Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физические методы определения воды

    В первом томе собраны химические, гравиметрические, спектральные и другие физические методы определения воды, а также методы, основанные на различных приемах фракционирования смесей. Вводная первая глава Структура и физические свойства воды содержит данные о различных состояниях воды, природе межмолекулярных взаимодействий, а также о некоторых физических свойствах воды, которые можно использовать для аналитических целей. Более подробно с этими вопросами читатели могут ознакомиться в цитированной литературе. В первом томе имеется много ссылок на работы, в которых применяется титрование реактивом Карла Фишера. Это самый распространенный метод определения воды, и поскольку используемая в нем реакция является стехиометрической, этот метод служит калибровочным для многих других методов. Калибровка имеет очень большое значение при использовании спектральных и некоторых других методов, пра- [c.6]


    Определение влаги производят физическими, химическими и физико-химическими методами. К физическим методам определения воды относятся удаление воды высушиванием, азеотропная дистилляция, определение содержания воды по изменению электропроводности, поглощению инфракрасных лучей. К химическим методам относятся взаимодействие воды с гидридами щелочных и щелочноземельных металлов, карбидом кальция, нитридом магния, уксусным ангидридом, реактивом Фишера. К физико-химическим методам определения воды относят химические методы, в которых конец реакции определяют при помощи ручных или автоматических электрометрических установок. Выбор метода определения влаги в органических веществах зависит от стойкости анализируемого продукта. [c.199]

    Недавно предложен непрямой физический метод определения воды, основанный на ее способности реагировать с 2,2-димет-оксипропаном, образуя ацетон. Если в качестве катализатора использовать метансульфокислоту, то реакция протекает количественно. Затем содержание образовавшегося ацетона измеряют по поглощению при 5,87 мк. [c.436]

    Методы определения воды в топливах можно разделить на химические и физические. Химические методы основаны на добавлении в топливо веществ, дающих при взаимодействии с водой окраску. Такими веществами являются, например, некоторые водорастворимые соли, образующие с водой щелочную или кислую среду, окрашивающую индикатор. Физические методы основаны на набухании в присутствии воды некоторых материалов, различном свечении красителей в присутствии воды при ультрафиолетовом облучении и др. [c.173]

    Присутствие воды в химических продуктах нежелательно и по техническим нормам в большинстве случаев недопустимо. Вода, содержащаяся в продуктах, часто усиливает их склонность к окислению, ускоряет коррозию трубопроводов и оборудования, соприкасающихся с обводненными продуктами вызывает отравление катализаторов и засорение оборудования при низкой температуре, что может привести к остановке работы цехов или даже к аварии. Есть много химических и физических методов определения влаги в продуктах промышленности органического синтеза. Основные из них приводятся в ГОСТ 14870—69. [c.31]

    Среди физических методов определения влаги в жидких продуктах наиболее распространена отгонка воды с органическим растворителем (метод Дина и Старка). В твердых веществах влагу определяют по потере массы при высушивании в термостате. [c.31]


    В ГФ XI включены три метода определения воды в лекарствен ных средствах. Два из них можно отнести к физическим мето дам — это метод высушивания и метод дистилляции, а один — I химическим — это метод акваметрии, который больше известе как метод Фишера. [c.96]

    Количественные методы определения воды только путем экстракции пока не разработаны. Однако экстракция смешивающимися с водой жидкостями широко используется для удаления влаги из некоторых твердых веществ и неполярных жидкостей. Количество воды, извлеченной при экстракции, может быть найдено химическим путем или измерением каких-либо физических свойств, например плотности. В последнем случае во избежание искажения результатов измерений из пробы не должны экстрагироваться заметные количества каких-либо других компонентов. При определении влаги в экстракте химическим методом можно допустить наличие в пробе растворимых в экстрагенте веществ, не вступающих в химическое взаимодействие с применяемым реактивом. Обычно для экстракции воды из удобрений, почв, углей и гравия применяют метиловый или этиловый спирт, а также диоксан, диэтиловый эфир, ацетон и пиридин. [c.295]

    Наряду с химическими методами контроля отверждения смолы рекомендуется также применять физические методы определение удельного веса, коэфициента рефракции, вязкости растворимой смолы. При сушке в аппарате содержание воды определяют по электропроводности.  [c.98]

    Определение содержания воды в разнообразных материалах — это проблема, вызывающая всеобщий интерес. В литературе [56, 57] подробно описаны физические и химические методы определения воды. В этой главе рассмотрен только титриметрический метод определения воды по Карлу Фищеру [58], однако чрезвычайно интересны также газохроматографические методы определения следов воды в небольших пробах [59]. [c.396]

    Какой бы метод определения воды ни применялся, очень трудно бывает сделать вывод о том, как вода была связана в анализированном материале, даже если применялись физические методы анализа. Лишь определение диэлектрической проницаемости дает возможность подойти к решению этой задачи. [c.827]

    В решении этой очень важной задачи большую роль сыграло совершенствование методов измерения молекулярного веса химических соединений очень высоких молекулярных весов. Классические методы определения молекулярного веса были разработаны в применении к низкомолекулярным соединениям сравнительно простого строения — веществам, молекулы которых содержат небольшое число атомов, обычно не больше 10—20. Строение таких молекул и соответственно их молекулярный вес легко можно установить, зная химические процессы, ведущие к их синтезу, а также их реакции с другими соединениями. В дополнение к этим чисто химическим методам существует и рлл физических методов определения молекулярных весов, базирующихся на свойствах вещества в парообразном или растворенном состояниях. Было установлено, что в подавляющем большинстве случаев физические и химические методы дают одинаковые результаты, если предположить, что вещества в газе и в растворе равномерно диспергированы на отдельные молекулы. Когда молекулы соединяются или образуют ассоциаты в виде пар или групп молекул, то получаются искаженные значения молекулярных весов. К тому же результату приводит расщепление или диссоциация молекул, наблюдаемая, например, в случае поваренной соли, растворенной в воде. [c.29]

    Для определения температурного интервала выделения воды из продукта была исследована кинетика сушки некоторых солей п минеральных удобрений при разных температурах [2]. На основании данных построен график зависимости количества выделяемой воды от температуры сушки. График имеет четко выраженный ступенчатый характер, причем можно считать, что каждая ступень соответствует выделению связанной воды различных видов. При этом одна из ступеней всегда соответствует интервалу температур 50—60 °С или 50—70 °С. Очевидно, в интервале 50—70 °С испаряется вода, наиболее слабо связанная с веш,еством. Поскольку этот процесс всегда заканчивается при 70 °С независимо от химического состава соли, есть основание предполагать, что в этом интервале удаляется лишь та вода, которая химически не связана с веществом. Косвенные методы основаны на измерении какого-либо физического свойства материала (электропроводности, электроемкости и др.), зависящего от содержания воды в образце. Косвенные методы требуют предварительной калибровки аппаратуры с помощью прямого метода определения воды. Методики прямого определения воды в удобрениях будут описаны в следующей главе. [c.9]


    В литературе описано много физических, химических и физикохимических методов определения воды, но в лакокрасочной промышленности они еще не нашли применения. [c.316]

    Для определения простых эфиров практически применимы только физические методы, но и они пригодны преимущественно для низших членов ряда при исследовании двух- и трехкомпонентных смесей. Если присутствуют более чем три компонента, то предположительно присутствующие эфиры следует выделить фракционной перегонкой на эффективной колонке. При этом иногда могут образоваться постоянно кипящие смеси (азеотропы) которые приходится анализировать отдельно. Все же фракционирование в высокоэффективной колонке (например, в колонке с вращающейся лентой) следует предпочесть другим методам разделения, например отделению неомыляемой части или труднорастворимых в воде частей, так как потери при перегонке значительно меньше, Чем неизбежные потери при препаративном разделении. Другие физические методы (определение плотности, коэффициента преломления) пригодны только для анализа двойных смесей. [c.979]

    Физические методы определения сцепляемости основаны обычно на различии температурных коэффициентов линейного расширения металла осадка и подкладки. Вследствие этого> при нагревании электролитического осадка с подкладкой может происходить вспучивание покрытия, образование пузырей и растрескивание, если сцепляемость неудовлетворительна.-Этот метод является сугубо качественным и применяется обычно для контроля сцепляемости. Нагрев испытуемых образцов, может осуществляться различными способами. Чаще всего образцы помещают в кипящую воду, а затем быстро охлаждают. Иногда для проверки сцепляемости нагревание производят путем натирания испытуемой поверхности полированным шпателем в течение нескольких секунд [20]. Существуют и другие разновидности указанного метода, на которых останавливаться нет смысла.- [c.332]

    Тенденция к увеличению применения физических методов измерения привела к дальнейшей разработке техники измерения диэлектрической проницаемости. Измерение диэлектрической проницаемости (ДП) имеет особое преимущество при ректификации смесей, содержащих воду (ДП-80), а также смесей веществ с резко отличающимися значениями этого параметра. В качестве примера можно назвать смеси уксусная кислота (ДП-6,13) — уксусный ангидрид (ДП-22,2) и метанол—толуол. Азеотропная смесь метанол—толуол, образующаяся при ректификации, имеет ДП-2Б,Н, которая в значительной мере отличается от значений диэлектрической проницаемости исходных компонентов, равных соответственно 33,8 и 2,37 [65]. При определении концентрации толуола в бензоле данный метод измерения также оказывается наилучшим, хотя разница в значениях диэлектрической проницаемости у компонентов смеси равна всего 0,08. [c.461]

    ГОСТ 3351—46 (Вода хозяйственно-питьевая. Методы определения физических свойств). [c.19]

    Для контроля за составом топлив недавно утверждены стандарты на определение содержания выносителя в бензинах (ГОСТ 6073—75), интенсивности окраски этилированных бензинов (ГОСТ 20924—75) и др. Для оценки новых показателей эксплуатационных свойств служат методы ГОСТ 18597—73, предназначенный для оценки коррозионных свойств топлив в условиях конденсации воды (защитных свойств), ГОСТ 20449—75 — для оценки коррозионных свойств при повышенных температурах (см. гл. II) и некоторые другие. Стандартизованы также новые методы определения физической стабильности бензинов (потерь от испарения) — ГОСТ 6369—75, химической стабильности бензинов (в условиях хранения) — ГОСТ 22054—76. [c.225]

    Все более широкое применение физических методов измерения и лабораториях привело к дальнейшей разработке методов определения диэлектрической постоянной (ДП). Этот метод измерения обладает особыми преимуществами при ректификации смесей, содержащих воду (ДП = 80), а также смесей веществ с резко отличными значениями ДП. В качестве таких примеров можно назвать смеси уксусной кислоты (ДП = 6,13) и уксусного ангидрида (ДП = 22,2), а также смеси метилового спирта и толуола. Азеотропная смесь метилового спирта и толуола, образующаяся при ректификации, имеет значение ДП=26,8 по сравнению с величиной ДП для исходных компонентов, равной соответственно 33,8 и 2,37 [61]. На рис. 425 изображено устройство Эме [61 ], используемое для контроля процесса ректификации. Измерительная ячейка этого устрой- [c.518]

    Для правильного проведения процесса восстановления необходимо иметь информацию о качестве нефтепродуктов до восстановления, в ходе процесса и после него. Для анализа желательно применять быстрые методы, которые позволят сократить общее время восстановления качества нефтепродуктов. Вероятно, нет необходимости рассматривать стандартные методы анализа. Они изложены в широко распространенных официальных изданиях по методам испытаний. Ниже приведены современные и перспективные быстрые методы определения показателей качества нефтепродуктов, по которым проводят восстановление. Это относится к методам определения содержания воды, твердых загрязнений, химического состава (смолистых веществ, кислотности, углеводородного состава) и некоторых физических свойств. [c.291]

    Физические методы, так же как и химические, делят на качественные и количественные. Количественные методы основаны на различных эффектах поведения воды в нефтепродуктах при воздействии внешних факторов. В термическом методе при нагревании нефтепродукта до 130—150 °С присутствие воды определяют по характерному потрескиванию. Для качественного определения воды используют свойства некоторых материалов изменять геометрические размеры, люминесцировать в ультрафиолете в присутствии воды и др. [c.306]

    Однако в ряде случаев чувствительность прямого эмиссионного спектрального анализа бывает недостаточной, в частности для контроля производства веществ высокой чистоты. В таких случаях проводят предварительное концентрирование Sb. Наиболее простыми, удобными и быстрыми методами концентрирования примесей Sb являются физические методы, в частности методы отгонки (дистилляции) Sb в вакууме, на воздухе и в токе газа-носителя. Однако такие методы применимы только к материалам, основу которых составляют элементы и их соединения, причем их летучесть значительно ниже летучести Sb. Применение концентрирования методами дистилляции примесей требует тонкого измельчения анализируемого материала, поскольку скорость диффузии отгоняемых примесей в твердой фазе мала. Тонкоизмельченную пробу нагревают током большой силы в графитовом стаканчике, зажатом между графитовыми щеками охлаждаемых водой медных электродов. Пары выделяющихся примесей конденсируются на охлаждаемой графитовой или металлической капсуле, которая затем используется в качестве электрода дуги или искры при последующем спектральном определении Sb и ряда других выделившихся вместе с ней примесей. [c.82]

    Известны методы определения серебра в почвах, растениях, природных и сточных водах, в рудах, минералах, силикатах и горных породах, в чистых металлах и неметаллах, в сплавах, полупроводниковых материалах, в гальванических ваннах, в реактивах и фармацевтических препаратах, в фотографических материалах, в смазочных маслах и других объектах. За небольшими исключениями, особенность этих материалов состоит в том, что содержание серебра в них обычно невелико, поэтому главное значение имеют методы определения микроколичеств серебра. Из физических методов наибольшее распространение имеет спектральный анализ. В последние годы публикуется много работ в области радиоактивационного определения серебра и атомноабсорбционных методов. В химических методах чаш,е всего применяется экстракционно-фотометрическое определение серебра в виде дитизоната, реже используется и-диметиламинобензилиденроданин и некоторые другие органические реагенты. [c.172]

    Для количественного анализа вещества можно использовать также химические реакции, протекание которых сопровождается изменением физических свойств анализируемого раствора, например изменением его цвета, интенсивности окраски, величины электропроводности и т. п. Измеряя электропроводность какого-либо электролита, изменяющуюся в результате взаимодействия его с другим веществом, можно определить количество этого вещества в растворе. Например, электропроводность баритовой воды изменяется в процессе поглощения ею двуокиси углерода. На этом свойстве основан метод определения СОа. Если через баритовую воду пропускать газ, содержащий СО , и одновременно измерять ее электропроводность, то можно найти количество СО , поглощенное баритовой водой, и рассчитать процентное содержание двуокиси углерода в исследуемом газе. [c.20]

    Вода хозяйственно-питьевая. Методы определения физических свойств Вода источников хозяйственно-питьевого водоснабжения. Методы технологического анализа (рекомендуемые) [c.17]

    ВОДЫ не ТОЛЬКО связываются, но и упорядочиваются, определенным образом ориентируясь вокруг молекулы белка. Изучение простых модельных систем (аминокислот и нейтральных аналогов) физическими методами (определение кажущегося моляльио-го количества) указывает иа возможность упорядочения молекул растворителя (воды) на поверхности белка. Кажущееся моляль-ное количество Ф определяется по уравнению [c.44]

    Харрис [64 ] описывает ряд методов определения воды в некоторых материалах. По его утверждению, абсолютное определение воды во многих смесях невозможно, особенно при проведении экспресс-анализов, например при контроле качества. Поэтому достоверность анализа становится важной проблемой в этом случае результаты анализа могут даваться в относительных единицах, приведенных к определенному стандарту. Имеется насущная необходимость установления национальных и международных стандартов, вероятно, через такие организации, как ASTM (Американское общество испытания материалов) и ISO (Международная организация стандартизации). Калибровку каждого конкретного аналитического метода следует осуществлять путем определения воды в образцах, содержащих строго определенное количество воды и являющихся устойчивыми соединениями. Такими образцами, например, могут служить соответствующие гидратированные соединения. С другой стороны, для калибровки можно использовать результаты прямого измерения термодинамических или электрических величин или других констант. Имеются многочисленные методы получения газовых смесей с заданным составом, пригодных в качестве стандартов для калибровки физических измерений, используемых для определения влажности газов. В работе Гринспена [60] (Национальное бюро стандартов) кратко описывается генератор влажности, который позволяет задавать определенное содержание воды (несколько млрд ) в воздухе и в других газах. Автот утверждает, что ему удалось измерить с точностью до 0,05 °С точку замерзания (—100 °С), что соответствует 14 млн , воды в воздухе при атмосферном давлении. Измерения возможны в интервале давлений от 500 до 200 ООО Па в широком интервале температур. Решкович и Грязина [56] обсуждают условия приготовления и хранения стандартов для определения влажности газов, а также описывают методики определе- [c.30]

    Для некоторых газов между А Г и содержанием влаги (в пре делах от О до 0,1%) соблюдается линейное соотношение. Од нако наклоны линий будут несколько различаться для газов с раз личной теплоемкостью. Для калибровки прибора были использо ваны газовые смеси, содержащие 7% водорода 1,0% кислорода 0,7% этилена 0,6% диоксида углерода и 0,5% (об.) бутана Показано, что этим методом может быть определено даже 0,0005% (об.) БОДЫ (5 млн" ). Энгельбрехт и Дрекслер [28] применили этот метод для прямого определения свободной воды в нитрате аммония, который распыляли в токе сухого азота при комнатной температуре. Количество влаги, удаляемой азотом, определяли путем поглощения пентоксидом фосфора и сравнивали с общим содержанием воды, найденным методом Фишера оказалось, что при распылении нитрата аммония влага удаляется не полностью. Тем не менее, между содержанием влаги, найденным методом Фишера, и разностью сопротивлений термисторов выполняется линейное соотношение. Описанным методом можно достаточно надежно определить менее 0,1% воды. Энгельбрехт и Дрекслер [28] сделали заключение, что описанная техника измерений применима для определения содержания свободной воды во многих мелкораздробленных твердых материалах. Десорбция влаги потоком сухого газа может быть использована в сочетании с другими методами определения воды—абсорбционными, электрическими и физическими. [c.208]

    К физическим методам определения влагн относятся удаление воды высу1нивапием, азеотронная дистилляция, онределение содержания воды по элех тронроводности, диэлектрической постоянной, поглощению инфракрасных лучей, плотности, [c.68]

    Определение концентрации воды в хладонах, маслах и маслохладоновых смесях. Высокие требования, предъявляемые к влажности заставляют уделять большое внимание методам измерения малых концентраций воды в маслах, хладонах и маслохладоновых смесях. Эта проблема, естественно, представляет большой интерес и для других областей техники. Однако работа [39], в которой приведены сведения о состоянии вопроса об измерении концентраций воды в жидкостях и газах, слабо отражает специфику холодильной техники. В этой области проблема измерения влажности остается актуальной и заслуживает самостоятельного рассмотрения. Оценка диапазона измерения влажности газов и жидкостей с помощью широко применяемых гигрометров, основанных на фцзико-химических и физических методах определения концентрации воды, показывает, что такие методы, как электролитический, инфракрасной спектроскопии (ИКС), емкостный и хроматографический, пригодны для измерения концентрации воды менее 10 ррт. [c.15]

    Из МНОГИХ методов определения воды в спиртах один лишь метод Фишера обладает универсальной применимостью. Измерение плотности давно уже используется при анализах метанола, этанола и глицерина. Этим способом можно получать надежные результаты при условии, что применяемое оборудование обеспечивает тщательное термостатирование, что вода является единственной примесью, а также при наличии стандартных справочных таблиц, основанных на свойствах бинарных систем. Все изложенное относится в равной мере и к тем случаям, когда для определения воды иэмеряют другие физические величины, например показатель преломления [12], электропроводности [13, 14], точки кипения [15] и критическую температуру растворения [16—19]. (В литературе имеется указание на некоторые тройные системы, в которых содержание воды может быть определено с достаточной точностью путем измерения плотности и показателя преломления.) [c.116]

    Часто вещества бывает мало для наполнения стаканчика для поплавка. В этих слу гаях следует пользоваться пробиркой, вертикально вставленной в пробку. Надо следить только за тем, чтобы поплавок пе касался стенок пробирки и чтобы кольцевая щель междз нею и поплажом была не ме 1ее 3—4 мм. В общем 15— 20 см достаточно для определения уд. веса па весах Вестфаля. В последнее время, в связи со стандартизацией методов определения физических величин, весы Вестфаля и ареометры градуируются по воде не в 15°, а в 20° Ц. [c.26]

    Как показали исследования И. Лангмюра [12] и В. Харкинса [13], молекулы в поверхностном слое ориентированы определенным образом относительно поверхности раздела. На основании большого экспериментального материала А. Н. Фрумкин [14] и П. А. Ребиндер [15] установили, что поверхностная активность и ориентация молекул в поверхностном слое определяется структурой последних. На поверхности раздела молекулы ориентируются таким образом, что полярные группы (—ОН, —СООН, —КНг, —ЗН и др.) направлены в сторону более полярной фазы (например, воды), неполярная часть (углеводородный радикал молекулы) — в сторону менее полярной. Связь поверхностной активности вещества со структурой молекул, с количеством и расположением полярных групп, зависимость ее от геометрических размеров лио-фобной части представляет определенные возможности для познания структуры вещества. Применение экспериментальных методов и основных положений теории поверхностных явлений к изучению молекулярно-поверхностных свойств полярных компонентов высокомолекулярной неуглеводородной части нефти в сочетании с химическими и физическими методами должны оказать существенное влияние на познание химической природы и коллоидных свойств смолисто-асфальтеновых веществ. [c.191]

    Физические свойства слоя эмульгатора, адсорбированного на < поверхности раздела масло — вода, влияют на реологические свойства эмульсии, ее стабильность. Эти проблемы обсуждаются в других разделах книги. Сведения об адсорбции или ориентации молекул эмульгатора получают при изучении модели плоской поверхностп раздела масло — вода, которую можно рассматривать как поверхность шарика с бесконечно большим диаметром. Основной принцип таких методов — определение площади, занимаемой каждой адсорбированной молекулой, при изменении давления на поверхности пленки. [c.182]

    С. М. Драчев, А. С. Разумов, С. Б. Бруевич, Б. А. Скопинцев, М. Т. Голубевг[. Ме тоды химического и бактериологического анализа воды. [Медгиз, 1953, (280 стр В книге описаны наиболее достоверные методы качественного исследования и коли чественного определения физических свойств и химического состава органических и неорганических веществ, растворенных в воде. Значительное место уделено по.1евым методам анализа воды. Помимо анализа воды па обычные компоненты, в книге приведено описание методов определения менее распространенных элементов мышьяка, свинца, меди, цинка, фтора, хрома, селена, [c.491]

    Из анализа состава и основных физических характеристик сточных вод АО Искож , а также в результате изучения факторов, влияющих на процессы коррозии бетона и металлов, можно предполагать, что эти воды не должны обладать повышенной, по сравнению с собственными промысловыми сточными водами, коррозионной активностью. Безусловно, следовало бы систематически определять скорость коррозии металла в сточной воде на выходе из КНС № 15 для наблюдения изменения ее агрессивности по отношению к металлу. Эти определения в свое время не были выполнены, поэтому при оценке влияния сточных вод АО Искож на работу оборудования приходится пользоваться косвенными данными и методом сравнения. [c.371]

    Методы определения содержания воды в нефтепродуктах можно разделить на химические и физические. Химические методы основаны на взаимодействии воды с химическими реагентами. Эффект такого взаимодействия оценивают различными способами по выделению газа, теплоты, изменению окраски продуктов реакции и др. Физические методы основаны на прямом определении содержания воды без изменения ее молекулярного состояния. Для этой цели применяют инструментальные методы анализа —оптические, хроматографические, электрические, ди-стилляционные и др. Рассмотрим кратко эти методы. [c.291]

    Наличие примесей в прпмепяелгых для исследования веществах влияет на условия равновесия и чрезвычайно усложняет анализ смесей. Поэтому исходные вещества должны подвергаться возможно более тщательной очистке. Способ очистки должен выбираться в зависимости от свойств вещества и содержащихся в нем примесей. Применяются физические методы очистки — перегонка, кристаллизация и др., а также химические методы удаления примесей (например, удаление воды с помощью водоотнимающих средств). Для очистки жидких веществ чаще всего используется ректификация, проводимая на обычных лабораторных колонках. Для работы отбирается средняя фракция, которая при необходимости может быть подвергнута повторной перегонке. Критерием чистоты продукта, отбираемого в процессе перегонки, является постоянство физических свойств дистиллата, прежде всего температуры кипения, которую легко контролировать по ходу разгонки. Помимо температуры кипения контролируются чаще всего показатель преломления и удельный вес. Могут, разумеется, контролироваться и другие свойства (например, электропроводность, вязкость). Для оценки степени чистоты следует выбирать такое свойство, которое в наибольшей степени изменяется с изменением содержания примесей и поддается контролю с наибольшей точностью. Помимо измерения физических свойств, следует во всех случаях, когда это возможно, использовать химические и физико-химические методы анализа. Особенно большое распространение для определения чистоты органических веществ получил в последнее время метод газо-жидкостной хроматографии. [c.8]

    Метод Хэдсона — Джексона. Этот просто п изящный метод определения конфигурации гликозидного центра в гликозиде, а следовательно и в соответствующем ему аномере моносахарида, основан на выделении продукта окисления гликозида йодной кислотой и определении величины вращения. При окислении йодной кислотой метилглико-зида и последующего окисления получающегося диальдегида бромной водой образуется двухосновная кислота, которая идентифицируется в виде бариевой или стронциевой соли. При окислении любого моносахарида (за исключением дезоксисахаров) может образоваться одна из четырех стереоизомерных кислот, конфигурация которых зависг1Т только от конфигурации у С(1) и С(5) (или С(4) у пентоз) и не зависит от конфигурации других С-атомов (С(2>, С(з> и С(4)) . а-О-гликозид и а-ь-гликозид дают одну пару антиподов, Р-О-и р-ь-гликозиды — другую пару антиподов, диастереомерную первой. Эти пары диастереомеров отличаются одна от другой физическими свойствами, в частности для а-О- и а-Ь-пары характерны бариевые соли, [5-0- и р-ь-пара дает характерные стронциевые соли. На основании этого исходный гликозид можно отнести либо к тому, либо к другому типу (см. схему на стр, 45). [c.44]

    Большим преимуществом метода спиртового обмена являются мягкие условия синтеза, препятствующие протеканию побочных процессов. Это особенно важно для спиртов, склонных к реакциям с хлористым водородом. Определенным преимуществом является и простота физических методов удаления спиртов. Если спирт R ОН имеет значительно более высокую температуру кипения по сравнению с ИОН, синтез можно провести с затратами минимального теоретического количества R OH, что важно в тех случаях, когда спирт R OH дорог. Несомненно, лучше использовать небольшой избыток (около 10%) спирта R OH, иначе последняя стадия обмена будет протекать очень медленно. Для использования в качестве инертных разбавителей имеется широкий выбор растворителей (бензол, толуол, четыреххлористый углерод, цикло-гексан и т. д.). Часто спирт R OH удается осушить азеотропной отгонкой с использованием разбавителя (например, бензола) в качестве третьего компонента. Если спирт R OH имеет слишком высокую температуру кипения для образования тройной азеотропной смеси с водой и бензолом, для осушения системы можно добавлять другой спирт ROH с низкой температурой кипения. Например, берут требуемое количество спирта R OH с бензолом и небольшое количество спирта ROH (например, EtOH) и осушают систему перегонкой при минимальной температуре кипения тройного азеотропа бензол — этанол — вода. Большую часть этанола удаляют в виде бинарного азеотропа с бензолом, после чего в раствор вводят этоксид металла M(OEt) , который превращают в M(OR ) отгонкой азеотропа бензол — этанол. [c.239]

    При проверке чистоты вещества помимо элементного анализа пользуются определением физических постоянных, если соответствующие величины, а возможно, и их зависимость от температуры точно известны. Наибольшее распространение в лабораторной практике имеют определения температуры плавления, плотности, показателя преломления и давления пара. Если эти методы неприменимы, то можно в качестве испытания на однородность подвергнуть вещество операциям разделения. Для этой цели применяют прежде всего не требующие значительных затрат времени методы газовую, тонкослойную хроматографию нлн хроматографию на бумаге. Высокой чувствительностью по отношению к примесям обладают спектроскопические методы. При этом для характеристики жидкостей (например, растворителей, см. разд. 6) и растворенных веществ наиболее важны электронные спектры. Полезно иметь также инфракрасный и масс-спектр, которые в соответствующем аппаратурном оформлении могут быть сняты для образцов в твердом, жидком н газообразном состоянии. Оба метода дают возможность проводить качественное и полуколнчественное определение примесей, что очень облегчает принятие решения о целесообразности дальнейшей очистки. Например, содержание воды в твердом препарате легко определяется по широким полосам поглощения при 1630 н 3400 см в ИК-спектре. Разумеется, в этом случае следует иметь в виду, что галогениды щелочных металлов, используемые при приготовлении таблеток для ИК-спектроскопии, гигроскопичны. Их применение для съемки гигроскопичных объектов или для определения воды возможно только после нх тщательной осушки и лишь прн полном отсутствии воздуха (отмеривание, растирание с веществом, наполнение пресс-формы проводятся в сухой камере). Другой возможностью является съемка суспензии вещества в сухом нуйоле или в другой подходящей жидкости. Подобные жидкости должны обладать достаточно высокой вязкостью и по возможности малым собственным поглощением в соответствующей области спектра. В качестве материала для изготовления окон кювет для съемки ИК-спектров газов и жидкостей применяют вещества, перечисленные в табл. 26. Если нет необходимости вести съемку в области ниже 600 см , то следует пользоваться сравнительно дешевыми монокристаллами хлорида катрня. Конечно, вещество не должно реагировать с материалом окон (при необходимости предваритель- [c.142]

    В физических методах измеряют непосредственно определяем< физическое свойство без проведения химических реакций. Наприме для определения содержания различных веществ (кислот, щелочс и др.) иногда достаточно измерить их плотность. На осно1 измерения электрической проводимости можно определить содерж ние воды в концентрированной серной или уксусной кислота Измеряемые свойства зависят от концентрации раствора, но I зависят от массы или объема анализируемого вещества. Пoэтo при анализе физическими методами нет необходимости брат строго определенное количество данного вещества, т. е. не нужр брать навеску или отмерять строго определенный объем раствор  [c.204]

    Молекулярная масса целлюлозы составляет 50 00 тыс., что соответствует 300-2500 остаткам глюкозы на одну молекулу. Определение длины молекулы целлюлозы физическими методами даёт величину 10000 остатков. Нити целлюлозы образуют микрофибриллы благодаря внутри- и межмолекулярным водо-родньш связям микрофибриллы собраны в волокна, ось каждого из которых расположена под углом к осям микрофибрилл, а каждая молекула лежит вдоль оси микрофибриллы. Такая высокоупорядоченная структура, подтверждённая данными рентгеноструктурного анализа, и обусловливает необычайную прочность и упругость целлюлозы, равно как и отсутствие растворимости в бшьшинстве применяемых растворителей. Любопытно, что целлюлоза растворяется в реактиве, приготовленном смешением Си(ОН)2 с концентрированным водным раствором аммиака (реактиве Швейцера), а также в [c.102]


Смотреть страницы где упоминается термин Физические методы определения воды: [c.143]    [c.174]    [c.39]   
Акваметрия (1952) -- [ c.11 , c.13 , c.116 , c.118 , c.126 , c.182 ]




ПОИСК





Смотрите так же термины и статьи:

Методы определения физических свойств воды

Методы физические

Физические методы определения



© 2025 chem21.info Реклама на сайте