Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислотность и основность в неводных растворах

    Измайлов И. А. и Безуглый В. Д. Электрохимические методы анализа в неводных растворителях. [Потенциометрическое кислотно-основное титрование и методы оценки кислотности в неводных растворах. Принципы применения неводных растворителей в полярографии]. Рефераты докладов на Совещании по электрохимическим методам анализа 10—12 января 1950 г. М.—Л.. Изд-во АН СССР, 1949, с. 70— [c.44]


    Вообще кинетическая заторможенность редокс-реакции с участием растворителя — одна из наиболее характерных особенностей в отличие от реакций, определяющих кислотно-основные свойства растворов [51]. Границы функционирования Р1-электродов в некоторых неводных растворителях (ацетонитрил, бензонитрил, диметилсульфоксид и др.) обсуждаются в монографии Адамса [52, с. 29—36]. [c.39]

    Одна из важных областей применения кислотно-основных реакций в неводных растворах — химический анализ. Методы неводного титрования позволяют быстро и точно определять состав таких смесей, которые невозможно анализировать в водных растворах. [c.285]

    Хотя теория сольвосистем дает единую схему для большого числа реакций в неводных растворах, она не охватывает всех особенностей кислотно-основного взаимодействия. Ограниченность этой теории сводится, в основном, к следующему. [c.241]

    По понятным историческим причинам химики в первую очередь изучили и взяли на вооружение реакции, происходящие в водных растворах. Однако далеко не во всех случаях вода является самым подходящим растворителем огромное количество веществ вообще не может существовать в водной среде. В последние десятилетия процессы, протекающие в неводных растворах, получили широчайшее применение в промышленности и научных исследованиях. Многие из этих процессов являются кислотно-основными. [c.253]

    Кислотно-основное титрование (иногда называется также методом нейтрализации). В качестве рабочих титрованных растворов (реактивов) применяют обычно кислоты и щелочи. Определять этим методом можно кислоты, щелочи, соли слабых кислот и соли слабых оснований, а иногда также вещества, которые реагируют с такими солями. Если в растворе содержится несколько компонентов, имеющих различные кислотно-основные свойства, нередко возможно раздельное определение таких компонентов в их смеси. Применение неводных растворителей (спирт, ацетон и т. п.), в которых степень диссоциации кислот и оснований сильно изменяется, позволяет расширить число веществ, которые можно определять титрованием кислотами или основаниями. -% [c.272]

    Важной характеристикой растворителя, влияющей на механизм реакции, является диэлектрическая проницаемость, от которой в первую очередь зависит состав частиц, на которые распадаются вещества-электролиты в растворе (разд. 34.2.4). Кроме того, диэлектрическая проницаемость растворителя влияет на процесс диссоциации, а также кислотно-основное равновесие. Так, рекомбинация ионов в нейтральные молекулы происходит преимущественно в растворителях с низким значением диэлектрической проницаемости г, а увеличение е способствует их диссоциации. Выбор подходящего растворителя или их смеси позволяет получить любое значение е среды, в которой протекает реакция. Этим широко пользуются при титровании в неводных растворителях (разд. 39.9). [c.457]


    Если появление первых исследований химических реакций в-неводных растворах относится к началу столетия, то бурное развитие теории и практики титрования в неводных средах наблюдается лишь в последние два десятилетия. Это находит отражение в быстро растущ,ем числе публикаций. Следует отметить, что препаративное применение растворителей предшествовало их использованию в аналитических целях оно стимулировало разработку различных теорий кислот и оснований применительно к неводным средам, расплавам солей, а также реакциям кислотно-основного взаимодействия, протекаюш.им в отсутствие растворителей. Развитие теории в свою очередь послужило основой аналитических исследований. [c.337]

    Титрование в неводных и смешанных растворителях открывает возможности аналитических определений, не осуществимых в водном растворе. В неводных растворителях могут быть определены нерастворимые или разлагающиеся в воде соединения, проанализированы без предварительного разделения многие сложные смеси, оттитрованы соединения, кислотные или основные свойства которых в воде выражены очень слабо, и т. д. Расчет кривых титрования во многих неводных растворителях осложняется по сравнению с таким же расчетом для водных растворов неполнотой диссоциации растворенных веществ, образованием ионных пар и т. д. Количественные характеристики этих процессов часто отсутствуют. Сами кривые титрования имеют примерно такой же общий вид, как и кривые титрования водных растворов. Точка эквивалентности в неводных растворах устанавливается также с помощью цветных индикаторов или рН-метров. Конечно, интервал перехода индикаторов и сама их окраска в неводных растворителях могут меняться по сравнению с соответствующими свойствами в водных растворах, однако механизм индикаторного действия сохраняется. В неводных титрованиях обычно применяют те же известные по анализу водных растворов индикаторы — фенолфталеин, метиловый красный и др., широко используют рН-метры, особенно при анализе смесей. [c.217]

    Методы кислотно-основного титрования характеризуются высокой точностью погрешность рядовых определений составляет 0,1...0,2%. Рабочие растворы устойчивы. Для индикации точки эквивалентности имеется набор разнообразных рН-индикаторов и разработаны различные физико-химические методы потенциометрические, кондуктометрические, термометрические и др. Область практического применения методов кислотно-основного титрования весьма обширна. Интенсивно развиваются методы кислотно-основного титрования в неводных средах. [c.219]

    Применение неводных растворит, при кислотно-основном титровании 445 [c.445]

    Из сделанного краткого обзора следует, что применение неводных растворов в полярографии, как и их применение при кислотно-основном и аргентометрическом титровании, значительно расширяет возможности этих аналитических методов. [c.468]

    Пожалуй, наиболее изученной областью химии неводных растворов являются кислотно-основные реакции, исследование которых началось еще с сольво-систем. Согласно определению сольво-сп-стем, кислота может быть рассмотрена как вещество, которое путем прямой диссоциации или реакции с растворителем дает катион, характерный для растворителя основание — вещество, которое путем прямой диссоциации или реакции с растворителем дает анион, характерный для растворителя. В случае протонного растворителя катионом является сольватированный протон, и при этом условии протонное представление о кислоте эквивалентно понятию о кислоте как о сольво-системе. Например, типичные реакции нейтрализации в аммиаке протекают следующим образом  [c.351]

    Кислотно-основное взаимодействие растворенного вещества с растворителем. Особый интерес для аналитической химии представляет необычное поведение в неводных растворах многих веществ. Например. СНзСООН, обладающая в водных растворах свойствами слабой кислоты, ведет себя в жидком аммиаке как сильная кислота, а в среде жидкого фтористого водорода — как основание. [c.392]

    Из сказанного можно также заключить, что понятия о силе кислоты и кислотности принципиально отличаются друг от друга. В то время как сила кислоты в любом растворителе обусловливается ее константой диссоциации, кислотность определяется активностью ионов лиония, связанной с основностью данного растворителя, их концентрацией и их концентрационными и едиными коэффициентами активности. Например, слабая в воде кислота в среде основного растворителя становится сильной, но ее неводный раствор может быть менее кислым, чем в воде, [c.421]

    Возможности кислотно-основного титрования слабых электролитов в неводных средах. В неводных растворах можно титровать очень слабые (в воде) кислоты и основания, при титровании которых в водных растворах не удается получить резкого скачка титрования вследствие гидролиза солей слабых кислот или слабых оснований, образующихся в водных растворах. Причиной гидролиза вещества в водном растворе является собственная диссоциация воды, например  [c.424]


    Основной областью применения неводных растворов является анализ органических кислот и оснований в самом широком смысле этого слова. Кислотно-основное титрование в неводных средах имеет ряд важных преимуществ. Органические растворители или их смеси могут улучшить растворимость пробы и позволяют проводить титрование слабых кислот или оснований. Далее, в среде этих растворителей можно проводить анализ соединений, вступающих в химическое взаимодействие с водой. При проведении, измерений в неводных растворителях по сравнению с водными возникает [c.121]

    Характер кислотно-основного равновесия в неводных растворах имеет свои особенности. В соответствии с теорией сольвосистем это равновесие должно удовлетворять условию [c.264]

    Значительное внимание уделено закономерностям межмолекуляр- ного взаимодействия в неводных растворах и прежде всего исследованию отдельных стадий этого взаимодействия. В связи с этой проблемой предпринято изучение ряда вопросов кислотно-основного взаимодействия в неводных растворах. [c.176]

    Барбитураты — кислоты (барбитал, фенобарбитал) количественно определяют методом кислотно-основного титрования в неводных средах, поскольку их константа диссоциации в водных растворах мала, и они являются слабыми кислотами. [c.216]

    Количественное содержание препарата определяется методом кислотно-основного титрования в неводных средах. В качестве неводного растворителя служит диметилформамид, нейтрализованный по тимоловому синему. Титрантом является 0,1 н. раствор гидроксида иатрия в смеси метилового спирта к бензола. Титрование ведется до появления синего окрашивания (индикатор метиловый синий). [c.257]

    Методы количественного определения препаратов фенотиазинового ряда разнообразны и базируются на свойствах соединений. Фармакопейным методом является метод кислотно-основного титрования в неводных средах. Препарат растворяют в ледяной уксусной кислоте ли ацетоне, добавляют ацетат окисной ртути и титруют хлорной кислотой по индикатору кристаллический фиолетовый или метиловый оранжевый. [c.322]

    Для определения количественного содержания атропина сульфат ГФ X рекомендует метод кислотно-основного титрования в неводных средах. В качестве неводного растворителя служит ледяная уксусная кислота. Навеска препарата титруется хлорной кислотой по индикатору кристаллический фиолетовый до зеленого окрашивания раствора. [c.339]

    Прямая потенциометрия состоит в измерении точной величины электродного потенциала и нахождении по уравнению Нернста активности потенциалопределяющего иона в растворе. Методом потенциометрии определяют pH водных и неводных растворов, в том числе производственных растворов олигомеров анализируют кислые и основные примеси в диметилформамиде и диметилацетамиде определяют хлорид-ионы и кислотные компоненты в производственных растворах, реакционные концевые группы в олигомерах и т.д. Кроме того, метод широко используют для расчета термодинамических констант электрохимических и химических реакций. [c.300]

    Потенциометрическое кислотно-основное титрование. Проводят прямое потенциометрическое титрование лигнина основаниями в неводных растворителях (в водных растворах феноляты, как соли очень слабых кислот, гидролизуются). [c.378]

    Соотношения линейности (IX, 49) и (IX, 51) получили широкое подтверждение на многочисленных рядах однотипных катализаторов в кислотно-основном катализе в водных и неводных растворах. Соотношение линейности (VIII, 51) было проверено на реакции разложения нитрамида в разных растворителях и в присутствии различных основных катализаторов  [c.425]

    При переходе от одного протрлита к другому в пределах одного класса соединений -(/2 (рЛ д сс) нейна. Эта зависимость позволяет судить о дифференцирующем действии растворителей. Чем круче прямая, тем более высоким дифференцирующим действием обладает растворитель. По сравнению с рК величина -1/2 более полно отражает специфику кислотно-основного равновесия в неводной среде. Приведенные ниже данные иллюстрируют изменение /2 трех ортозамещенных бензойной кислоты относительно , 2 бензойной кислоты. Значения рЛ д ны для водных растворов соответствующих кислот  [c.92]

    Мы не будем рассматривать здесь различные типы измери тельных ячеек и приборов, выпускаемых промышленностью, и технику работы на них — для этого существуют специальные руководства. Типы кривых осциллометрического титрования в основном сходны с кондуктометрическими. Но в осциллометрии ветви кривых линейны только в том случае, если измерения проводят в области перегиба характеристических кривых и не происходит слишком сильных изменений электропроводности. В противном случае на кривых в большей или меньшей степени возникают плавные изгибы. При проведении измерений в выбранной оптимальной рабочей области получают такую же, а иногда даже большую точность измерений, чем в кондуктометрии. Поэтому области применения осциллометрии и кондуктометрии совпадают, иногда осциллометрия даже более предпочтительна. Это происходит в тех случаях, когда важны такие преимущества осциллометрии, как возможность безэлектродных измерений и увеличение чувствительности с уменьшением диэлектрической проницаемости. Осциллометрик используют для индикации кислотно-основного, осадительного и комплексометрического титрования различных типов, а также при титровании агрессивных растворов и в неводных средах. Она пригодна и для решения различных кинетических проблем при исследовании процессов кристаллизации, растворения (на- пример, гидраргиллита в алюминатном щелоке), омыления, этерификации, полимеризации, самоокисления и т. д. Метод ос-Циллометрии находит применение в фазовом анализе, например при изучении процесса плавления, затвердевания, фазового обмена, расслоения, для построения диаграмм состояния и т.д. Особенно важным является использование осциллометрии для Контроля и регулирования процессов производства. Этот метод пригоден для неразрушающего анализа ряда продуктов или содержимого ампул. [c.336]

    Уравнения (IV.15) — (1У17) используют также для определения I и а в неводных растворах кислот и оснований. Согласно современной теории кислот и оснований Бренстеда и Лоури кислоту определяют как вещество, способное отдавать протон, а основание — как вещество, способное принимать протон от кислоты. Реакция присоединения водорода называется реакцией протонирования. Нейтрализация сопровол<дается переходом протона от кислоты к основанию, причем кислота или основание может быть нейтральной молекулой или ионом. Кажущаяся сила кислот и оснований в любом растворителе зависит от степени их взаимодействия с растворителем. Это определяется кислотностью или основностью самого растворителя. [c.47]

    В книге рассмотрены прикладные вопросы. Подробно разобран смысл величины кислотности (pH) в водных и неводных растворах и методы ее определения, преимущественно в неводных растворах. В связи с этим рассматривается поведение индикаторных электродов водородного, сурьмяного, хин-гидронного и стеклянного в водных и неводных растворах. Большое внимание уделено тем возможностям, которые открывает применение неводных растворов при кислотно-основном титровании и при других приемах анализа. [c.7]

    Кислотные или основные свойства электролитов в неводных растворах объясняются 15 известной мере тем, что соответствующие продукты реакции растворенного электролита с молекулами растворителя, подобно аквакомплексным соединениям (а), сообщают растворам кис- [c.396]

    Как уже говорилось выше, влияние иеводных растворителей сказывается не только в изменении К кислот и оснований, но и в изменении соотношения в силе кислот или оснований. Это обстоятельство значительно расширяет возможность кислотно-основного титрования, так как в неводных растворах можно дифференцированно титровать смеси электролитов, К которых в водном растворе очень близки. Возможность раздельного титрования смеси кислот или оснований определяется соотношением /Снап, п/Анап, I или Кв, и/Кв. ъ В среде дифференцирующих растворителей эти соотношения оказываются значительно меньше, чем в водных растворах. [c.427]

    Эта ограниченность стала очевидной, когда в качестве растворителя стали использовать не только воду, но и жидкие NH3, O I2, SOj, SO lj и др. Одновременно опыт показал сходство кислотно-основных реакций в водных растворах и неводных (например, в жидком аммиаке), что определено сходством процессов собственной электролитической диссоциации молекул растворителей  [c.118]

    Усанович доказал, что электропроводность неводных растворов возникает в результате кислотно-основного взаимодействия между их компонентами. Прийдя, таким образом, к несогласию с господс гвовавшей в то время протонной теорией Брен-стеда, он выдвигает новую теорию кислот и оснований. Впервые об этом Усанович очень коротко сообщил в 1932 г. в Журнале органической химии. [c.124]

    В водных растворах не могут быть достигнуты значения pH ниже -1 н выше 15. В других растворителях интервал pH значительно отличается от указаннсто для воды, поэтому кислотно-основные реакции в неводных средах могут быть полезными для спещ1ального применения. На рис. 4.2-1 приведены ионные произведения некоторых растворителей в сравнении с ионным произведением воды. [c.148]

    Количественное содержание нитроксолина в препарате определяется методом кислотно-основного титрования в неводных средах. Препарат растворяют в муравьиной кислоте и титруют 0,1 н раствором хлорной кислоты до желтого окрашивания при индикаторе малахитовый зеленый (0,5% раствор в ледяной уксусной кислоте). В конце титрования прибавляют 5 капель индикатора Расчет ведут на сухое вещество. Для количественного определения нитроксолина в препарате можно применить нитритометрический метод после восстановления китрогруппы в аминогруппу. [c.320]

    Расчет pH в неводных растворах. В принципе алгебраические соотношения для расчета pH в водных средах пригодны для расчета pH в среде любого растворителя, конечно, с использованием констант кислотности и основности в данном растворителе и константы его автопротолиза. Однако на практике такие расчеты применяют редко. Во-первых, пока мало достоверных значений констант для неводных растворителей, во-вторых, мало сведений о процессах, протекаюпщх в этих средах, — ассоциации, ионизации и т. п., в-третьих, коэффициенты активности аниона и катиона (т. е. сольватированного протона) 1фи переходе от одного растворителя к другому изменяются по-разному, а экспериментально определяется лишь средний коэффициент активности. [c.137]


Библиография для Кислотность и основность в неводных растворах: [c.612]   
Смотреть страницы где упоминается термин Кислотность и основность в неводных растворах: [c.269]    [c.198]    [c.128]    [c.250]    [c.360]    [c.302]   
Смотреть главы в:

Определение pH теория и практика -> Кислотность и основность в неводных растворах

Определение рН теория и практика -> Кислотность и основность в неводных растворах




ПОИСК





Смотрите так же термины и статьи:

Кислотно-основное

Кислотность неводных растворов

Кислотность растворов

ЛИЗ кислотно основной

Растворы неводные



© 2025 chem21.info Реклама на сайте