Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Олефиновые углеводороды реакции алкилирования

    Полимеризация олефиновых углеводородов и алкилирование циклических соединений олефинами тот же катализатор может быть применен при конденсации простых эфиров или спиртов с ароматикой, фенолами и альдегидами катализатор пригоден также для галоидирования ненасыщенных соединений и реакций изомеризации этот катализатор можно использовать для образования сложных эфиров из карбоновых кислот и олефиновых углеводородов [c.469]


    В основе процессов алкилирования изопарафинов олефиновыми углеводородами, катализируемых кислотными катализаторами, лежат реакции, протекающие по карбкатионному механизму. Карбкатионы в зависимости от типа используемой кислоты могут быть образованы несколькими способами  [c.115]

    Алкилированию можно подвергать углеводороды как низкого, так и высокого молекулярного веса. Но для получения компонентов бензина практическое значение имеет только реакция углеводородов Сг—С5. Из парафиновых углеводородов метан и этан в реакцию не вступают. Легко алкилируется изобутан, обладающий подвижным водородом при третичном углеродном атоме. Кроме того, разветвленная структура изобутана предопределяет наиболее выгодное с антидетонационной точки зрения строение продуктов синтеза. Поэтому во всех промышленных процессах алкилирования исходным парафиновым сырьем является изобутан. Из олефиновых углеводородов для алкилирования изобутана следует применять углеводороды Сз—С5. [c.319]

    Тот факт, что продукты, получаемые при алкилировании бутенами-1 и -2 в присутствии серной кислоты и фтористого водорода, меньше различаются между собой, можно легко объяснить, если предположить, что при контактировании смеси изобутана и бутена-1 или -2 с жидким фтористым водородом или серной кислотой наиболее легко проходит реакция присоединения кислоты к олефиновому углеводороду с образованием втор-.бутилового эфира. В результате получается равновесная смесь  [c.326]

    Гомологи циклопропана по своим свойствам близки к олефино-вым углеводородам они изомеризуются под действием кислот, протонируются с раскрытием цикла, способны вступать в реакцию алкилирования ароматических углеводородов и т. п. Стабилизация образующихся циклопропильных карбокатионов протекает после присоединения к ароматическому ядру или другому электронодонорному соединению, а также за счет выброса протона и превращения в олефиновый углеводород  [c.131]

    В зависимости от соотношения реагентов в ароматическое ядро можнО ввести одну или несколько алкильных групп Часто образуется смесь продуктов различной степени алкилирования При наличии алкильного заместителя-в ароматическом соединении заметно облегчается его алкилирование Характерной особенностью алкилирования по способу Фриделя—Крафтса является тенденция к перегруппировкам алкильных групп во время реакции При ал-килированиц соединениями, содержащими более двух атомов углерода, всегда образуются производные с разветвленной цепью Так, прн алкилиро-ванни первичными спиртами в присутствии серной кислоты происходит перегруппировка алкильного остатка Изомеризация алкильного остатка происходит и при алкилироваиии с помощью олефиновых углеводородов Последний метод широко используется в промышленности [c.259]


    В основе процессов производства высокооктановых изопарафинов лежат реакции изомеризации н-парафинов и алкилирования парафиновых углеводородов олефиновыми углеводородами С2—С5. [c.114]

    Кроме того, олефины интенсифицируют вторичные реакции в цикле присоединение — расщепление , имеющем важное значение для крекинга низкомолекулярных парафиновых углеводородов, При невысоких температурах олефины также участвуют в реакции алкилирования изопарафинов с образованием, углеводородов разветвленного строения, В смеси с, нафтеновыми и нафтено-ароматическими углеводородами олефины способствуют протеканию реакции Н-переноса с образованием парафиновых и ароматических углеводородов [1, 3]. Аналогичная по характеру реакция протекает и при взаимодействии ароматических углеводородов с боковой олефиновой цепью с нафтеновыми и нафтеноароматическими углеводородами. [c.97]

    При крекинге циклических алкилированных углеводородов с алкильными цепями, содержащими три атома углерода и более, происходит распад — отрыв боковой цепи от кольца, а при термическом крекинге в большинстве случаев получается разрыв цепи. Для би- и полициклических нафтеновых углеводородов параллельно реакции распада — разрыва кольца в присутствии алюмосиликатных катализаторов — интенсивно течет реакция дегидрирования с образованием ароматических углеводородов. Выделяющийся водород при реакции дегидрогенизации нафтеновых углеводородов и конденсации ароматических и непредельных с образованием кокса в значительной мере перераспределяется и обеспечивает образование предельных углеводородов в продуктах крекинга. Особенно интенсивно протекают превращения ненредельных соединений, образовавшихся в результате распада. Реакции изомеризации, полимеризации, дегидроциклизации, насыщения водородом олефиновых углеводородов в значительной мере предопределяют состав получаемых продуктов крекинга. Характерной реакцией для каталитического крекинга является глубокий распад сернистых соединений, за счет реакции перераспределения водорода происходит интенсивное образование сероводорода. С газами процесса удаляется до 50% серы, содержащейся в сырье. [c.82]

    Одним из наиболее эффективных процессов получения высокооктановых компонентов бензинов является процесс алкилирования. При алкилировании низших изопарафиновых углеводородов олефиновыми образуются углеводороды с разветвленной цепью, обладающие высокими антидетонационными свойствами. Реакция алкилирования олефинов может быть представлена в общем виде уравнением  [c.230]

    Хотя многие вещества влияют на скорость разложения углеводородов, только использование твердых кислотных окислов приводит к желаемому процессу и продуктам. Иные кислотные катализаторы при более низких температурах способствуют протеканию родственных реакций полимеризации олефиновых углеводородов, алкилирования ароматических или парафиновых углеводородов, изомеризации парафиновых углеводородов. Гринсфельдер [32] и Шмерлинг [95] дали общую основу этих превращений и каталитического крекинга. Ниже рассматривается несколько веществ, оказывающих различное каталитическое воздействие. [c.456]

    Одним из серьезных недостатков цеолитных систем как катализаторов нефтепереработки является их высокая активность в отношении получения предельных углеводородов в газовой фазе. Возникает так называемая проблема олефинового голода , связанная с потерей сырья для нефтехимии (например, реакции алкилирования). [c.62]

    А. Алкилирование парафиновых углеводородов. Классические реакции усложнения молекул парафиновых углеводородов не выходили за рамки лабораторного эксперимента. Практическое значение получила лишь открытая В. Н. Ипатьевым [258] реакция алкилирования парафинов олефиновыми углеводородами, не связанная со сложной технологией. [c.273]

    Для всех обратимых эндотермических реакций при увеличении температуры сверх определенного предела равновесие реакции смещается слева направо, т. е. в сторону образования продуктов реакции. Такие реакции можно назвать высокотемпературными. Для большинства реакций синтеза (гидрирование, алкилирование, полимеризация), являющихся экзотермическими, наблюдается обратная картина, поэтому их называют низкотемпературными. Термическое разложение углеводородов начинается при 380—400 °С. С увеличением температуры скорость крекинга быстро растет. Повышение температуры крекинга при постоянном давлении приводит к повышению содержания легких компонентов, к снижению выхода тяжелых фракций и кокса, причем растет содержание в газе непредельных углеводородов. Для практического осуществления термических процессов требуется, чтобы они протекали с достаточной скоростью и при этом достигалась высокая степень превращения и избирательность. Для увеличения скорости реакции при жидкофазном термическом крекинге и коксовании нефтяного сырья температуру повышают до 470—550 °С, парофазный процесс ведут при температуре более 550 °С, пиролиз —при 700—900 °С. Выход газа в этих условиях заметно увеличивается, растет содержание в нем олефиновых углеводородов. [c.234]


    Механизм каталитического алкилирования очень сложен. Так, в результате взаимодействия одного изопарафинового и одного олефинового углеводородов образуется не один изопарафиновый углеводород более высокого молекулярного веса, а иногда до двух десятков углеводородов. Так, при анализе алкилата, полученного при сернокислотном алкилировании изобутана смесью бутиленов нормального строения, обнаружены углеводороды Се—Сд самого разнообразного строения. Исходя из обычного механизма реакции при некаталитическом алкилировании [c.320]

    Однако поскольку выделить первоначально образовавшиеся олефины не оказалось возможным ни в одной из реакций по Фриделю-Крафтсу, т. е. ни при ацилировании в алифатическом ряду, пи при алкилировании, то высказанное предположение является лишь гипотетическим. Алкилирование парафинов олефинами в присутствии хлористого алюминия указывается в нескольких патентах. В этих патентах сообщается, что такие углеводороды, как пропан и бутаны, алкилируются олефиновыми углеводородами, папример пропиленом и бутиленами при температуре между —50° и 4-75° в присутствии хлористого алюминия и хлористого водорода. Во время реакции поддерживается давление, достаточное для того, чтобы реагирующие соединепия находились в кидком состоянии [16]. Одновременно небходимо сохранить избыток одного моля парафина по отношению к олефину [17]. [c.743]

    Термическое алкилирование парафиновых углеводородов I первые описано Фреем и Хеппом [13]. Реакция изучалась й проточной системе. К парафиновому углеводороду, циркулирующему в покрытых медью стальных трубах, инжектировали небольшими порциями олефиновый углеводород, чтобы обеспечить поддержание в системе высокого отношения парафиновый углеводород олефиновый углеводород и, таким образом, свести к минимуму реакции полимеризации. Среднее время реакции составляло 4—5 мин. [c.305]

    Инициированное термическое алкилирование. Термическое алкилиро-вание.парафигговых углеводородов можно осуш ествить в мягких условиях, если к смеси парафинового и олефинового углеводородов добавить небольшие количества (1—3% вес. на о бщ ую загрузку) таких веществ, как алифатические галоидные или нитросоединения [33]. Парафиновые углеводороды с прямой и разветвленной ценью алкилируются ири 300—400° и давлении 210 ат и выше. При этом получаются такие же продукты, как и при чисто термических реакциях это указывает на то, что и здесь имеет место свободно-радикальный механизм реакции, а катализаторы служат в качестве инициаторов цеии путем распада их с образованием радикалов при сравнительно более низкой температуре, чем в случае углеводородов. [c.308]

    Так как изопентан и 2,3-диметилбутан являются побочными продуктами алкилирования изобутана пропиленом в присутствии сорной кислоты, которая сама по себе является слабым,ката.тизатором алкилирования изобутана этиленом, приведенный выше механизм, вероятно, менее правдоподобен, чем механизм, включающш участие реакции деструктивного алкилирования (согласно последнему промежуточный гептил-иоп теряет протон, образуя олефиновый углеводород, который затем алкили-руетг исходный парафиновый углеводород). Итак, используя снова в качестве примера реакцию алкилирования изобутана пропиленом, предполагают, что 2,4-диметилпвптеп-2 реагирует с изобутаном, давая в конечном счете изоиентан и 2,3-диметилбутан  [c.317]

    И могут быть использованы в непрерывных процессах, йаилучшие результаты получены при применении жидких комплексов хлористого алюминия, которые вследствие нерастворимости в продукте алкилирования быстро отстаиваются. Это позволяет отделять их и снова вводить в процесс. Комплексы можно получать на месте (in situ) при помощи реакции алкилирования [2, 47] или же приготовлять предварительно путем взаимодействия хлористого алюминия с различными алифатическими углеводородами и углеводородными фракциями (например, с олефинами, с 2,2,4-триметил-пентаном, с керосином) [19]. Хорошие результаты давало использование в качестве катализатора жидкого комплекса, приготовленного взаимодействием хлористого алюминия с остатком от перегонки продукта (температура кипения около 160—200° 98,4% парафиновых и 1,6% олефиновых углеводородов), получаемого при алкилировании изобутана пропиленом и бутиленами в присутствии серной кислоты. [c.321]

    Реакция алкилирования бензола олефиновыми углеводородами 8 0 - - СпНзп -<—- [c.99]

    Олефиновые углеводороды, практически отсутствующие во фракциях пря1Мой перегоики не фти, но присутствующие в тех ли ИНЫХ количествах в продуктах крекинга и образующиеся при Первичных реакциях рз спада шарафиновых, нафтеновых и алкилированных ароматических углеводородов, характеризуются чрезвычайным разнообразием превращений при термической обработка по сравнению с угле Во,дородзми других групп. [c.107]

    В указанных процессах ( Цеоформинг и др.) протекают реакции превращения низкооктановых компонентов сырья (н-парафиновые углеводороды) в высокооктановые (изопарафиновые и ароматические углеводороды). Превращение углеводородов происходит в две основные стадии на первой — путем разрыва связей С-С парафиновых углеводородов с образованием промежуточных олефиновых фрагментов, на второй — путем перераспределения водорода в олефинах с образованием парафиновых и ароматических углеводородов. Попутно протекают реакции алкилирования промежуточными олефинами изопарафиновых и ароматических углеводородов, реакции диспропорционирования и изомеризации ароматических углеводородов и реакции изомеризации парафиновых и нафтеновых углеводородов. Реакции дегидрирования идут в незначительной степени [362, 363]. Одновременно происходит гидрогенолиз сернистых соединений с образованием сероводорода и соответствующих углеводородов. [c.357]

    Термическое алкилирование парафиновых углеводородов, как и другие термические реакции, легко может быть объяснено принятием цепного механизма, протекающего с участием свободных радикалов [12]. Цеиь реакций, вероятно, инициируется незначительным крекингом парафинового или олефинового углеводорода. Образующийся прп этом свободный радикал взаимодействует с парафиновым углеводородом, давая свободный алкильный радикал, присоединение которого к олефину ведет и более высокомолекулярному свободному радикалу. Взаимодействие последнего с парафиновым углеводородом [c.178]

    Выход продукта, структура и количественные соотношения различных алкилфенолов, образующихся при алкилировании фенола олефиновыми углеводородами, в общем случае зависит от следующих физико-химических факторов а) температуры, б) природьг катализатора, в) молярного соотношения фенола и олефинового углеводорода, г) химической природы алкилирующего агента (молекулярный вес, длина цепи, разветвленность), д) продолжительности реакции алкилирования. [c.166]

    Заложенные в основу метода жидкостной микрохроматографии с целью максимального сокраш ения продолжительности разделения фракций вторичных алкилфенолов и алкилата малый расход элюентов и небольшое количество отбираемых фракций требуют создания условий для получения четкого разделения близко отстоящих друг от друга пиков отдельных групп компонентов. Более точные результаты расчета состава фракций алкилфенолов и алкилата, содержащего, в частности, значительное количество низкокинящей части не вошедших в реакцию алкилирования парафино-олефиновых углеводородов (Се—С з), могут быть получены при подборе определенных условий обработки фракций элюата, обеспечивающих снижение общих потерь разделения до минимума. [c.125]

    Возможности анализа высокомолекулярных вторичных алкилфенолов методом газо-жидкостной хроматографии ограничены их высокими температурами кипения и сложностью состава. Наиболее низкокипящими компонентами, присутствующими во фракции вторичных алкилфенолов, являются алкилфениловые эфиры и не вошедшие в реакцию фенол и нарафино-олефцновые углеводороды. При газо-жидкостном хроматографировании на полиэтиленгликоль- сукцинате при 190 °С фракции алкилфенолов, полученных алкилированием фенола фракцией а-олефинов Се—С , достигнуто разделение в виде последовательно выходящих из колонки групп пиков парафино-олефиновых углеводородов С —С , алкилфениловых эфиров, различающихся длиной алкильного радикала и местом при--соединения атома кислоррда к атомам углерода алкильного радикала, и в виде отдельного пика — фенола [280]. За пиком фенола выходят пики наиболее низкокипящей части алкилфенолов остальные алкилфенолы удерживаются в колонке и могут быть разделены на компоненты в иных условиях хроматографирования. Наиболее подходящими для этих целей являются высокотемпературные жидкие фазы, такие, как 8Е-30. [c.129]

    Алкилирование ароматических углеводородов. Алкилирование является основной реакцией, которая протекает при взаимодействии олефиновых и ароматических углеводородов при температурах < 300° С на цеолитах с различной кислотностью. Классическая модель, разработанная для аналогичных гомогенных реакций алкилирования по Фриделю — Крафтсу [259], предполагает, что атакующим агентом является ион карбония или сильно поляризованный комплекс со смещенным атомом водорода. Электрофильная атака этого агента на ароматическую тг-электронную систему приводит к образованию бензениевого катиона, который, отщепляя протон, снова превраща- [c.77]

    Вопрос о форме существования протопизованной частицы олефина до сих пор окончательно не решен. Существует мнение, что лимитирующей стадией превращения олефиновых углеводородов является акт изомеризации я-комплекса в сг-комплекс. Однако, если бы это было так, то гидрогалоидирование и полимеризация олефинов протекали бы, как мономолекулярные реакции, не было бы различий в энергиях активации реакций гидратации, полимеризации, алкилирования и гидрогалоидирования чего в действительности не наблюдается. [c.268]

    Позже, как известно, галогениды алюминия, преимущественно хлориды, были широко использованы в качестве катализаторов многих реакций крекинга, алкилирования посредством непредельных соединений, полимеразиции различных олефиновых углеводородов и особенно широко — реакций изомеризации алканов [20,22]. [c.157]

    При алкилировании углеводородов в присутствии фторсульфоновой кислоты и промотора (вода) большое влияние на качество алкилата оказывает состав олефиновых углеводородов. Одновременное присутствие олефинов нормального и изостроения снижает качество алкилата. Это происходит потому, что имеют место побочные реакции, приводящие к образованию дштнлгексанов  [c.46]

    Обычно НА — вторая молекула углеводорода. Регенерируется карбанион А и реакция продолжается. Ипатьев и Пайнес открыли протекающие по такой схеме реакции алкилирования жирноароматических углеводородов и димеризации олефиновых углеводородов. [c.156]

    Известно, что содераание в исходном этилене 1% окисн углерода увеличивает расход хлористого алюминия почти вдвое. Вредной примесью, вызывающей повышенный расход хлористого алюминия, а иногда и аварийный выход из строя действующей установки является ацетилен и диены [247. Инертные газы, водород, низшие парафиновые и высшие олефиновые углеводороды не влияют непосредственно на реакцию алкилирования, но увеличивают объем отходящих из реактора газов, что приводит к дополнительному уносу паров толуола и ухудшению расходных коэффициентов. [c.7]

    Реакции гидрокрекинга очень сложны — наряду с расщеплением и гидрированием протекают изомеризация, разрыв и перегруппировка циклов, алкилирование, гидродеалкилирование и т. д. Исследо-вaIfия показали, что механизм гидрокрекинга сходен с механизмом каталитического крекинга, но усложнен реакциями гидрирования. Быстрое гидрирование олефиновых углеводородов, образующихся при крекинге, предотвращает образование кокса на катализаторе и обеспечивает, поддержание крекирующей активности катализатора. Это, а также сравнительно высокое парциальное давление водорода в системе обусловливает быстрое протекание крекинга при более низких температурах, чем при обычном каталитическом крекинге, и обеспечивает более длительную работу катализатора без регенерации [12]. [c.254]

    Алкилирование олефинами проводят в жидкой фазе в присутствии безводного А1С1з при 70—120°. При повышенном давлении увеличивается растворимость газообразных олефинов в ароматических углеводородах, что способствует протеканию реакции. Реакцию можно ускорить также путем добавления небольшого количества хлори- стого водорода при этом хлористый алюминий переходит в раствор в виде комплексных соединений с ароматическими и олефиновыми углеводородами. Эти комплексы и являются катализаторами реакции алкилирования. При алкилировании необходимо энергичное перемешивание,. достигаемое при использовании газообразных олефинов путем барбо-тирования, а в случае применения жидких олефинов—интенсивным вращением мешалки или циркуляцией смеси через колонный реактор (при помощи насоса). [c.557]

    Как известно, А. М. Бутлеров предложил единственно правильную и плодотворную теорию строения органических соединений. Химия ненасыщенных углеводородов, которая лежит в основе многих процессов переработки углеводородного сырья, создана трудамр Бутлерова и его учеников. Бутлеров впервые синтезировал изобутилен, диизобутилен, триизобутилен и ряд других олефинов изостроения, изучил их различные реакции, в частности реакцию полимеризации олефинов. Бутлеров первый исследовал процесс гидратации этилена и других олефинов. Химические свойства олефиновых углеводородов стали предметом исследования последователей Бутлерова. Общеизвестна работа А. П. Эльтекова в области алкилирования олефинов. Олефины являются наиболее ценным сырьем для промышленности органического. синтеза, и поэтому большое значение имеют исследования в этой области, в частности открытая С. С. Наметкиным реакция дегидрогидрополимеризации. [c.4]

    Стюарт и Харман [319] исследовали алкилирование 2-бутена зо-бутаном в присутствии концентрированной серной кислоты, содержащей тритий. Легко видеть, что если донором протонов при реакции (10, 19) служит серная кислота, то продукт присоединения мзо-парафина к олефину должен содержать этот радиоактивный изотоп водорода, даже если исходные углеводороды с кислотой не обмениваются. 1. сли же такой обмен имеет место, то в продукте реакции алкилирования должно быть больше трития, чем это может быть вычислено на основании данных о скорости обменной реакции. Контрольные опыты показали, что в то время, как атомы водорода ызо-бутаиа медленно замешаются атомами трития из серной кислоты, в 2-бутене обмен всех атомов водорода происходит очень быстро. Внедрение трития в олефиновую часть молекулы продукта, обязанное реакции (10, 19), не может быть в этом случае исследовано, так как обмен протекает быстрее алкилирования. [c.551]


Смотреть страницы где упоминается термин Олефиновые углеводороды реакции алкилирования: [c.434]    [c.294]    [c.434]    [c.326]    [c.327]    [c.196]    [c.340]    [c.57]    [c.68]    [c.60]    [c.61]    [c.398]   
Введение в нефтехимию (1962) -- [ c.68 , c.69 ]

Введение в нефтехимию (1962) -- [ c.68 , c.69 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции алкилирования Алкилирование

Реакция алкилирования



© 2024 chem21.info Реклама на сайте