Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Размер частиц и упаковка

    Если неподвижный зернистый слой зажать сверху сеткой, проницаемой только для газа, то перепад давления на единицу высоты слоя с повышением скорости восходящего газового потока будет непрерывно возрастать вдоль кривой ВС. Для выбранного зернистого материала, например, для катализатора крекинга нефти с частицами размером от 10 до 100 мкм, может быть получено несколько эквидистантных кривых применительно к неподвижному слою — в зависимости от плотности упаковки частиц. Для подобных зернистых материалов с малым средним размером частиц и широким гранулометрическим составом насыпная плотность может находиться в пределах от 480 до 640 кг/м . На фазовой диаграмме (рис. 1-4) кривая ОАВ соответствует неподвижному слою с наиболее рыхлой упаковкой частиц. [c.20]


    Поведение диспергированных частиц в турбулентном потоке жидкости в значительной степени определяется их концентрацией и отношением размера частиц к внутреннему масштабу турбулентности. При высокой концентрации частиц вследствие их взаимодействия и дополнительной диссипации энергии, обусловленной относительным движением частиц и жидкости, турбулентность подавляется. В предельном случае — при приближении концентрации частиц к их концентрации при плотной упаковке — турбулентность может даже полностью выродиться, или, как говорят, вымерзнуть . [c.180]

    По геометрическому строению пористые материалы можно разделить на рпд классов, основными из которых являются 1) корпускулярные пористые тела, образованные сросшимися или контактирующими частицами (первичные элементы — частицы форма пор зависит от формы частиц и их взаимного расположения, а размеры пор обусловлены размерами частиц и плотностью их упаковки) 2) губчатые пористые тела, в которых поры представляют собой каналы, полости или пустоты в сплошном твердом теле (первичные элементы—поры) 3) смешанные структуры, комбинирующие оба предыдущих вида. [c.370]

    Сажа представляет собой высокодисперсный продукт черного цвета, получаемый при высокотемпературном (1200—2000 °С) разложении углеводородов. Основными элементами сажи являются углерод (90—99%), водород (0,3—0,5%) и кислород (0,1—7%), содержание которых колеблется в зависимости от состава сырья и технологии производства. В саже может содержаться также до 1,5% серы и до 0,5% золы. Размер частиц сажи составляет от нескольких сотен до нескольких тысяч ангстрем. Из частиц сажи формируются агрегаты (плотные образования множества частиц) и агломераты (рыхлые цепные образования разветвленной структуры). Линейные размеры агломератов сажи могут достигать нескольких микрон (обычно 0,2—0,8 мкм). По строению агломератов и плотности упаковки в них частиц судят о структурности сажи. В производственных условиях ее оценивают по маслоемко-сти — масляному числу (чем оно больше, тем выше структурность, [c.395]

    На основе простых геометрических соображений и зная мольный объем вещества, для которого известен тип упаковки, можно сделать выводы о размерах частиц например, простой расчет показывает, что при гексагональной упаковке пространство заполнено на 74%  [c.17]

    Размер частиц, степень их кристалличности и плотность упаковки. Размер частиц существенным образом влияет на температуру пика и его площадь. Так, например, при изучении частиц, размер которых меняется от 200 до 2 мкм, температура пика снижается почти на 100°С. [c.19]


    Повышение прочности слоя Р при уплотнении — результат двух одновременно протекающих процессов возрастания числа контактов и повышения прочности этих контактов Ри Удельное число контактов зависит от размеров частиц а и плотности упаковки. [c.302]

    Поскольку ДТА позволяет получать сведения о характере процессов, происходящих при нагревании системы, а ТГ-ана-лиз — об изменении массы, сопровождающем эти процессы, казалось перспективным объединить эти методы. Однако, как тот, так и другой метод существенно зависит от различных факторов, связанных как с измерительным прибором (скорость нагревания, атмосфера и форма печи, форма и материал держателя образца, расположение термопары, чувствительность записывающего устройства), так и с характеристиками образца (масса образца, размер частиц, плотность упаковки, теплоемкость и теплопроводность). Поэтому трудно с достаточной точностью сопоставлять данные ДТА и ТГ, полученные на разных приборах (пирометр и термовесы) несмотря даже на то, что с выпуском промышленных приборов, заменивших самодельные установки, стало возможным получать воспроизводимые результаты. [c.342]

    Одна из важнейших характеристик адсорбентов — пористость. Объемной пористостью называют отношение суммарного объема пор к общему объему дисперсной системы. Необходимо подчеркнуть, что понятие пористости, широко используемое для характеристики и классификации адсорбентов, имеет различный смысл в зависимости от применения его к отдельным частицам (зернам) адсорбента или же к образованной этими частицами структуре. Так, непористые (сплошные) частицы даже при плотнейшей их упаковке, образуют пористую структуру — порошковую диафрагму, — поры которой являются промежутками между зернами. В зависимости от размера частиц эти структуры могут быть мак-ро- или микропористыми. [c.165]

    Наряду с оптическими методами для исследования дисперсных систем используются и рентгеновские методы, отличие которых от оптических заключается в малой длине волны рентгеновского излучения по сравнению с размером частиц дисперсной фазы. В основном рентгеновские методы используются для изучения внутренней структуры частиц дисперсной фазы (кристалличности, упаковки молекул). Возможно и определение размеров частиц, основанное на анализе формы дифракционных линий на рентгенограмме при дифракции рентгеновских лучей на малых кристаллах образуются размытые дифракционные максимумы, по ширине которых можно оценить размер частиц (точнее говоря, областей совершенной кристаллической решетки). Аморфные частицы, как известно, не дают дифракционных максимумов оценка размеров таких частиц может быть проведена с помощью анализа диффузного рассеяния рентгеновских лучей возле первичного пучка (так называемое малоугловое рассеяние). Теория этого метода определения размера аморфных частиц имеет общие черты с теорией рассеяния света большими частицами. [c.172]

    Величина х определяется геометрией системы, прежде всего размером частиц г и плотностью их упаковки. Эта последняя характеризуется пористостью структуры П — отношением объема пор V,, к обшему объему пористой структуры За- [c.315]

    Приведенные примеры дисперсных структур и материалов на их основе дают возможность представить ту универсальную роль, которую играют структурированные дисперсные системы в самых различных областях народного хозяйства. Соответственно одна из центральных задач современной коллоидной химии, имеющая большое практическое значение, заключается в научном обосновании и разработке методов управления свойствами, и в первую очередь механическими свойствами дисперсных структур. При этом, в зависимости от конкретных практических требований, задача может состоять как в повышении, так и в понижении прочности (сопротивления формоизменению) таких структур. Рассмотренная в начале параграфа зависимость прочности структуры от числа X и прочности контактов Р указывает следующие принципиально возможные пути управления механическими свойствами 1) изменение числа контактов путем варьирования размера частиц (дисперсности) и плотности их упаковки, 2) изменение прочности индивидуальных контактов путем варьирования физико-химических условий их возникновения и развития. Это позволяет реализовать значения прочности в очень широком интервале значений от 10 Н/м2 для грубодисперсных структур с коагуляционными контактами до 10 —10 H м для высокодисперсных структур с фазовыми контактами. [c.323]

    Из диаграммы, приведенной на рис. 5, видно что при увеличении размера частиц повышается удельное электросопротивление засыпи кокса (благодаря росту порозности) и в процессе регенерации тепла преобладает действие локальных токов. Более высокая плотность упаковки кокса класса <1 мм обеспечивает ему максимальную проводимость и повышает интенсивность замкнутых токов. Однако учитывая, что абсолютное значение УЭС засыпи кокса класса <1 мм относительно велико, эффективность его нагревания зна- чительно ниже по сравнению с другими классами. [c.9]


    Приведенные данные справедливы для тех случаев, когда сорбенты разного зернения имеют одинаковые кривые распределения частиц по размеру, колонки набиты одинаковым способом и имеют одинаковый фактор сопротивления колонки. Следует иметь в виду, что трудность получения узких фракций сорбента возрастает по мере уменьшения размера частиц и что фракции от разных производителей имеют разный фракционный состав. Поэтому фактор сопротивления колонок будет меняться в зависимости от зернения, типа сорбента, способа упаковки колонок и др. [c.15]

    Синтез пористых тел требует знания их текстуры и во многом определяется морфологией. В корпускулярных телах большая уд. пов-еть обеспечивается получением возможно меньших первичных частиц, что достигается оптимальным соотношением скоростей зародышеобразования и роста частиц (см. Зарождение новой фазы, Кристаллизация). Объем пор определяется плотностью упаковки частиц. Напр., в гелях плотность упаковки зависит от соотношения прочности скелета гидрогеля и разрушающих его поверхностных сил при образовании в процессе сушки менисков межмицеллярной жидкости. Сушка прочных состарившихся гелей сохраняет их рыхлую структуру и дает системы с большим объемом пор при сушке свежеобразованных гелей рыхлая структура разрушается и происходит переупаковка частиц под влиянием мощных капиллярных сил, в результате образуются тела с малым объемом пор. Размер пор регулируется размером частиц и плотностью их упаковки. В губчатых и кек-рых корпускулярных структурах образование пор достигается удалением одного или нескольких компонентов твердого тела при растворении (пористые стекла, скелетные катализаторы), дегидратацией гидроксидов или терморазложением солей (пористые оксиды разл. природы), частичным окислением (активные угли) и др. процессами. Текстура продукта определяется концентрацией и дисперсностью компонентов в исходном материа- [c.70]

    При снижении размера частиц возрастает площадь поверхности, при этом пики переходов смещаются в область более низких температур. На теплопроводность и рассеяние теплоты влияет плотность образца. С увеличением плотности упаковки теплопроводность повышается. Особенно большое значение упаковка образца имеет в тех случаях, когда при анализе выделяются газообразные продукты, или же при проведении анализа в атмосфере тех или иных газов. [c.183]

    Таким образом, при любых условиях имеется размер частиц, при котором суммарная эффективность фильтрации минимальна, а проскок максимален Этот размер должен зависеть от природы аэрозоля и волокон, их диаметра и плотности упаковки а также скорости воздуха, что и подтверждается опытом [c.206]

    При высушивании гидрогеля кремневой кислоты структурная сетка из связанных между собой сферических частиц сохраняется. В результате увеличения числа частиц и возникновения прочных связей между ними образуется жесткий кремнекислородный каркас. Поры этого каркаса рассматриваются как зазоры между частицами. Основные характеристики пористой структуры определяются размером частиц и плотностью их упаковки. На химические и адсорбционные свойства силикагеля в значительной мере оказывает влияние наличие группы = 81—ОН. ОН-группы занимают в основном вершины тетраэдров, выходящие на поверхность скелета силикагеля [14]. [c.92]

    Крупная ([тракция продукта предварительно дробится и через бункер-нриемпик 14 порошок с нестандартным размером частиц подается на окончательное измельчение в мельницу 15. Просеянный по,1Ивипнлхлорил собирается в бупкер-приемпик 18, откуда также поступает [ а упаковку. [c.27]

    При минимальном псевдоожиженни слои находится в состоянии наиболее свободной упаковки. Пористость слоя возрастает по мере уменьшения среднего размера частиц и коэффициента формы Ф , однако общей формулы, описывающей эту зависимость, не существует. [c.155]

    Различие в размерах частиц, входящих в состав полидисперсного слоя, оказывает влияние на порозность слоя, режим псевдоожижения, однородность слоя и др. Такой слой может иметь меньшую порозность благодаря более плотной упаковке частиц и возможности размещения мелких частиц в каналах между крупными частицами. При псевдоожижении по-лидисперсного слоя скорость потока может оказаться недостаточной для взвешивания крупных частиц и значительно превысить скорость витания мелких, которые при этом выносятся из слоя. Для таких полидисперсных систем характерным показателем является диапазон изменения размеров частиц измеряемый отношением Существенную роль играет также гранулометрический состав слоя - сравнительно невысокая концентрация относительно крупных частиц допустима, особенно при наличии относительно мелких частиц. [c.465]

    Различие в размерах частиц, входящих в состав полидисперсного слоя, оказывает влияние на порозность слоя, режим псевдоожижения, однородность слоя и др. Такой слой может иметь меньшую порозность благодаря более плотной упаковке частиц и возможности размещения мелких частиц в каналах между крупными частицами. При псевдоо7Кижепии полидисперсного слоя скорость потока может оказаться недостаточной для взвешивания крупных частиц и значительно превысить скорость витания мелких, которые при этом выносятся из слоя. В этом случае важным является диапазон изменения размеров частиц, измеряемый отношением маис/ мин- Существенную роль оказывает также гранулометрический состав слоя — сравнительно невысокая концентрация относительно крупных частиц является допустимой особенно при наличии и относительно мелких частиц. В качестве примера можно привести гранулометрический состав пылевидного катализатора установок каталитического крекинга. Основной фракцией являются частицы размером 40—80 мк их содер7кание составляет 50—75% содержание частиц размером 80—200 Л1К должно быть пе более 10—20% содержание частиц размером < АО мк — порядка 20—35%. [c.607]

    Как следует из уравнения (1.15), эффективный коэффициент вихревой диффузии определяется двумя факторами размерами зерен адсорбента и коэффициентом нихр, учитывающим степень равномерности и плотности упаковки. Регулярность набивки, размеры частиц, их форма и изодисперсность могут способствовать уменьшению различий в скоростях потока подвижной фазы и тем самым уменьшению вклада вихревой диффузии в размывание. Таким образом, вихревая диффузия определяется в первую очередь не природой подвижной фазы, а геометрической характеристикой неподвижной фазы. Учитывая обычные размеры зерен в высокоскоростной жидкостно-адсорбционной хроматографии ( з 10 см) линейную скорость подвижной фазы (а—Ю см с- ) и коэффициент молекулярной диффузии в жидкой фазе (5 —10- см -с- ), можно рассчитать примерный вклад вихревой диффузии в ВЭТТ. Он оказывается равным 10 см, т. е. на порядок больше, чем вклад продольной диффузии. [c.72]

    От плотности заполнения и размеров частиц зависит объем ввсь димой пробы. Он возрастает с уменьшением размеров частиц и увеличением плотности упаковки и обычно составляет 0,05—50 мкг. [c.83]

    Факто1)ы, влияющие на парамет] )Ы пористой структуры — объем и радиус пор, удельную поверхность, плотность упаковки, делятся на две групы 1) факторы, влияющие па размер частиц 2) факторы, измемяюнще плотность упаковки частиц. [c.46]

    Широкое применение полимерных мембран для опреснения сточных вод сдерживается их низкой водопроницаемостью, нестойкостью в щелочных и кислых средах, недостаточной механической прочностью, постепенной и необратимой потерей ионной селективности в процессе эксплуатации. Поскольку мембранное опреснение определяется коллоидно-химическими свойствами, целесообразно разрабатывать методы получения мембран, образованных из дисперсных частиц (динамические мембраны). Для этого достаточно формировать осадки из сильнозаряженных малых коллоидных частиц так, чтобы размер пор при достаточно плотной упаковке не превыщал несколько единиц нм. Осадок (коллоидная мембрана) формируется при фильтрации жидкости, содержащей подобные частицы, через пористую подложку. Если размер пор достаточно мал, осадок формируется только на внещней поверхности подложки. Однако тонкопористая мембрана, как показывают многочисленные эксперименты, возникает (но значительно медленнее) и при диаметре пор порядка микрона, что почти стократно превыщает размер частиц, за счет многослойного прилипания частиц на стенки поры. [c.350]

    Величива х определяется геометрией системы, прежде всего размером частиц г в плотностью их упаковки. Эта последняя характеризуется пористостью структуры П — отнощеиием объема пор Уа к общему объему пористой сгруктуры [c.375]

    Измельченные пироксилиновые и баллиститные пороха представляют собой по-лидисперсный порошок с размером частиц менее 1 мм. Они существенно отличаются от непереработанных НЦ своей структурой и более плотной упаковкой макромолекул, что создает определенные трудности в использовании их в качестве технологической основы. Несмотря на это, были разработаны ППСЦО на основе измельченных порохов под технологию пироксилиновых порохов, но вместо спирто-эфирного растворителя применяли ацетон в количестве 30-40% по отношению к составу. [c.147]

    Топкое распыление, создаваемое распылителем, дает ноток мелких канелек п приводит к образованию совершенно однородных по размерам частиц продукта. Влага испаряется во время падения капелек через поток горячего газа. Опасность перегрева или окрашивания материала ничтожна. В сушилках этого типа газ, нагретый до высокой температуры, прпходнт в соприкосновение с потоком мелкодиспергированной насты до тех пор, пока в капельках пасты содержится испаряющаяся вода. Когда зерна полностью высохнут, температура нагретых газов снижается до уровня, при котором не происходит пригорание или плавление сухого продукта. Высушенные частицы моющего вещества уносятся потоком газа в систему приемников. Здесь твердые частицы отделяются от газа, охлаждаются воздухом на вибрирующем транспортере и выносятся в емкость или на сита и упаковку. [c.458]

    Для хорошо упакованных суспензионным способом колонок приведен-ная высота, эквивалентная теоретической тарелке (ПВЭТТ), может составлять 2 независимо от того, использовали ли для упаковки частицы с размером 3, 5, 10 или 20 мкм. В этом случае мы получим соответственно колонки (при стандартной длине их 250 мм) эффективностью 41670, 25000, 12500 и 6250 т.т. Кажется естественным выбрать наиболее эффективную колонку, заполненную частицами размером 3 мкм. Однако за эту эффективность придется заплатить использованием при работе очень высокого давления и относительно невысокой скоростью разделения, так как имеющийся насос, скорее всего, будет неспособен прокачивать через такую колонку растворитель с высокой объемной скоростью. Здесь мы как раз и сталкиваемся с вопросом о связи размера частиц сорбента, эффективности и проницаемости колонок. [c.14]

    При использовании колонок большого диаметра (10 мм и более) особое внимание должно быть уделено выбору сорбента. Как правило, дорогие узкодисперсные сорбенты с размером частиц 5 или 10 мкм для широких колонок использовать нецелесообразно из-за высокой стоимости и трудности суспензионной упаковки. Поэтому часто идут на компромиссное решение и используют препаративную фракцию того же сорбента с размером частиц 25—40 мкм или 40—70 мкм, которая выпускается рядом фирм специально для этих целей. Преимуществом такого сорбента является возможность упаковки сухим способом в колонки большого диаметра, более низкая стоимость (в 3—6 раз дешевле) при полном сохранении химической природы поверхности и пористости сорбента, используемого в аналитическом варианте. Кроме того, при работе с более крупным сорбентом требуется значительно меньшее давление, что упрощает работу и позволяет использовать более дешевое оборудование. [c.60]

    Адсорбенты. Осн адсорбент-кремнезем (силикагель), гидроксилированный или химически модифицированный, используют также А12О3, углеродные адсорбенты, полимеры, содержащие ионогенные, комплексообразующие группы или гр>ппы, способные к специфич взаимод с биологически активными в-вами Размер частиц силикагеля в аналит колонках 3-10 мкм, в препаративных-20-70 мкм Малый размер частиц увеличивает скорость массообмена и повышает эффективность колонки Совр аналит колонки длиной 10-25 см, заполненные силикагелем с размером частиц 5 мкм, позволяют разделить сложные смеси из 20-30 компонентов При уменьшении размера частиц до 3-5 мкм возрастает эффективность колонки, но и растет ее сопротивление и для достижения скорости потока элюента 0,5-2,0 мл/мин требуется давление (1-3) 10 Па Силикагель выдерживает такой перепад давления, гранулы же полимерных сорбентов более эластичны и деформируются В последнее время разработаны механически прочные густосетчатые полимерные сорбенты макропористой структуры, приближающиеся по своей эффективности к силикагелям Форма частиц сорбента размером 10 мкм и выше не оказывает большого влияния на эффективность колонки, однако предпочитают сферич сорбенты, к-рые дают более проницаемую упаковку Внутр структура частицы силикагеля представляет собой систему сообщающихся каналов Для Ж х используют сорбенты с диаметром пор 6-25 нм и уд пов-стью 600-100 м г [c.153]

    Плотность твердой фазы используют при расчетах пористости слоя и размера частиц при седиментационном анализе. Мик-роскопированием получают информацию о форме частиц вещества. Последняя, как известно [107, 108, 109], определяет способ упаковки частиц в слое, его пористость, проницаемость, задерживающую способность. При одинаковой скорости фильтрования частицы иглообразной формы образуют слой с лучшей задерживающей способностью, чем, например, сферические частицы. Аналогичным преимуществом перед иглообразными или ланцетовидными обладают нитевидные частицы. Хорошую чистоту фильтрата обеспечивают дискообразные частицы с сетчатой структурой. [c.173]

    Для расширения рынка сбыта этих хлопьев необходимо повысить их насыпную плотность и чистоту. На фирме "Микроник после промывки и центрифугирования хлопья измельчают до состояния тонкодисперсного порошка и сушат. Примеси, например, полиэтилентерефталат, из которого также изготавливают тару, в процессе измельчения не разрушаются, их впоследствии можно отделить просеиванием. После просеивания получали порошкообразный ПВХ с размером частиц менее 500 мкм (50-60% от общего содержания), с размером частиц менее 1 мм (30-40%) и порошок, включающий все остальные частицы ( 10%), а также примеси, попадающие из ПВХ тары из-под масла, полиэтилентерефталат и др. Порошок с размером частиц до 500 мкм поставляют переработчикам, использующим его в качестве сырья для производства таких изделий, как профили, соэкструдированные трубы (внутренний слой) и покрытия для полов (внутренний слой). Порошок с размером частиц до 1 мм почти полностью перерабатывают в профилй с коротким сроком службы, применяемые для упаковки. Оставшийся порошок используют в качестве модификатора материалов для дорожных покрытий. [c.272]


Смотреть страницы где упоминается термин Размер частиц и упаковка: [c.514]    [c.8]    [c.17]    [c.130]    [c.182]    [c.143]    [c.302]    [c.386]    [c.208]    [c.386]    [c.35]    [c.73]    [c.148]    [c.241]    [c.279]   
Смотреть главы в:

Химия кремнезема Ч.1 -> Размер частиц и упаковка




ПОИСК





Смотрите так же термины и статьи:

Частицы размер

Частицы размер см Размер частиц



© 2025 chem21.info Реклама на сайте