Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обнаружение органическими реагентами

    ОБНАРУЖЕНИЕ ОРГАНИЧЕСКИМИ РЕАГЕНТАМИ [c.68]

    Методы обнаружения ионов можно разделить на химические и физические. Для химического обнаружения используют реагенты, применяемые в качественном неорганическом анализе. Разделенные ионы можно обнаружить с помощью универсальных реагентов, вступающих в характерные реакции с исследованными ионами для разделения индивидуальных ионов и подтверждения их наличия можно пользоваться избирательными, или специфическими, реагентами. Для обнаружения пригоден ряд реагентов, указанных в монографиях, посвященных качественному анализу методом БХ [36, 93, 124]. Особенно чувствительны органические реагенты. Предел обнаружения органическими реагентами составляет 0,1 мкг, если используется цветная реакция, и 0,01 мкг, если продукты реакции флуоресцируют. [c.143]


    Специфические реакции. Реакция является специфической, если при действии реактива в определенных условиях однозначно идентифицируют только, один, элемент или ион. Специфические реакции должны быть легко выполнимыми и наглядными. Если реакция ненадежна,, то применять ее не следует. До сих пор немного Предложено так называемых идеально специфичных реакций. Благодаря ирименению органических реагентов ЧИСЛО таких реакций постоянно растет. Типично специфическим реагентом, давно применяемым для обнаружения никеля, является диметилглиоксим, который- с ионами никеля(П) образует малиново-красный характерный осадок. [c.9]

    Поскольку во многих случаях органические реагенты образуют устойчивые комплексы с ионами металлов, их -применяют преимущественно для обнаружения катионов. Для анионов известно небольшое число чувствительных органических реагентов, поэтому идентификацию анионов лучше проводить с помощью классических реакций С неорганическими веществами. [c.13]

    ОРГАНИЧЕСКИЕ РЕАГЕНТЫ — органические соединения, применяемые в аналитической химии для обнаружения, отделения и количественного определе- [c.182]

    Методы обнаружения ионов можно разделить на химические и физические. Для их химического обнаружения используют высокочувствительные органические реагенты. Из физических способов обнаружения наиболее чувствительны радиометрические методы, которые прежде всего применяют при анализе радиоизотопов. Для определения положения ионов можно использовать, например, низко- или высокочастотную кондукто-метрию, полярографию и т. п. Наиболее употре-бима фотометрия обнаруженных окрашенных пятен в отраженном или проходящем свете. [c.241]

    В зависимости от характера анализируемого материала различают анализ неорганических и органических веществ. Выделение анализа органических веществ в отдельный раздел аналитической химии связано с некоторыми особенностями органических соединений по сравнению с неорганическими. Часто первый этап анализа состоит в переведении пробы в раствор. При анализе неорганических материалов растворителем чаще всего служит вода или водные растворы кислот или щелочей. Полученный раствор содержит катионы и анионы подлежащих определению элементов. Для их обнаружения применяют реагенты, которые взаимодействуют с определяемыми ионами, как правило, очень быстро, причем в большинстве случаев реакции доходят до конца. При анализе органических соединений нередко необходимо провести предварительную минерализацию пробы, т. е. разрушить ее органическую часть прокаливанием или обработкой концентрированными кислотами. Нерастворимые в воде органические соединения иногда растворяют в органических растворителях реакции между органическими соединениями обычно протекают медленно и почти никогда не доходят до конца, причем они могут протекать по нескольким направлениям с образованием разнообразных продуктов реакции. Б анализе применяют и некоторые другие [c.13]


    Высокая селективность определений и низкие пределы обнаружения могут быть достигнуты, если использовать для целей концентрирования ионов органические реагенты. В этом случае снижение нижней границы определяемых концентраций является результатом химической реакции определяемого компонента в одной из степеней окисления с органическим реагентом, образующим ма-430 [c.430]

    Методы амперометрического титрования Sb(IH), основанные на образовании прочных нерастворимых и комплексных соединений с органическими реагентами, характеризуются низкими пределами обнаружения (до 10 мкг Sb в пробе), однако по точности (ошибка — 3%) уступают амперометрическому титрованию броматом калия (ошибка —0,1%). [c.72]

    Для урана такими реакциями являются прежде всего цветные с неорганическими и органическими реагентами и люминесцентные. В отсутствие прочих радиоактивных элементов уран может быть быстро определен по радиоактивности [72, 225, 635, 655]. Ультрамалые количества урана можно определить методом микрорадиографии по количеству распадов, фиксируемых специальными толстослойными фотопластинками 435, 807, 808]. Реже для обнаружения урана используют некоторые другие методы полярографические [944], спектральные [167,442], метод нейтронного активационного анализа [724, 924]. Эти достаточно сложные инструментальные методы в основном применяются для количественного определения урана. Они подробно описываются в соответствующих разделах книги. [c.34]

    Для обнаружения урана наиболее часто используют его цветные реакции с неорганическими или органическими реагентами. [c.35]

    Предложены схемы качественного анализа, предусматривающие отделение и обнаружение молибдена [401, 402, 516, 559, 574, 581, 648, 824, 829, 904, 983, 999, 1029, 1085, 1088, 1149, 1150, 1204, 1278, 1429, 1526, 1529, 1530]. Некоторые из них предусматривают экстракционные разделения 983, 1492] и использование различных органических реагентов, например толуол-3, 4-дитиола [574], этилксантогената калия [1526]. [c.98]

    Для обнаружения используют в основном органические реагенты. [c.50]

    Предложены многочисленные органические реагенты. Обнаружение 320 -ионов по обесцвечиванию растворов индиго, кошенили [614], фуксина [746] сильно зависит от присутствия окислителей. [c.51]

    В книге описан синтез большого числа органических реагентов различных классов (кислород-, серу,- селен-, фосфор-, азотсодержащих и др.), предложенных в последние 10—15 лет для обнаружения и количественного определения неорганических ионов. Наряду с реагентами, которые достаточно подробно изучены и входят в практику аналитических лабораторий, даны также методики синтеза ряда мало изученных реагентов, которые потенциально могуг представлять несомненный интерес для неорганического анализа. Приводятся методики синтеза органических реагентов, которые не выпускаются промышленностью, по крайней мере в достаточном количестве и надлежащего качества, и получение которых не описано в руководствах по органическому синтезу. Методики в большинстве случаев проверены в нашей лаборатории в течение 15 лет. В некоторые из них внесены изменения, повышающие выход или чистоту препаратов. [c.5]

    Чистота получаемых органических реагентов вполне достаточна для решения аналитических задач (для обнаружения и количественного определения ионов металлов, для обогащения и т. д.) и для многих физико-химических исследований. Следует напомнить, что при выполнении аналитических определений нецелесообразно применять более чистые препараты, чем это действительно необходимо. [c.5]

    Органических реагентов в сотни раз больше, чем неорганических. Это позволяет выбрать лучшие из них. Чрезвычайно широко органические реагенты используют в методах разделения ионов, обнаружения и концентрирования. Их применяют в капельном анализе, колориметрическом, титриметрическом и гравиметрическом анализах, в бумажной и тонкослойной хроматографии и используют в качестве индикаторов. Многие органические соединения дают с ионами металлов малорастворимые осадки, ярко окрашенные и слабо ионизирующие. [c.55]

    В последние годы интерес к аналитической химии кобальта сильно возрос. Это обусловлено разнообразными новыми применениями кобальта и его соединений. Общеизвестно использование кобальта в качестве легирующего компонента специальных сплавов с высокой твердостью и термостойкостью. Многие соединения кобальта обладают высокой каталитической активностью и служат катализаторами синтеза различных химических соединений. Радиоактивные изотопы кобальта широко применяются в медицине. Ряд сложных органических соединений кобальта влияет на обмен вешеств у растений и животных и т. п. Все ъто привело к необходимости разработать новые методы качественного обнаружения и количественного определения кобальта как основного компонента и примеси в технических и биологических материалах весьма разнообразного состава. Особое внимание в работах последних лет обращено на развитие методов определения следов кобальта. Для этого в настоящее время используются главным образом спектрофотометрические, кинетические и электрохимические методы анализа. Много исследований посвящено также синтезу новых органических реагентов для определения кобальта и изучению оптимальных условий их применения. [c.5]


    Обнаружение кобальта посредством органических реагентов, содержащих нитрозо- и оксигруппы, а также аминогруппы. [c.42]

    ОБНАРУЖЕНИЕ КОБАЛЬТА СЕРУСОДЕРЖАЩИМИ ОРГАНИЧЕСКИМИ РЕАГЕНТАМИ [c.50]

    Известно много микрокристаллоскопических реакций обнаружения серебра. Кристаллы характерной формы образуют, например, хлорид серебра, иодат серебра, комплекс азотнокислого серебра с уротропином, некоторые соединения серебра с органическими реагентами. [c.47]

    Для микрокристаллоскопического обнаружения кальция используются и некоторые органические реагенты. Из них наибольшего внимания заслуживает пикролоновая кислота, образующая с ионами кальция характерные мелкие моноклинные призмы красного цвета [620]. Чувствительность реакции составляет 0,01 мкг при предельном разбавлении 1 5-10 [714]. Барий и никель дают аморфные осадки Со, РЬ, Зг, Мп, Ре(И), Си и 2п — кристаллические осадки, но обнаружению кальция не мешают. Реакция применяется при гистохимических исследованиях и при исследовании растительных клеток [1425]. [c.21]

    В табл. 25 приведены органические реагенты для обнаружения кальция на хроматограммах и условия их применения. [c.186]

    Цветные органические реагенты, как правило, имеют наивысшую эффективность при обнаружении катионов рзэ, поэтому они находят применение в колориметрическом, спектрофотометрическом, комплексометрическом и других количественных методах определения. Цветные реагенты имеют также большие перспективы для повышения избирательности обнаружения, что, например, показано синтезом соединений типа арсеназо , дающих реакцию прежде всего с группой рзэ. [c.45]

    В результате изучения этих реакций в статических и динамических условиях были оиределены те наименьшие концентрации растворов, нрн которых зерна ионитов извлекают ионы элементов в количествах, еще достаточных для обнаружения органическим реагентом (см. таблицу). [c.414]

    П. Органические реагенты, синтезируемые в результате реакции взаимодействия органических веществ с идентифицируемым ионом. Число таких реакций, естественно, гораздо меньше реакций предыдущих групп. Сюда относится, например, реакция- синтеза индиго как реакция обнаружения ацетат-ионов. Лри сухой иерегонке ацетата кальция образуется ацетон  [c.15]

    В литературе описаны качественные реакции, выполняемые в твердой фазе методом растирания анализируемого вещества с твердым реагентом. Разработанные в Советском Союзе, эти методы рекомендуются для полевых исследований в минералогии и в геологической разведке [15, 16, 28]. При этом можно применить большое число известных реакций обнаружения ионов, в том числе и с органическими реагентами. Очень удобна для этих целей фрейбергская ступка, можно использовать также и пластинки для растирания минералов. Лучше всего протекают реакции, когда осуществляется взаимодействие реактива с нерастворимым соединением. Так, при растирании РЬЗО с К1 образуется желтый РЫ,. [c.53]

    Качественный анализ. Качественное обнаружение ионов неорганических соединений методом осадочной хроматографии чаще всего выполняют в колонках или на бумаге. В первом случае в качестве носителей используют оксид алюминия, силикагель (являющийся иногда одновременно осадителем), кварцевый песок, стеклянный порошок, насыщенные ионами-осадителями аниониты. Иногда колонки заполняют также чистым органическим реагентом-осади-телем, например о-оксихинолином, Р-нафтохинолином, купфероном, диметилглиоксимом, а-нитрозо-Р-нафтолом и др. Неорганическими осадителями для определения катионов служат гидроксид натрия, иодид калия, сульфид натрия и аммония, гексациано-(П)феррат калия, бромид и фосфат натрия, хромат калия для определения некоторых анионов используют нитрат серебра, нитрат ртути (I). [c.232]

    Развитие классической аналитической химии шло в направлении разработки новых органических реагентов для селективного обнаружения и количественного определения элементов, совершенствования методик анализа и внедрения математических методов обработки результатов анализа. Начиная с середины прошлого века, сначала для целей идентификации, а затем и для количественных определений в аналитической химии стали использовать инструментальные методы анализа, обладающие преимуществами в чувствительности, скорости и точности выполнения анализа, необходимые в научных исследованиях и производственном контроле. Развитие инструментальных методов привело к появлению новых направлений (например, аналитическая биохимия, хроматография, радиоаналитическая химия и т. п.). В эпоху научно-технической революции появление принципиально новой методологии — моделирования, алгоритмизации, системного подхода — привело к перестройке и в аналитической химии, которую теперь квалифицируют как науку, занимающуюся получением информации о химическом составе вещественных систем. Полная химическая информация о качественном и количественном составе, получаемая в максимально короткие сроки на минимальном количестве исследуемого объекта, требуется практически во всех отраслях науки, техники и промышленности. Это стало возможным в результате развития в XX в. компьютерной техники и автоматизации производства. [c.6]

    Предельная концентрация катионов меди при реакции их обнаружения с органическим реагентом — купроном (сьбензоиноксимом) составляет ii = = 2,010 г/мл, а минимальный объем предельно разбавленного раствора равен 0,05 мл. Определите предел обнаружения т катиогюв меди(П) и их молярную концетрацию в данном растворе. Ответ 0,1 мкг = 0,1у 3,1-10 моль/л. [c.29]

    Катион висмута(Ш) можно OTKjibrrb реакцией с органическим реагентом — Р-нафтиламином. Предел обнаружения висмута(ПГ) по этой реакхши т = ми = 1у, минимальный объем предельно разбавленного раствора = 0,001 мл. 0 феде-лите предельную концентрацию висмута(Ш) и предельное разбавление Кци-Оигвеш. 0,001 г/мл 1000 мл/г. [c.30]

    Очень чувствительна реакция катионов свинца с органическим реагентом — дитизоном. При смешивании хлороформного раствора дитизона с водным раствором соли свинца обра )уется красный дитизонатный комплекс свинца, экстрагирующийся из водной фазы в органическую и окрашивающий слой хлороформа в красный цвет. Предел обнаружения составляет 0,04 мкг. [c.362]

    Другие реакции катионов Для катионов железа(П1) описан ряд реакций, представляющих аналитический интерес, особенно — с органическими реагентами. Так, катионы Ре " при реакции с ферроном (7-иод-8-оксихинолин-5-сульфоновой кислотой) в кислой среде (pH 2,6) образуют комплексы зеленого цвета (реакция высокочувствительная предел обнаружения 0,5 мкг) при реакции с тайроном (1,2-диокси-3,5-дисульфобензолом) — комплексы синего цвета, изменяющие окраску на красную в щелочной среде (предел обнаружения — около -0,05 мкг), при реакции с купфероном — красный осадок купфероната железа(Ш) при реакции с салициловой кислотой — салицилатные комгшексы фиолетового или красно-фиолетового гдаета — и т. д. [c.400]

    Естественно, что в далеком прошлом в качестве косметических препаратов использовались лишь природные минеральные и органические вещества. С развитием химии для этой цели все чаще стали применять синтетические продукты. Так, например, в качестве пигмента для губных помад применяют малиново-красный бис-ди-метилглиоксимат никеля. Органический реагент ди-метилглиоксим химики-аналитики используют для качественного обнаружения и количественного определения ионов никеля(П), а реакция образования этого соединения носит имя нашего соотечественника Л. А. Чугаева. [c.112]

    Органические реагенты главным образом используются для обнаружения, определения, разделения и концентрирования ионов металлов. Продуктами в большинстве реакций с органическими реагентами являются комп-лекснь[е соединения. [c.168]

    Ртуть. В соединениях ртуть может бьггь как двухзарядной, так и формально однозарядной она характеризуется высоким потенциалом ионизации и окислительным потенциалом, является химически стойким элементом. Одной из главных особенностей иона ртути является способность к образованию комплексных соединений с координационными числами от 2 до 8. Связь ртуть — лиганд во всех комплексах является ковалентной. Наиболее устойчивы комплексы с лигандами, содержащими атомы галогенов, углерода, азота, фосфора, серы. Ртуть образует также значительное число комплексов с органическими реагентами, характеризующихся высокой прочностью (8-меркаптохино-лин, тиомочевина). Известны и ртутьорганические соединения типа КН Х или КзНв, обнаруженные в последнее время в различных компонентах биосферы — донных осадках, природных водах. [c.99]

    Из неорганических реагентов применяют соединения ртути(1), Н2О2, соль Мора, Sn lj, которые восстанавливают золото (I, III) до элементного. Иногда для обнаружения золота получают перлы сплавлением образца с метафосфатом натрия. Используют реакции образования интенсивно окрашенных продуктов окисления реагентов [ферроцианид в присутствии нитробензола, Мп(П) в среде пирофосфата]. Многочисленны методы обнаружения ионов Au(III), основанные на окислении органических реагентов до интенсивно окрашенных продуктов. Эти реакции высокочувствительны, однако малоселективны, так как мешают все сильные окислители. Кроме того, очень часто мешают анионы, образующие с ионами Au(III) комплексные анионы и тем самым снижающие окислительно-восстановительный потенциал Au(IlI)/Au(I) или Au(III)/Au(0). [c.64]

    Реакции с органическими реагентами. Ализарин НС образует с ионом Сг(П1) осадок оранжевого цвета, устойчивый при действии кислот и аммиака [471]. Предел обнаругкепия 0,6 мкг Сг, предельное разбавление 1 83 ООО. л1-Нитробензамидоксим в щелочном этанольном растворе дает в присутствии Сг(1И) фиолетовую окраску [877]. Мешают ионы Са +, Со +, N1 +. Предел обнаружения 6 мкг мл, предельное разбавление 1 167 ООО. [c.27]

    Реакции с органическими реагентами. Дифенилкарбазид в реакции с ионом СгО] образует сине-фиолетовое соединение [44, 471, 524]. Предел обнаружения хрома 0,25 мкг, предельное разбавление 1 100 ООО 524). Окислители КаЗаОа, КМПО4, Н2О2 не мешают реакции при отношении их концентраций к СгО] 5 [44]. Соли Со, Си, Мп и N1 мешают из-за образования осадков. [c.28]

    Флуориметрия (люминесцентный анализ) основан на измерении вторичного излучения, возникающего в результате взаимодействия ультрафиолетового излучения с определяемым компонентом. Содержание катионов, не обладающих собственной люминесценцией, определяют с помощью флуоресцентных реакций комплексов катионов с органическими реагентами. Для определения содержания индия, галлия, тантала и др. флуориметрическим методом используют например, родаминовые красители. Флуорн-метрические методы характеризуются низким пределом обнаружения (10 7о), но они часто являются недостаточно селективными. Используются в основном для определения содержания микропримесей в материалах высокой чистоты. [c.39]

    Основными методами количественного определения скандия являются. спектральный, комплексонометриче-скнй, фотометрический. Эмиссионный пламенно-фотометрический и атомно-абсорбционный методы обладают в отношении скандия низким пределом обнаружения. Ввиду разнообразия скандийсодержащих объектов и недостаточной избирательности органических реагентов, предложенных для определения скандия, применению фотометрических методов предшествует отделение скандия от сопутствующих элементов. Практически часто при анализе технических и природных материалов применяется довольно специфичное осаждение скандия тартратом аммо- [c.206]

    Предложено много реакций обнаружения серебра, основанных на восстановлении его ионов до металлического состояния различными органическими реагентами. С этой целью можно применять MOHO- и полисахариды, целлюлозу, альдегиды, ароматические амины, таннин, галловую кислоту и другие восстановители. [c.46]

    Предложены и другие органические реагенты для микрокристаллоскопического обнаружения кальция, но эти реакции еще мало изучены, хотя некоторые из них представляют оиределенный интерес. Так, для этой цели применяют пикриновую кислоту (большие прямоугольные кристаллы с неправильными сторонами) [935 оксалдигидроксамовую кислоту (пентагональные звезды) [951 купферон [318], 8-оксихиполин [1630]. [c.21]


Смотреть страницы где упоминается термин Обнаружение органическими реагентами: [c.12]    [c.179]    [c.124]    [c.165]    [c.2]    [c.109]   
Смотреть главы в:

Аналитическая химия золота -> Обнаружение органическими реагентами




ПОИСК





Смотрите так же термины и статьи:

Органические реагенты



© 2024 chem21.info Реклама на сайте