Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение влаги в органических веществах

    Далее следует познакомить учащихся с методикой определения влаги по методу Дина-Старка. Методика основана на количественной отгонке воды от анализируемого вещества с бензолом, толуолом или ксилолом. Вода собирается в приемнике и определяется по объему. Учащиеся должны уметь собрать прибор Дина-Старка и подготовить его к работе. Основные части прибора колба для перегонки, насадка-приемник и обратный холодильник. Навеску вещества помещают в колбу, добавляют толуол, соединяют колбу с насадкой, а насадку — с обратным холодильником. Осторожно пускают в холодильник воду и начинают нагревать колбу на песчаной или водяной (если отгонку ведут с бензолом) бане. При кипении жидкости пары растворителя и воды конденсируются, стекают в приемник и там расслаиваются. По количеству воды, собравшейся в градуированном приемнике, рассчитывают содержание влаги в веществе. Приемник градуирован по 0.1 мл и для получения точных результатов в пробе должно быть не менее 0,5 г воды. Поэтому методику определения влаги по методу Дина-Старка применяют для анализа веществ с большим содержанием влаги. Органические вещества, применяющиеся в этом анализе, ядовиты и огнеопасны. Работы с бензолом, ксилолом и толуолом следует вести под тягой, вдали от открытого огня. [c.213]


    Р А Б О Т А № 3. ОПРЕДЕЛЕНИЕ ВЛАГИ В ОРГАНИЧЕСКИХ ВЕЩЕСТВАХ [c.117]

    Работа Ns 3. Определение влаги в органических веществах Работа № 4. Определение окисляемости сточных вод. . . Работа № 5. Определение молекулярной массы тиокола (поли [c.208]

    Определение влаги в органических веществах реактивом Фишера [c.208]

    Для определения содержания влаги в органических веществах их смешивают с амальгамой (раствором в ртути) натрия можно-использовать также металлический Са или его гидрид СаНз. В результате взаимодействия с НгО выделяется эквивалентное количество Н2, по объему которого находят содержание влаги во взятой пробе. [c.302]

    Среди физических методов определения влаги в жидких продуктах наиболее распространена отгонка воды с органическим растворителем (метод Дина и Старка). В твердых веществах влагу определяют по потере массы при высушивании в термостате. [c.31]

    Чистоту препарата определяют по отсутствию нелетучих примесей (фильтровальная бумага, помещенная в чашку Петри, облитая 20 мл хлороформа не должна обладать посторонним запахом при испарении его на подогретой До 50° водяной бане испытание проводится в вытяжном шкафу), водная вытяжка не должна содержать хлоридов, свободного хлора (не должно происходить выделение йода раствором калия йодида определение проводят в присутствии раствора крахмала), посторонних органических веществ, окрашивающих концентрированную серную кислоту, влаги (при охлаждении до -3", —4° не должно возникать мути). Высушенный сухой остаток после отгонки хлороформа на водяной бане не должен превышать 0,002 у. [c.111]

    Определение потери при прокаливании. При высокой температуре доломит теряет влагу, двуокись углерода и органические вещества. Часто анализ начинают с определения гигроскопической воды, для чего навеску вещества перед прокаливанием сначала высушивают в сушильном шкафу при 105—125 °С до постоянной массы. Затем эту навеску прокаливают до постоянной массы в муфельной печи. Разность в массе вещества до прокаливания и после прокаливания дает массу потери при прокаливании. [c.296]

    ОПРЕДЕЛЕНИЕ ВЛАГИ В ОРГАНИЧЕСКИХ ВЕЩЕСТВАХ [c.199]

    Определение влаги производят физическими, химическими и физико-химическими методами. К физическим методам определения воды относятся удаление воды высушиванием, азеотропная дистилляция, определение содержания воды по изменению электропроводности, поглощению инфракрасных лучей. К химическим методам относятся взаимодействие воды с гидридами щелочных и щелочноземельных металлов, карбидом кальция, нитридом магния, уксусным ангидридом, реактивом Фишера. К физико-химическим методам определения воды относят химические методы, в которых конец реакции определяют при помощи ручных или автоматических электрометрических установок. Выбор метода определения влаги в органических веществах зависит от стойкости анализируемого продукта. [c.199]


    При этом определении получаются данные, характеризующие не только содержание гигроскопической влаги, но отчасти содержание адсорбированных газов и летучих органических веществ, удаляющихся при нагревании. [c.449]

    В качестве учебных задач можно рекомендовать определение влаги в каменном угле, древесном угле, поваренной соли, сульфате натрия, пастах органических веществ. [c.214]

    Определение содер- 543.81 —Определение содержания воды, влаги и жания воды, влаги и летучих составных летучих составных частей в неорганиче- частей в органических веществах ских веществах [c.265]

    Прокаленный остаток служит для определения минеральной части растворенных в воде веществ, а по разности сухого и прокаленного остатка оценивается суммарное содержание органических веществ. Прокаленный остаток определяется путем прокаливания сухого остатка при 800°. При этом происходит сначала обугливание, а затем сгорание органических веществ. Одновременно при прокаливании улетучивается оставшаяся влага, частично улетучиваются хлориды, разлагаются бикарбонаты и удаляется СОг, а иногда восстанавливаются сульфаты. Поэтому величина прокаленного остатка также может служить лишь весьма приближенной характеристикой общего содержания катионов и анионов в исследуемой воде. По разности сухого и прокаленного остатков столь же приближенно может быть определено суммарное содержание органических веществ. [c.62]

    При анализе неорганических веществ водород, находящийся в них в виде неконституционной воды или входящий в состав летучих органических веществ, обычно удаляют при температуре между 100 и 110° С с тем, чтобы определить содержание гигроскопической влаги или чтобы, приступая к анализу, иметь продукт определенного состава Тот водо- [c.847]

    Сорбцию паров воды изучали Михайлов и Файнберг [1227— 1229] и другие [1230—1233]. Описаны методы определения влаги в полиамидах [1234—1236]. Изучена сорбция различных полярных органических соединений [1237—1242] на основе этого разработаны методы адсорбционной хроматографии полярных веществ на полиамидах [556, 1243, 1244]. [c.163]

    Для определения влаги в органическом веществе методом Дина —Старка брали по 10,00 г вещества, а количество воды в приборе соответственно составляло 2,85  [c.26]

    Так, Фишер пок зал возможность количественного определения воды в органических соединениях, содержащих двойные и тройные связи. Наблюдение это было подтверждено в отношении всех ненасыщенных соединений другими исследователями , а также авторами данной книги при определении влаги в этилене,, ацетилене, а также в различных мономерах и других веществах, содержащих двойные и тройные связи, путем пропускания их непосредственно через реактив Фишера. [c.74]

    Определение воды, присутствующей не только в виде влаги, но также и в виде составной части минерала, равно как и определение органических веществ и углекислоты, может иногда служить для характеристики руды. [c.4]

    Для нитросоединений, служащих для военных целей, в различных странах установлены определенные точные условия приемки и соответствующие испытания, которые в основном касаются точки плавления, точки затвердевания, содержания влаги, содержания кислот, механических прочих неорганических и органических примесей. Содержание азота дает возможность установить степень ни грации, а иногда может служить и для идентификации, но само по себе оно не является показателем степени чистоты продукта. Для идентификации может служить, наряду с другими свойствами, также точка плавления смеси испытуемого вещества с известным веществом. При определении пригодности взрывчатого вещества для изготовления промышленных взрывчатых средств обычно решающее значение имеет точка затвердевания и отсутствие кислоты. Наряду с этим производятся обычные испытания на отсутствие прочих примесей. [c.614]

    Сухая аммиачная селитра может взрываться под действием сильного детонатора влажная соль, содержащая более 3% влаги, не взрывает. Многолетняя практика применения аммиачной селитры показала, что при соблюдении определенных условий хранения, перевозки и обращения возможность взрыва может быть исключена. Аммиачная селитра не чувствительна к толчкам, ударам, трению и не самовоспламеняется. Пыль аммиач ной селитры с примесями органических веществ взрывоопасна. [c.556]

    При анализе органических веществ особенно отрицательно влияет на точность определения присутствие минеральных примесей, а следовательно, наличие золы или влаги. Органические примеси влияют в меньшей степени. [c.225]

    В определенных условиях сухая селитра может взрываться под действием сильного детонатора селитра, содержащая более 3% влаги, не взрывается даже от детонирующего действия других веществ. Взрывоопасна также смесь пыли селитры с органическими веществами. [c.183]

    В способе плавления под слоем серной кислоты иод непрерывно поступает в реактор, где под давлением 0,15—0,25 МПа плавится и перемешивается с серной кислотой. Последняя поглощает влагу, рассматриваемую как основную примесь. Органические вещества обычно обугливаются, что создает определенные трудности при их удалении. Расплав иода непрерывно подают на охлаждаемые вальцы и получают обезвоженный и частично очищенный иод, [c.208]


    Тление происходит при обильном доступе воздуха и достаточном количестве влаги. При этом процессе все входящие в состав растений органические вещества постепенно превращаются в конечные продукты полного окисления — Н2О, СО2, 502 и др. Тление ускоряется действием микроорганизмов и связано с выделением определенного количества тепла. Этот процесс аналогичен медленному горению, и поэтому в результате его, как правило, не образуются твердые органические продукты. В этих условиях твердые остатки могут давать лишь наиболее химически стойкие составные части растений (смолы, воски, спорополленины). Следовательно, в результате тления вообще не образуются угли или в некоторых случаях получаются только первичные продукты, из которых позже образуются липтобиолиты. [c.41]

    Определив действие различных реактивов на анализируемый материал и уяснив хотя бы ориентировочно его состав, можно приступить к составлению схемы его анализа. Первым вопросом является при этом определение необходимости предварительного прокаливания. Эта операция в применении к классической кальциевой накипи давала возможность определить сумму органических веществ, влаги и углекислоты карбонатов. Для накипи, содержащей металлическую медь и различные окислы железа, прокаливание рассматривалось как способ приведения материала к некоему постоянному состоянию. Предполагалось, что металлическая медь при достаточно длительном и энергичном прокаливании количественно превратится в окись, органические вещества сгорят, а окислы железа перейдут в РегОз или Рез04. [c.412]

    В настоящее время диэлкометрию применяют для характеристики химических соединений, для определения концентрации примесей в растворах плохо проводящих жидкостей, для определения чистоты органических и неорганических веществ и др. Наиболее широко она применяется при определении содержания воды в твердых, жидких и газообразных веществах. Для определения влаги строят градуировочный график в координатах г - V, где V - содержание воды в объемных процентах. Это достигается путем ее добавления к хорошо высушенному основному веществу. Высокая диэлектрическая проницаемость воды (е = 80,4 при 20 °С) позволяет определять ее содержание с высокой точностью в органических растворителях и газах. Для этого в ячейку помещают вещество, поглощающее влагу, например Р2О5, и пропускают через нее исследуемый газ. По изменению емкости ячейки во времени и скорости протекания газа определяют содержание воды в газе. [c.170]

    Для определения малых количеств воды в эфире Обри и Моньер [4 ] предлагают добавлять по каплям насыщенный раствор безводного бромида лития в безводном эфире (50 г на 1 л) к образцу, содержащему 10—100 мг воды. При этом в осадок выпадает гидрат ЫВг- Н О, который отделяют фильтрованием, промывают безводным эфиром и растворяют в воде. В полученном растворе определяют содержание бромида лития титрованием 0,1 н. AgNOз (1 мл 0,1 н. раствора AgNOз эквивалентен 1,8 мг Н2О). Правильность метода составляет примерно 1% (отн.). Метод применим также для определения влаги в других органических жидкостях перед добавлением реактива к образцу приливают безводный эфир. Малые количества воды в твердых органических веществах могут [c.63]

    Грейтхауз и сотр. [40] применяли эту методику для определения влаги только в уксусной кислоте. Однако она пригодна также для определения воды в других органических кислотах и, возможно, в углеводородах и в веществах, не взаимодействующих с уксусным ангидридом. Для каждой из анализируемых систем необходимо строить градуировочные графики. [c.214]

    В адсорбционных исследованиях по методу БЭТ размер образца необходимо выбирать так, чтобы величина поверхности находилась в области оптимальной точности, даваемой установкой. В большинстве установок с использованием фиксирован нижний предел измеряемой поверхности. Верхний предел в большинстве установок определяется размером емкостей для хранения адсорбируемого газа, а в статическом методе еще и дозирующей системой, а также другими факторами. Например, при наличии в системе 20 см азота можно точно определить поверхность, не превышающую 30 м (некоторые специальные устанобки не имеют верхнего предела). В динамическом методе БЭТ объем адсорбированного газа не является критическим фактором, хотя На точность контроля поглощения в соответствующих электрических цепях могут влиять переключения при сравнении с Однако, используя трубки с предварительно калиброванными объемами, можно собрать систему таким образом, чтобы минимизировать число переключений контролирующей системы. В тех случаях, когда не удавалось оценить поверхность образца, Файт и Уиллин-гам [ 11] рекомендуют использовать образец весом 0,5 г с исходной заправкой 30 см азота. В таких условиях бюретки с общим объемом в 1 см (так же, как у Джойнера) достаточно для определения поверхностей размером 10 - 500 м г 1. В крайнем случае пробный опыт даст оценку адсорбционной емкости образца. Во всех исследованиях адсорбции образцы не должны содержать влаги, растворителей и ранее адсорбированных газов. Обезгаживание в вакууме обычно занимает около 3 ч и, как правило, выполняется при нагревании. Температура обезгаживания зависит от природы образца. Некоторые образцы разлагаются или изменяют свои свойства при нагревании выше некоторого предела. Например, электроды из гидроокиси никеля обычно не нагревают выше 60° С, хотя большинство образцов обез-гаживают при температурах 95- 110°С. Однако в случаях, когда образцы находились в контакте с органическими веществами, такими. [c.319]

    Первым условием для этого является степень обезвоживания адсорбента. Обстоятельство это приложимо в условиях перколя-ционного метода очистки или контактной очистки, при температурах, не превышающих 105 — 110°. Отбеливающие земли способны адсорбировать влагу из воздуха. Присутствие влаги в порах адсорбента затрудняет адсорбцию органических веществ. Поэтому в указанных условиях обесцвечивающее действие адсорбентов невелико. По мере подсушки последних и потери ими части влаги степень активности их увеличивается, приближаясь к определенному максимуму, после которого начинается спадание эффективности действия адсорбента. Нужно полагать, что по мере обезвоживания адсорбента все большие и большие количества адсорбируемых веществ способны приходить в контакт с поверхностью адсорбента. По мере увеличения обезвоживания, что связано с увеличением температуры прокаливания адсорбента, происходит повидимому спекание и связанное с этим уменьшение адсорбционной поверхности. В условиях обработки землями при температурах выше 110° обезвоживание адсорб(Шта происходит в процессе очистки, и поэтому нет никакой необходимости вводить процесс предварительного обезвоживания его. Повышение степени активности адсорбентов путем предварительного обезвоживания зависит от свойств адсорбентов. Многие из них вообще не выдерживают термической обра- [c.82]

    Опыты, проведенные главным образом с силикатами, показали следующее 1) хотя сравнительно быстрое измельчение на воздухе (15— 30 мин) и продолжительное измельчение под спиртом и не всегда приводит к заметному окислению порошка породы (а иногда, по-видимому, не происходит никакого окисления), однако эти нельзя считать правилом. Поэтому нельзя рекомендовать проводить измельчение в той или другой из этих сред во всех случаях 2) спирт, несмотря на его большую растворяющую способность в отношении кислорода, по-видимому, несколько лучше защищает железо (II) от окисления, чем вода. Он имеет еще и то преимущество, что может быть быстро удален из вещества после измельчения 3) из примененных органических веществ спирт оказался более действенным средством, чем четыреххлористый углерод 4) довольно большие расхождения результатов параллельных анализов получаются в случае присутствия в породе трудно разлагаемых железосодержащих минералов (гранат и др.), если последние не измельчены до очень тонкого порошка 5) совпадение результатов параллельных определений, ироведенных как методом Пратта, так и методом Кука, получается превосходное при работе с тонкими порошками пробы, а при анализе крупных порошков — только в тех случаях, когда они легко поддаются разложению фтористоводородной кислотой 6) так как измельченная в порошок порода, прошедшая через сито с 30 или даже 60 отверстиями на 1 линейный сантиметр, часто содержит меньше 0,1% влаги, то e jin в этой породе нет веществ, чувствительных к влаге, можно заключить, что при ее измельчении имело M6QT0 такое же малое окисление железа (II), как и поглощение влаги. [c.987]

    Можно также смешать порошок пробы с сухим карбонатом натрия и прокалить в приборе Гуча (стр, 911). Чтобы получить содержание свя-занно1 1 воды, надо из найденного общего содержания воды вычесть определенное раньше количество гигроскопической влаги. Нужно при этом помнить, что результат может получиться больше истинного на то количество воды, которое при сжигании образуется из водорода органических веществ, содержащихся в известняке. [c.1064]

    Каждый школьник знает, что произойдет, если бросить кусочек натрия в воду. Точнее, не в воду, а на воду, потому что натрии легче воды. Тепла, которое выделяется нри реакции натрия с водой, достаточно, чтобы расплавить натрий. И вот бегает по воде натриевый шарик, подгоняемый выделяющимся водородом. Однако реакция натрия с водой — не только опасная забава напротив, она часто бывает полезной. Натрием надежно очищают от следов воды трансформаторные масла, спирты, эфиры и другие органические вещества, а с помощью амальгамы натрия (т. е. сплава натрия с ртутью) можно быстро определить содержание влаги во мцогих соединениях. Амальгама реагирует с водой намного спокойнее, чем сам натрий. Для определения влажности к пробе оргариче- [c.180]

    Почву, предназначенную для определения микроэлементов, взвешивают на аналитических весах и помещают в ши-рокогорлую коническую колбу из термостойкого стекла емкостью 100 мл. Для глинистых и суглинистых почв берут навеску 2—3 г, для песчаных и супесчаных — 3—5 г. Колбы с почвой высушивают при слабом нагревании на плитке с закрытой спиралью или в термостате до тех пор, пока со стенок колб не исчезнут следы влаги. Затем приступают к окислению органического вещества почв парами азотной кислоты. Для этой цели используют устройство, предложенное Г. Я. Ринькисом (рис.). [c.14]

    Легко убедиться, что в этом случае недопустимо определение органического вещества в виде разности между ста процентами яавески и содержанием аналитической золы, СО2 карбонатов и аналитической влаги. Полукокс термической переработки сланцевой мелочи с твердым теплоносителем содержит не более 4—5% органического вещества, и определение по разности часто дает в результате отрицательное содержание органического вещества, [c.285]


Смотреть страницы где упоминается термин Определение влаги в органических веществах: [c.245]    [c.283]    [c.203]    [c.213]    [c.249]    [c.244]    [c.364]    [c.482]    [c.14]    [c.57]    [c.228]   
Смотреть главы в:

Технический анализ Изд2 -> Определение влаги в органических веществах




ПОИСК





Смотрите так же термины и статьи:

Влага, определение



© 2024 chem21.info Реклама на сайте