Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синтезы продуктов на основе ацетилена

    Выдающийся вклад в разработку многочисленных промышленных технологических процессов на основе ацетилена внес В Реппе Разработанные им способы получения разнообразных органических продуктов сделали ацетилен в 30-50-е годы XX столетия основным сырьевым источником промышленности органического синтеза На основе ацетилена получают в больших количествах уксусный альдегид, уксусную кислоту, уксусный ангидрид, этилацетат, хлористый винил, винилацетат, акрилонитрил, акрилаты, хлоропрен и др (см выше) [c.326]


    При наличии дешевой и недефицитной электроэнергии рационально организовать также промышленный электрокрекинг метана, в результате которого получается ацетилен и водород и в качестве побочного продукта — газовая сажа. Водород может быть использован на азотно-туковом комбинате для синтеза аммиака, а ацетилен может служить основой для производства синтетического каучука. Таким образом, в качестве второго варианта может быть предложен комплекс из трех следующих производств завода по производству лавсана, возможно, с прядильно-ткацким корпусом, азотно-тукового комбината и комбината, состоящего из завода синтетического каучука и шинного завода. [c.205]

    Ацетилен приходится использовать в разбавленном виде при давлениях не выше 0,2 МН/м (2 атм). Баллоны для ацетилена рассчитаны на 12-кратное превышение рабочего давления, с тем чтобы они могли выдержать взрывное разложение заключенного в них ацетилена. В общем можно сказать, что, несмотря на потенциальную опасность работы- с ацетиленом, обусловленную легкостью его разложения, проведение синтезов на основе ацетилена и очистка полученных продуктов не представляют особых затруднений. [c.92]

    Производство ацетилена развивается и будет совершенствоваться. Это вызывается более экономически выгодными условиями получения ряда продуктов органического синтеза на основе ацетилена (хлорпропен, винилаце-тат и т. д.). Особое значение имеет ацетилен в производстве хлористого винила благодаря необходимости использовать не находящие применения большие [c.15]

    Для оценки перспектив органического синтеза на основе ацетилена существенно, что ацетилен примерно втрое дороже олефинов, и поэтому при возможности производства какого-либо продукта из обоих видов сырья предпочтение отдается олефинам. [c.118]

    В начале 70-х годов этим методом фирма ЭНИ в Италии организовала производство изопрена. Экономической основой процесса явилось промышленное освоение электрокрекинга метана в ацетилен и наличие свободного ацетона — побочного продукта синтеза фенола через гидроперекись изопропилбензола. [c.215]

    Рост потребления ацетилена в органическом синтезе в некоторой степени тормозится конкуренцией со стороны этилена. Многочисленные продукты, которые могут вырабатываться из ацетилена, можно столь же успешно синтезировать и на основе этилена, который в США, как правило, значительно дешевле, чем ацетилен. В каждом таком случае необходимо провести детальный анализ экономики с учетом стоимости товарных продуктов и рентабельности обоих вариантов. До сего времени в условиях США лишь немногие из крупнотоннажных продуктов экономичнее вырабатывать из ацетилена, чем из этилена.. [c.255]


    Сырьевая база промышленности органического синтеза тесно связана со структурой топливно-энергетического баланса отдельных регионов и стран. Преобладание угля в этом балансе создало в свое время сырьевую основу для производства химической продукции на коксохимических заводах и на базе ацетилена. С переходом энергетики и транспорта на преимуш,е-ственное использование нефти и газа ацетилен в большинстве промышленных процессов был вытеснен нефтехимическим этиленом, а источником получения ароматических углеводородов, помимо коксохимического производства, стала нефтепереработка. Современный этап развития промышленности органического синтеза определяется обычно как нефтехимический однако его можно называть и олефиновым . При мировом объеме производства продуктов в процессах тяжелого органического синтеза, равном 100 млн. т в год, мош ности по этилену достигают 50 млн. т в год [2]. [c.6]

    Глубокое охлаждение широко применяется для конденсационного разделения углеводородных газовых смесей [17-19] с выделением таких ценнейших компонентов, как пропилен, ацетилен, этилен, оксид углерода, водород, на основе которых химическая промышленность выпускает все продукты основного органического синтеза пластические массы и смолы, синтетические волокна и каучуки, спирты, кетоны, эфиры, альдегиды, жирные кислоты и многие другие. [c.47]

    В настоящее время ацетилен как сырьевая основа органического синтеза все больше вытесняется за счет интенсивного применения продуктов переработки нефти — алканов и алкенов [c.326]

    Однако ряд продуктов, производимых на основе ацетилена, например акрилонитрил, получаемый гидроцианированием ацетилена, теперь заменяют акрилонитрилом, полученным методом совместного каталитического окисления пропилена и аммиака. Поэтому потребность в ацетилене для синтеза акрилонитрила будет изменяться. Такое же положение создалось с производством ацетальдегида, методом гидратации, который теперь заменен методом окисления этилена. [c.8]

    Однако взрывоопасность ацетилена значительно уменьшается при разбавлении его инертными газами (азотом, водородом и др.). В этом случае тепло, выделяющееся при разложении ацетилена, воспринимается молекулами инертного разбавителя, и процесс не распространяется на весь объем газа. Поэтому с разбавленным ацетиленом можно безопасно работать при более высоком давлении, что очень важно при некоторых синтезах на его основе. В качестве разбавителя чаще всего иопользуют азот, но и тогда максимально допустимое давление зависит от концентрации ацетилена в газовой смеси (рис. 25). Нередко разбавителем ацетилена при его использовании в органическом синтезе могут быть пары достаточно летучего реагента или продукта реакции. [c.104]

    Ацетилен является исходным сырьем для синтеза мономерных веществ, из которых получают химические волокна, пластические массы, каучук и другие важные продукты и материалы. К таким мономерам относятся винилхлорид, винилацетат, акрилонитрил, хлоропрен и т. д. В связи с большой потребностью в продуктах, получаемых на основе ацетилена, планами развития народного хозяйства предусмотрено увеличение производства ацетилена как из углеводородного сырья, так и классическим способом — через карбид кальция. [c.7]

    Ацетилен стал доступен в конце XIX в., после того как был получен в промышленных условиях карбид кальция, явившийся сырьем для производства ацетилена. Использование дешевого природного газа и продуктов переработки нефти стало новым мощным стимулом для получения ацетилена и последующего развития на его основе крупной промышленности органического синтеза. Предпочтительное и пользование методов получения ацетилена из углеводородов или карбидного метода зависит главным образом от наличия в данном районе страны нефтяного сырья, природного газа или кокса и энергетических ресурсов. Из новых способов получения ацетилена чаще применяются окислительный пиролиз природного газа, электрокрекинг углеводородов и пиролиз нефтяных фракций в потоке высокотемпературных газов, образующихся в кислородной горелке. [c.9]

    Еще один недостаток процессов получения ацетилена из углеводородов является общим для очень многих нефтехимических процессов и в известной степени для процессов нефтепереработки. Ацетилен — не единственный продукт, получаемый этим способом, как это имеет место в случае карбидного ацетилена (если не считать пушонку). Целевыми продуктами многих процессов являются смеси ацетилена и этилена. Во всех процессах получается избыток водорода, иногда чистого, иногда в смеси с СО. Эти продукты также не транспортабельны, и если стремиться наиболее выгодно их использовать, они должны найти применение на месте не в качестве горючего, а для химического синтеза. Этилен имеет пшрокое применение. Водород необходим для синтеза аммиака особенно там, где имеется азот, являющийся побочным продуктом выделения из воздуха кислорода, который используется в процессах окислительного пиролиза. Окись углерода можно использовать для получения дополнительных количеств водорода из водяного газа, для синтеза метанола нли других целей. Следовательно, такие пути использования побочных продуктов более выгодны, чем их применение в качестве горючего на том же заводе, и они являются важным фактором повышения экономичности заводов по производству ацетилена на основе углеводородов. Стоимость производимого ацетилена не может быть адекватно определена без учета этих факторов. Еще несколько лет назад структура цен на возможное сырье исключала все виды сырья, кроме сырой нефти и мазута, который не очень привлекателен с технической точки зрения, а также природного газа. Заводы по производству ацетилена из углеводородов, пущенные в 50-х годах, в основном были основаны на использовании природного газа и располагались в районах, где природный газ имелся и был, по возможности, дешевым, [c.435]


    Сырьем для их получения служат водород, окись углерода, метан и его гомологи, этилен, пропилен, н-бутилен, изобутилен, ацетилен, бензол, толуол, нафталин и др., получаемые при переработке жидкого, твердого и газообразного топлив. В производстве синтетических органических продуктов используются процессы окисления и восстановления, гидрирования и дегидрирования, гидратации и дегидратации, сульфирования, нитрования, галоидирования и др. На их основе осуществляется синтез самых различных соединений, служащих сырьем для получения полимеров, синтетических красителей, ядохимикатов, смазочных, моющих, душистых и лекарственных веществ и т. д. Большинство органических процессов протекает в присутствии катализаторов. [c.320]

    В принципе все основные продукты, производимые в настоящее время на основе нефти, можно вырабатывать и из угля, тем более, что до начала 1920-х годов он являлся основным источником сырья для химической промышленности. Так называемые смоляные краски (азо-, ализариновые, индантреновые и другие красители) и сегодня производят на основе бензола, нафталина и антрацена, которые раньше получали только из каменноугольной смолы, а позднее — из сырого бензола коксохимических заводов. На основе химии красителей были созданы производства фармацевтических препаратов и средств защиты растений, другие отрасли промышленности органического синтеза. Из коксового газа выделяли аммиак, который шел на производство минеральных удобрений. Водород для синтетического аммиака также получали газификацией угля либо кокса. Отрасли собственно углехимии основывались на карбиде кальция и ацетилене, а также на синтез-газе, из которого затем получали углеводороды или метанол. Карбид кальция получали из угля и известняка в электрических дуговых печах, а затем перерабатывали в цианамид кальция (ценное удобрение) или ацетилен. Таким образом, для возрождения углехимии имеются [c.15]

    Ацетилен играет в промышленности органического синтеза большую роль. Он широко применяется в качестве исходного материала для ряда химических синтезов, что основано на исключительной способности этого в высокой степени ненасыщенного углеводорода присоединять другие атомы и группы атомов. Из всех непредельных углеводородов ацетилену принадлежит первое место по разнообразию продуктов, получаемых на его основе. [c.52]

    Ацетилен имеет высокую реакционную способность благодаря наличию в его молекуле тройной связи и подвижных атомов водорода [44]. Если разрыв тройной связи может повести к присоединению различных атомов и групп атомов, то атомы водорода тоже могут легко замещаться различными группами атомов. Так как ацетилен является ненасыщенным углеводородом, он склонен к разнообразным реакциям присоединения и замещения другими словами, на основе ацетилена проводятся многочисленные процессы по получению ряда важнейших продуктов органического синтеза (рис. 1). [c.5]

    Природный газ, содержащий в основном метан (97—98%), является ценнейшим сырьем для производства ацетилена, роль которого в химической промышленности непрерывно возрастает. На основе ацетилена базируется синтез ряда важнейших химических продуктов — виниловых и акриловых пластмасс, синтетических волокон, синтетического каучука, ацетальдегида, уксусной кислоты, этилового спирта и многих других продуктов, основной перечень которых представлен на рис. 51. Ацетилен используется также для резки и сварки металлов и ряда других огневых процессов. [c.86]

    Для синтеза 1,2,3-тиадиазолов часто используют гидразоны (схема 213) [161]. Незамещенный 1,2,3-тиадиазол (359) был получен окислением 4-метил-1,2,3-тиадиазола перманганатом и последующим термическим декарбоксилированием 4-карбоновой кислоты [6в], Этим методом удалось получить также и 1,2,3-селенадиазолы (схема 214) [160], На основе гидразонов, полученных из замещенных альдегидов и кетонов, синтезирован широкий набор 4- н 5-моно- и дизамещеиных 1,2,3-селенадиазолов, В тех случаях, когда оба а-положения гндразона доступны окислению, направление замыкания цикла зависит от кислотности а-протона (окисляются более кислые протоны). Таким образом был создан удобный метод синтеза несимметрично замещенных ацетиленов. Дальнейшее его развитие, связанное с использованием гидразонов типа (379), позволило получать бициклические 1,2,3-селенадиазолы, термолиз которых приводит к циклическим алкинам (380) наряду с побочными продуктами [161]. [c.540]

    В первом разделе опубликованы работы, посвященные синтезу различным образом замещенных ацетиленов и их химическим превращениям. Значительное внимание уделено реакции винилирования, синтезу и превращениям эфиров ацетиленовых глицеринов, синтезу и превращениям элемев-тоорганических ацетиленов, синтезу гетероциклов на основе ацетиленов. Тематика многих статей указывает на явную тенденцию искать практическое применение новых продуктов синтетической химии ацетилена. [c.3]

    Хотя жесткая конкуренция этилена значительно снижает потребность в ацетилене, однако полностью ацетилен не может быть вытеснен, поскольку синтезы на основе ацетилена характеризуются более высоким коэффициентом превращения исходного сырья, а ацетиленовые технологические схемы значительно короче этиленовых. По-видимому, и в будущем для производства ряда органических продуктов (например, хлоропрепа, бутиндиола, пропар-г гилового спирта и других) ацетилен сохранит свое значение единственного или наиболее экономичного источника. Кроме того, существует множество синтезов практически важных веществ — поливинил фторида, полиацетиленов с полупроводниковыми свойствами, полимеров на основе ацетилена и карбазола, бициклогепта- [c.91]

    Из ацетилена могут быть получены различные алифатические соединения с двумя и тремя, а также кратным числом атомов углерода в молекуле. Поэтому развитие синтезов на основе ацетилена сильно обогатило химию растворителей, винильных соединений (мономеры для пластических масс), пластификаторов и т. д. Все методы и реакции получения этих веществ сснованы на исключительной споссбности ацетилена присоединять другие атомы и группы атомов. Наибольшее значение для подобных синтезов имеет продукт присоединения воды к ацетилену—а ц е т-альдегид. Возможности использования синтезов на основе ацетилена для получения алифатических (в том числе непредельных), циклических, гетероциклических и ароматических соединений почти безграничны. Уже проведены весьма плодотворные исследования в области синтезов на основе ацетилена (В. Реппе, Людвигсгафен). Однако разработка методов получения многих новых соединений по существу еще только начинается. [c.175]

    Рост производства ацетилена следует приписать действию двух главных факторов. Во-первых, пути получения продуктов органического синтеза на основе ацетилена обычно более прямы, коротки пли в каком-либо другом отношении более привлекательны, чем пути по.чученпя тех же продуктов на основе сырья, конкурирующего с ацетиленом. Это компенсирует высокую стоимость ацетилена. Во-вторых, производство пластмасс и других продуктов органического синтеза на основе ацетилена в течение всего рассматриваемого периода возрастало с такой феноменальной скоростью, что даже там, где ацетилен удерживал лишь часть, причем уменьшающуюся часть общего производства, все равно это приводило к увеличению количества используемого ацетилена. Перечисленные выше факторы дойствительно замедляли развитие промышленности ацетилена. Если бы они не действовали, скорость роста промышленности ацетилена была бы сравнимой или превышала бы скорость роста промышленности этилена, пропана, пропилена, бутана и бутилена. Но несмотря на это замедление, скорость роста была такова, что максимальный уровень производства, достигнутый двадцать лет назад в исключительных условиях военного времени, был утроен, и производство и использование ацетилена получили распространение во всем мире. [c.57]

    Ближайшие гомологи метана при нагревании 1рТиГуг"лево5о Д° высоких температур также образуют ацетилен. Однако в отличие от метана, из которого ацетилен образуется только в результате первоначального синтеза из осколков (радикалов) метана и возможно при разложении других продуктов синтеза а основе тех же радикалов, другие углеводороды могут непосредственно давать ацетилен при своем разложении  [c.50]

    Ацетилен является исходным сырьем, применяемым 11 синтезе веществ, из которых получают химические золокна, пластические массы и другие важные продукты и материалы. К таким веществам относятся хлористый винил, винилацетат, акрилонитрил, хлоропрен, уксусная кислота и т. д. В связи с большой потребностью в продуктах, получаемых на основе ацетилена, планами развития народного хозяйства предусматривается значительное увеличение производства ацетилена путем переработки природного газа. Лри организации этого производства должна быть обеспечена безопасность и надежность технологического процесса, что имеет важное значение в связи с его спецификой и пзрывчатыми свойствами ацетилена. [c.5]

    Для химической переработки выделенных из газа углеводородов используются, практически, все основные реакции органического и нефтехимического синтеза пиролиз, конверсия, окисление, гидрирование и дегидрирование, гидратация, алкилирование, реакции введения функциональных групп — сульфирование, нитрование, хлорирование, карбонилирование и др. Наряду с процессами разделения они позволяют получать на основе газообразного топлива водород, оксид углерода (II), синтез-газ, азотоводородную смесь, ацетилен, алкадиены, цианистый водород, разнообразные кислородсодержащие соединения, хлор, нитропроизводные и многое другое. В свою очередь эти полупрЬдукты являются сырьем в производстве многочисленных целевых продуктов для различных отраслей народного хозяйства высококачественного топлива, пластических масс, эластомеров, химических волокон, растворителей, фармацевтических препаратов, стройматериалов и др., как это показано ниже. [c.198]

    Ароматич. углеводородьЕ получают в пром-сти из продуктов коксования каменного угля и ароматизацией нефтяных углеводородов, а далее превращ. в разнообразные замещенные. В связи с уменьшением запасов нефти перспективной становится ароматизация алифатич. и алициклич. углеводородов, получаемых при гидрировании каменного угля и на основе синтез-газа. Лаб. способы получения A. . основаны на превращ. ароматич, углеводородов или др. доступных Л,с. в нек-рых случаях используют дегидрирование производных циклогексана, циклотримеризацию ацетиленов и ароматизацию аддуктов, образующихся по р-ции Дильса - Альдера. [c.200]

    Синтез 2-арил-, 4-метпл-2-арил-, 2,4-диарнлпроизвод-ных 5,6-бензохинолина осуществлялся нами в нескольких различных вариантах, но практически в одну стадию. В основу этих синтезов налш положены теоретические представления, изложенные ранее, во-первых, на основе реакции совместной каталитической конденсации 2-нафтиламина и ароматических альдегидов с ацетиленом в присутствии солей ртути и меди. Для этой цели реакционная масса из 2-нафтиламина и ароматического альдегида в молекулярных отношениях 2 1. насыщалась ацетиленом. Продукт реакции подвергался перегонке или нагревался с концентрированной соляной кислотой 121—124]. В дальнейшем из 2-нафтиламина и ароматического альдегида предварительно получалось шиффово основание. Последнее растворялось в спирте, к нему добавлялся анилин и катализатор, реакционная масса насыщалась ацетиленом. В этом синтезе роль переносчика ацетилена отводилась анилину. [c.45]

    Производство карбида кальция. В середине 60-х годов производство карбида кальция на основе угля (кокса) и известняка достигало 10 млн. т/год. Это объясняется тем, что ацетилен, получаемый при взаимодействии карбида кальция с водой, широко применялся в сварочной технике и в химической промышленности для производства этанола, уксусной кислоты и уксусного ангидрида, ацетальдегида, ацетона, цианамида кальция, винилхлорида и других продуктов органического синтеза. В 1974 г. производство карбида кальция снизилось до 3 млн. т/год в связи с расширением использования для указанных производств этилена, получаемого из дешевого нефтяного сырья. В настоящее время вновь рассматривается вопрос о производстве ацетилена, который может быть получен путем взаимодействия угля с известняком при 2000—2200 °С [16, с. 76], газификации угля и пиролиза образующегося при этом метана, гидрирования угля с последующей конверсией гидро-генизата в ацетилен в плазменном или дуговом реакторах, а также путем вдувания потоком водорода угольной пыли в электродуговой реактор с быстрой закалкой выделяющихся газов [50], На основании теоретических разработок и усовершенствования аргонового и аргоноводородного плазменных реакторов максимальный выход ацетилена составляет 59 г/(кВт- ч), степень превращения углерода в С2Н2 достигает 14% [51]. [c.22]

    Таким образом, в результате этих работ, в основе которых лежали исследования Фаворского, были разработаны простые методы синтеза изопреноидных спиртов (лииалоола, гераниола, нерола, неролидола, фарнезола, фитола и др.) и кетонов (псевдо-ионон, псевдоироп и др). Благодаря доступности исходных продуктов (ацетон и ацетилен), простоте методик и высоким выходам на всех стадиях эти методы вполне применимы для промышленного осуществления. [c.142]

    Б третьем разделе собраны.статьи по полимеризации ацетиленовых соединений и направленному синтезу мономеров. Обрап ает на себя внимание новое направление поисков в этой области — вовлечение в круг исследований функционально залгеш,енных ацетиленов и диацетиленов, работы в области привитых сополимеров, в частности на основе целлюлозы. Отражены также и новые работы по мономерам — продуктам реакции винилирования. [c.4]

    Производство любых продуктов из ацетилена связано с большим расходом энергии (на получение 1 ацетилена расходуется около И квт-ч электроэнергии), и если сейчас в ГДР даже этилен и гликоли приходится получать из ацетилена, то это следует расс.матривать как временное явление, вызванное необходимостью. Вследствие дефицита другого сырья химия ацетилена получила в Германии значительно большее развитие, чем в других странах мира. Разработка промышленных процессов на основе ацетилена, как и процессов гидрогенизации и синтезов Фишера—Тропша, является крупным техническим достижением германских ученых и инженеров. Тем не менее вполне возможно, что и в Германии ацетилен постепенно будет заменен другими источниками сырья. [c.176]

    В-третьих, промышленное-освоение синтеза бутиндиола при-ве.по к разработке технически важного метода производства бутадиена, мономера для синтетического каучука буна . Впоследствии Реппе объяснил причины, вызвавшие разработку нового метода получения бутадиена из ацетилена наряду с существовавшим четырехстадийпым производством его через уксусный альдегид и альдоль Четырехстадийный процесс основан на получении бутадиена полностью из ацетилена, в то время как в новом процессе лишь два углеродных атома бутадиена имеют своим источником ацетилен. Остальные два происходят из формальдегида, получаемого более благоприятным в энергетическом отношении способом — на основе синтеза водяного газа [411]. Кроме того, новый метод позволял значительно увеличить производительность оборудования (с одной колонны получали в 3 раза больше бутадиена, чем но старому методу), а также давал промежуточные продукты, которые являлись исходными для других важных промышленных синтезов. [c.87]

    Органический синтез — получение более сложных веществ из менее сложных — зародился в середине XIX в. на основе побочных продуктов коксования каменного угля, содержавших ароматические соединения. Несколько позже из кокса начали получать окись углерода и ацетилен, явившиеся основой для синтеза многих алифатических соединений. С начала XX в. начинает развиваться переработки нефти, а еще позже — переработка природных газов. Из них выделяют парафиновые углеводороды и их смеси, а при термическом и каталитическом крекинге нефтепродуктов получают в качестве побочных продуктов простейшие олефины, на основе которых возникли многие важные производства. Затем были разработаны методы превращения нефтяного и газового сырья в окись углерода и спнтез-газ (смесь СО и Нг), ацетилен и, наконец, в ароматические углеводороды. [c.9]


Смотреть страницы где упоминается термин Синтезы продуктов на основе ацетилена: [c.10]    [c.175]    [c.10]    [c.74]    [c.119]    [c.84]    [c.111]    [c.205]    [c.289]    [c.6]    [c.60]    [c.43]   
Смотреть главы в:

Основы технологии нефтехимического синтеза -> Синтезы продуктов на основе ацетилена




ПОИСК





Смотрите так же термины и статьи:

Ацетилен синтезы на его основе



© 2025 chem21.info Реклама на сайте