отбором проб в отделении синтеза ДЭАХ. Чтобы предотвратить побочные неконтролируемые реакции алкилирования содержащихся в растворителе ароматических углеводородов с хлорэтилом в присутствии алюмоорганиче-ских соединений, нужно применять деароматизированные растворители. Для уменьшения опасности самовоспламенения АОС при разгерметизации оборудования процессы синтеза должны проводиться, как уже упоминалось, в среде углеводородного растворителя. [c.163]

    Реакция алкилирования парафинов олефинами, открытая в 1932— 1935 гг., имеет важное промышленное значение, так как она нашла применение для синтеза углеводородов с разветвленным углеродным скелетом, обладающих высоким октановым числом. [c.210]

    О применении реакции магнийорганического синтеза к диацетиленовым углеводородам с целью их алкилирования и аралкилирования говорилось в разделе о методах синтеза гомолов диаце- [c.95]

    Как уже было ОтмеченЬ, ацетоуксусный эфир широко используют в качестве исходного вещества в органическом синтезе. Помимо превращений, сопровождающихся модификацией функциональных групп (гидролиз сложноэфирной группы, селективное восстановление, получение производных), уже были рассмотрены реакции, приводящие к усложнению и видоизменению скелета-синтез гетероциклических соединений, метилкетонов с разветвленной цепью углеродных атомов, 1,2- и 1,5-дикетонов, кетокислот, динитрилов. Дополнительные возможности возникают при применении енолятов (чаще всего натриевого енолята) ацетоуксусного эфира. Важно отметить, что последний в отличие от натриевого производного малонового эфира может алкилироваться или ацилироваться как по атому углерода, так и по карбонильному атому кислорода и, таким образом, проявлять, подобно нитрит-аниону, амбидентные свойства. Эти реакции, как показали кинетические исследования, являются бимолекулярными. Факт протекания реакций алкилирования енолятов ацетоуксусного эфира по 5 у2-механизму подтверждается также данными о реакционной способности алкилгалогенидов в указанной реакции оказалось, что она уменьшается при переходе от первичных к третичным алкилгалогенидам (в последнем случае продукт алкилирования [c.482]

    Другие применения реакции алкилирования ароматических углеводородов связаны с менее крупнотоннажными производствами. Из них нужно упомянуть получение трег-алкилтолуолов, в особенности п-трет-бутилтолуола, который является промежуточным продуктом при синтезе п-трет-бутилбензойной кислоты, имеющей значение в производстве лаковых смол и синтетического каучука  [c.355]

    Авторы сохранили общий строй книги, но для облегчения пользования материалом отказались от разделения процессов на реакции, проходящие в присутствии и в отсутствие щелочи, воспользовавщись классификацией по типам реакций. Введены отдельные разделы по хиральным и полимерносвязанным катализаторам, которые отсутствовали в первом издании, а также новые разделы относительно нуклеофильного ароматического замещения и реакций металлоорганических соединений в условиях межфазного катализа. Основную часть книги занимает гл. 3, посвященная практическому использованию межфазного катализа, где достаточно подробно освещены вопросы техники проведения межфазных реакций, а затем последовательно обсуждено применение межфазного катализа в реакциях замещения (синтез галогенидов, включая фториды, синтезы нитрилов, сложных эфиров, тиолов и сульфидов, простых эфиров, Ы- и С-алкилирование, в том числе амбидентных ионов), изомеризации и дейтерообмена, присоединения к кратным С—С-связям, включая неактивированные, присоединения к С = 0-связям, р-элиминирования, гидролиза, генерирования и превращения фосфониевых и сульфониевых илидов, в нуклеофильном ароматическом замещении, в различных реакциях (ион-радикальных, радикальных, электрохимических и др.), в металлоорганической химии, при а-элиминировании (генерировании и присоединении дигалокарбенов и тригалометилид-ных анионов), окислении и восстановлении. В каждом разделе приведены конкретные методики проведения реакций в различных условиях межфазного катализа и таблицы примеров синтеза разнообразных классов соединений. В монографии использовано более 2000 литературных источников. [c.6]


    НОМ И перед хроматографированием алкилируют метилиодидом. Высоколипофильный катион обеспечивает быструю экстракцию и метилирование при комнатной температуре [242]. Обзор работ, посвященных применению экстрактивного алкилирования для аналитических целей, дан в [1052], другие примеры использования этого метода см. в [1054, 1487]. При алкилировании в двухфазных системах феноляты реагируют с пентафторбензилбромидом и другими бензилгалогенидами и в отсутствие МФ-катализатора, в то же время алкилирование карбоксилатов без катализатора не идет это позволяет легко отличать их друг от друга [1055, 1583]. Катализатор не требуется также и при синтезе некоторых эфиров с использованием в качестве основания лиофильно высушенного KF [1605]. Библиографические ссылки на другие работы, охватывающие все типы реакций получения эфиров, приведены в табл. 3.7. [c.158]

    Прямой синтез алкилхлорсиланов дает успешные результаты только для немногих веществ (метил-, этил-, аллилхлорсиланы). Поэтому для получения других кремнийорганических соединений оказалась необходимой разработка иных методов синтеза, которые могли бы найти промышленное применение. Среди пих важное место заняли реакции алкилирования по атому кремния (или, наоборот, силилирование органических соединений). [c.308]

    Этот важнейший метод синтеза арилкетонов называется ацилированием по Фриделю — Крафтсу [237]. Реакция находит широкое применение. В качестве реагентов используются не только ацилгалогениды, но также карбоновые кислоты, ангидриды и кетены. В случае сложных эфиров доминирует алкилирование (см. реакцию 11-13). Группа R может быть как арильной, так и алкильной. Эта реакция свободна от главного недостатка реакций алкилирования по Фриделю — Крафтсу, а именно группа R никогда не перегруппировывается, а поскольку группа R O дезактивирующая, то после введения одной такой группы реакция останавливается. Можно использовать ацилгалогениды, содержащие любой атом галогена, хотя наиболее часто применяются ацилхлориды. Обычно, но не всегда порядок реакционной способности соответствует следующему ряду I>Br> l>F [238]. Реакция катализируется кислотами Льюиса, аналогичными применяемым в реакции 11-13, но при ацилировании на 1 моль реагента требуется немного более [c.356]

    Доказательством строения адамантана послужил синтез этого углеводорода (Прелог, 1941). Диметиловый эфир бицикло-[3,3,1]-нонан-дион-2,6-дикарбоновой-3,7 кислоты III был алкилирован бромистым метиленом для введения метиленового мостика, после чего обе кетогруппы были удалены восстановлением по Кижнеру декарбоксилирование в присутствии порошкообразной меди при 400 °С протекало с низким выходом (2%), однако его удалось удовлетворительно провести с применением реакции Хунсдиккера (см. том I стр. 400) и гидрирования 1,3-дибромадамантана VI  [c.58]

    Хлористый алюминий нашел широкое применение в качестве катализатора разнообразных процессов органического синтеза (реакция алкилирования, ацилирования, гидрогенизации, изомеризации и др.). Каталитические свойства AI I3 используют при производстве смазочных масел и моторных топлив, синтетического каучука AI I3 применяют для очистки нефти и масел от серы [4]. [c.517]

    Реакция алкилирования по Фриделю—Крафтсу требует очень жестких условий и применения сильных кислот Лью- иса в качестве катализаторов. Только немногие функциональные группы инертны к таким катализаторам. Свободнорадикальное алкилирование ароматических соединений можно рассматривать как дополнительный, более мягкий метод синтеза [3]. Реакция дает смеси продуктов, получающиеся как за счет атаки по ядру и боковой цепи, так и за счет димеризации промежуточных ст-комплексов. Простые алкильные радикалы, вероятно, лучше всего генерировать фотолизом алкилмеркуриодидов [80]. Однако циклогексен- [c.53]

    Реакция алкилирования фенола а-олефинами — одна из важнейших реакций промышленного органического синтеза. Она широко используется при производстве присадок и моющих средств. Разнообразные алкнлфенолы находят применение в качестве ингибиторов процессов окислительной деструкции органических систем. С развитием новой техники возникают задачи по направленному синтезу алкилфенолов определенной химической структуры, вследствие чего реакция алкилирования фенола приобретает особое значение. В связи с этим детальное изучение структуры алкилфенолов, образующихся при алкилировании фенола высшими моно-олефинами, очень актуально. [c.166]

    Новые тома Органических реакций появляются почти ежегодно. В ка кдом из них содержатся обзоры от 7 до 12 различных общих органических реакций, таких, как алкилирование по Фриделю — Крафтсу или синтез Манниха. Каждая глава написана автором — сиециалистом в данной области и содержит обсуждение применения реакции и возможные ограничения, образцы выполнения реакций, таблицы примеров и многочисленные ссылки. [c.665]

    Реакция алкилирования углеводородов олефивами в последние годы вышла из рамок методов синтеза моторного топлива и получила широкое применение для получения химического сырья. [c.381]

    В отлпчпе от алкилирования, применение которого в синтезе ограничено, ацилирование активпрованных алкенов, аренов и гетероаренов имеет очень большое синтетическое значение. Многие из этих реакций являются вариантами реакции Фриделя— Крафтса, например  [c.116]

    Натриевые и литиевые производные этинилвиниловых соединений без выделения вводятся в реакцию алкилирования или конденсацию с карбонильными соединениями. Магнийорганические производные этинилвиниловых соединений легко образуются в эфире или тетрагидрофуране [115, 568, 942, 956а] их применение в синтезах освещено в последующих разделах этой главы. [c.273]

    Реакции алкилирования ароматических соединений с замещени- ем атома водорода в ядре были открыты в 1877 г. Фриделем и Крафтсом и с тех пор получили большое препаративное и промышленное значение. Эти же исследователи впервые предложили в качестве катализатора хлористый алюминий, который впоследствии нашел применение и для других процессов органического синтеза. [c.342]


Смотреть страницы где упоминается термин Применение реакции алкилирования для синтеза: [c.165]    [c.4]    [c.148]    [c.4]    [c.29]    [c.143]    [c.420]    [c.294]    [c.322]    [c.143]    [c.147]    [c.143]    [c.147]   
Смотреть главы в:

Органические реакции Сб.9 -> Применение реакции алкилирования для синтеза

Органические реакции том 9 -> Применение реакции алкилирования для синтеза

Органические реакции Сборник 9 -> Применение реакции алкилирования для синтеза




ПОИСК





Смотрите так же термины и статьи:

Применение реакции в синтезе

Реакции алкилирования Алкилирование

Реакции синтеза

Реакция алкилирования

Синтез-газ применение



© 2024 chem21.info Реклама на сайте