Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий пероксиды

    Пероксидные соединения ванадия. В две пробирки налейте по 5—6 капель концентрированного раствора метаванадата аммония или ортованадата натрия и добавьте в первую пробирку 2—3 капли 10 %-го раствора гидроксида натрия, а во вторую — 5—6 капель разбавленной серной кислоты (1 1). После этого в каждую пробирку добавьте по 5—6 капель 3 %-го раствора пероксида водорода. В щелочной среде появляется желтая окраска, в кислой — красная, что обусловлено образованием ионов [У02(02)2], и [У0(02)]+ соответственно. [c.198]


    Дать остыть полученному раствору и перенести 5—6 капель в пробирку с несколькими каплями дистиллированной воды. Исследовать раствор действием пероксида водорода, как описано в опыте 8. Появилось ли характерное для пероксокислот ванадия (V) красное окрашивание  [c.246]

    Пероксид водорода и алкилгидропероксиды эпоксидируют олефины в присутствии каталитических количеств соединений металлов с переменной валентностью (молибдена, ванадия, вольфрама и др.). В первом случае в качестве эпоксидирующего агента выступает неорганическая пероксикислота, во втором — ее эфиры (производные катализатора)  [c.119]

    Скорость каталитического разложения пероксида водорода. В данном задании предлагается большой группе студентов сравнить каталитическую активность различных веществ в реакции разложения пероксида водо рода (3%-й раствор), например соединений марганца М.пОц , Мп(0Н)4, Мп(0Н)2, Мп2+, МпОг и МпО, или соединений хрома, железа,, титана, ванадия. [c.312]

    Растворы, содержащие титан (IV) и ванадий (V), при добавлении пероксида водорода меняют окраску. Пользуясь справочной и учебной литературой, установите, какие вещества образуются в кислотной и щелочной среде. [c.135]

    Пероксидные комплексы. Пероксид водорода образует комплексы с титаном, ванадием, церием, ниобием, танталом и др. Чаще всего пероксидные комплексы применяют для фотометрического определения титана, ванадия, ниобия и тантала. [c.268]

    Сильные окислители способны, наоборот, выделять иод из растворов иодидов. По этому типу происходит взаимодействие между иодидом калия и бихроматом или перманганатом калия, солями це-рия(1У), ванадия(У), железа(П1), меди(П), органическими пероксидами и многими другими окислителями. Так, реакция между иодидом калия и ионами железа (III) [c.412]

    Разработаны новые окислительные системы на основе пероксида водорода и комплексов переходных металлов (ванадия, молибдена, вольфрама), активные в окислении сернистых соединений. Синтезированы новые ванадиевые анионные пероксокомплексы с различными азотсодержащими гетероциклическими лигандами (пиридин, бипиридин, пиразин др.). Изучение состава и строения полученных пероксокомплексов проводили методами элементного анализа, ИК- и ЯМР-спектроскопии, а также рентгеноструктурного анализа [c.61]

    Использование окислительно-восстановительных систем [57] дает возможность применять гидропероксиды и пероксиды кетонов для инициирования радикальных процессов в сочетании с катализирующими их распад соединениями железа, кобальта, ванадия и других металлов при комнатной температуре и ниже, что характеризуют данные табл. 1.2 и 1.5 [3]. [c.17]


    Навеску стали массой т (г) растворили в колбе вместимостью 50,0 мл. Две пробы по 20,00 мл поместили в колбы вместимостью 50,0 мл. В одну колбу добавили раствор, содержащий 0,003000 г ванадия. В обе колбы прилили пероксид водорода и довели водой до метки. [c.189]

    Качественной реакцией на соединения ванадия(У) служит образование пероксокомплексов с характерной окраской в нейтральной среде — желтого [У(0)2(02 )2] , в сильнощелочной — синефиолетового [У(02 )4] ". В кислотной среде образуется краснокоричневый комплекс состава [У0(02 )] , который медленно разлагается с выделением кислорода и пероксида водорода, переходя в УО . [c.241]

    Оптимальной кислотностью образования комплексного соединения является 1—2 М по серной кис-ло те. Окрашенные ионы Ре (П1) при их высоких содержаниях мешают определению титана. Для устранения влияния железа применяют фосфорную кислоту, которая связывает железо в бесцветный комплекс [Ре(Р04)2 Фосфорная кислота ослабляет окраску также и комплексного соединения титана в связи с образованием бесцветного комплексного аниона, поэтому кислоту вводят в стандартные растворы. К другим элементам, мешающим определению титана окраской собственных ионов или образующим с пероксидом водорода окрашенные соединения, относятся никель (П), хром (III), ванадий (V), молибден (VI), ниобий (V). [c.121]

    Известно, что при эпоксидировании или гидроксилировании водорастворимых ненасыщенных соединений, например аллилового или кротилового спиртов, пероксидом водорода в качестве катализаторов применяют металлы переменной валентности. В частности, для этой цели используют соединения ванадия, молибдена и вольфрама особенно предпочтительно использование вольфрамовых катализаторов. Поскольку катализаторы являются дорогостоящими, разработано значительное число процессов для регенерации катализаторов, содержащих вольфрам. В частности, обработке подвергают водные реакционные смеси, образующиеся при эпоксидировании или гидроксилировании аллилового спирта до глицидола или глицерина. [c.375]

    Определение титана и ванадия в рудах пероксидом водорода [c.39]

    Пероксид водорода. В щелочной среде пероксид водорода используют для окисления хрома (III) до хромата, марганца (И) до диоксида марганца, мышьяка (III) до мышьяка(V), сурьмы(III) до сурьмы(V) и ванадия (IV) до ванадия(V). В то же время в кислых растворах этот реагент количественно превращает железо(II) в железо(III) и иодид-ион в молекулярный иод, но восстанавливает бихромат до хрома(III) и перманганат до марганца(II). Избыток пероксида водорода разлагается, если его кислый или щелочной раствор прокипятить несколько минут [c.317]

    Для сокращения потерь летучих примесей применяют различные варианты кислотного озоления, при котором примеси предварительно переводят в нелетучие соединения (обычно в сульфаты), затем прокаливают. Известен способ минерализации масел при определении сульфатной золы по ГОСТ 12417— 73, который заключается в следующем. Навеску продукта нагревают на электроплитке до получения углистого остатка, к остатку добавляют по каплям концентрированную серную кислоту, нагревают на электроплитке до получения сухого остатка и прокаливают остаток в муфельной печи 1,5—2 ч при 775 25°С до полного озоления. Для озоления образцов, содержащих соединения свинца и ванадия, к 2 г пробы добавляют 10 мл концентрированной серной кислоты, затем немного азотной кислоты и, наконец, 10%-ный пероксид водорода. Все это сопровождается сложной процедурой термообработки. Полученную массу переносят в тигель и прокаливают при 550 25°С. [c.81]

    Разработан метод анализа кремнийорганических соединений (КОС), содержащих хром, олово й ванадий, основанный на минерализации образца плавлением с пероксидом натрия или нагреванием с серной и азотной кислотами и последующем пламенном атомно-абсорбционном определении элементов на СФМ Сатурн . Для определения кремния и хрома 25—30 мг пробы сплавляют в калориметрической бомбе с пероксидом патрия. Полученный сплав растворяют в воде при кипячении, количественно переносят в мерную колбу вместимостью 50 мл, доводят объем водой до метки и тщательно перемешивают (раствор А). С целью уменьшения содержания в растворе натрия, вносящего помехи при анализе, 0,5 мл раствора А разбавляют водой в 100 раз и в разбавленном растворе определяют хром. [c.195]

    Наиболее эффективным и экономичным способом борьбы с ванадиевой коррозией является использование присадок [200]. Механизм их действия заключается в переводе пероксида ванадия или ванадилванадата натрия в высокоплавкие соединения, не оказывающие сильного коррозионного действия. [c.178]

    Аллило1 ый спирт можно далее эпоксидировать не только надкис-лотой ити пероксидом водорода (стр. 439), но и гидропероксидом в прису тствии соединений ванадия, которые в данном случае более селекти И1Ы, чем молибденовые катализаторы. При последующем гидролизе глицидилового спирта получается глицерин  [c.445]

    Для снижения интенсивности высокотемпературной ванадиевой коррозии используются присадки ВТИ - магниевые соли синтетических жирных кислот С 4 - С20 и окисленного петролатума. Механизм действия подобных присадок заключается в переводе пероксида ванадия и ванадилванадата натрия Ыа Уг04 бУ О из низко- в высокоплавкие соединения, не оказывающие сильного коррозионного действия. [c.59]


    Для ванадия (V) характерно образование окрашенных пероксованадат (V)-комплексных ионов [У02(02)гР 1 [ (Ог) ] , [У0(02)з] при действии на У0, пероксидом водорода. Опишите строение этих ионов. [c.128]

    Опыт 12. Получение пероксо-комплексов ванадия (V) (качественная реакция на оксованадат (У)-ион). В две пробирки с У2О5 прибавьте соответственно воду и концентрированный раствор щелочи. Затем по каплям прибавляйте в каждую пробирку 3%-ный раствор пероксида водорода. Объясните изменение окраски, предполагая образование в первой пробирке ионов У02(02)2) (желтого цвета), во второй пробирке ионов У(02)4] (сине-фиолетового цвета). [c.128]

    Приборы и реактивы. Водяная баня, Чаше 1ка фарфоровая. Метавакадат аммо ния. Олово (гранулированное), щавелев 1Я кислота. Оксид ванадия (V). Сульф(гг натрия. Цинк. Феррованадий. Железо (порошок). Растворы . лакмуса (нейтрал .-ный) едкого натра (2 н., 4 н.,) едкого кали (40%-ный) серной кислоты (2 и., I 3 плотность 1,84 г/см ) хлороводородной кислоты (2 н. плотность 1,19 г/см > азотной кислоты (1 1) метаванадата натрия или аммония (насыщенный) хлорида бария (0,5 и ) сульфата меди (И) (0,5 н.) нитрата серебра (0,1 н.) нитрата свинца (0, 5 н.) перманганата калия (0,5 н.) пероксида водорода (3% -ный) сульфида аммония или натрия (0,5 н.) ниоОата калня (насыщенный). [c.241]

    Приборы и реактивы. (Полумикрометод.) Водяная баня. Тигель фарфоровый № 1. Чашка фарфоровая (3 см). Метаваыадат аммония. Щавелевая кислота. Полупятиокись ванадия. Цинк. Феррованадий. Железо (порошок). Растворы лакмуса, гидроксида натрия (2 н.), серной кислоты (2 н., 1 3, 4 и., пл. 1,84 г см ), соляной кислоты (2 н., пл. 1,19 г/сж ), азотной кислоты (1 1), метаванадата натрия или аммония (насыщенный), хлорида бария (0,5 н.), сульфата меди (0,5 н.), нитрата серебра (0,1 н.), ацетата или нитрата свинца (0,5 н.), иодида калия (0,5 н.), пероксида водорода (3%-ный), сульфида аммония или натрия, ниобата калия, едкого кали (40%-ный), сульфата диоксо-ниобия (4 н.). [c.208]

    Каталитические токи восстановления пероксида водорода наблюдаются и в присутствии ионов других металлов, например молибдена, ванадия, вольфрама и др. Известно каталитическое восстановление хлорной кислоты в присутствии вол1)фраматов, гидроксиламина в присутствии ионов титана(IV) и др. Во всех этих случаях чувствительность определения металлов сильно возрастает. [c.509]

    Другие реагенты для окислительного расщепления 1,2-днолов но селективности и доступности уступают йодной кислоте и тетраацетату свинца. Это относится к солям церия (IV), ванадия (V), фенилйодозоацетату СбНз1(ОСОСНз)2. В некоторых случаях для окисления днолов в нейтральной среде применяют пероксид никеля NIO2 н оксид марганца (IV)  [c.914]

    В процессах полиамидирования с этой целью применяются фосфорная и борная кислоты, оксид магния, хлористый цинк и др. [30]. При полипереарилировании, процессах ацилирования и алкилирования используются катализаторы типа катализаторов Фриделя-Крафтса [3, 128, 129]. При взаимодействии альдегидов с фенолами и аминами в качестве катализаторов применяют различные минеральные и органические кислоты, щелочи, оксиды металлов, многие соли [4, 128, 155, 180]. При дегидрополиконденсации используются платина, комплексы меди с аммиаком, оксид ванадия и др. [4, 128]. В процессах, протекающих по радикальному механизму, применяются пероксиды, например пероксид третичного бутила [4], в случае ион-радикальной поликонденсации используют галоидные производные лантанидов [176-179]. [c.40]

    Большая часть полиэфирных смол отверждается при комнатной температуре. Для отверждения используют различные инициирующие системы, состоящие из инициаторов [бензоилпероксид, пероксиды метилэтил-кетона и циклогексанона, гидропероксид изопропил бензола (гипериз) и др.] и ускорителей [в сочетании с бензоилпероксидом применяют диметил-, диэтил- и диэтаноланилин, диметил-и-толуидин с пероксидами метилэтилкетона и циклогексанона и гидропероксидами - кобальтовые соли нафтеновых и некоторых других кислот, например нафтенат кобальта, выпускаемый под названием ускоритель НК можно применять ускоритель В на основе оксида ванадия (V)]. Инициаторы и ускорители вводят в смолу отдельно, так как при их смешении может про- [c.207]

    Фотометрический метод с применением дианформазан а-2. Определение основано на образовании комплексного соединения ванадия (IV, V) с дианфор-мазаном-2, имеющего синий цвет при pH 3,5—5. Мешающие компоненты (Ре +, Си +, Т1 +, частично Сг +) отделяют на хроматографической колонке с катионитом КУ-2 в присутствии пероксида водорода. Влияние вольфрама устраняют переведением его в растворимый фосфорнокислый комплекс. [c.342]

    Для разделения элементов четвертой группы представляют интерес растворы, содержащие аскорбиновую кислоту. В отсутствие пероксида водорода аскорбатные комплексы титана сорбируются на анионообменниках. В разбавленных растворах аскорбиновой кислоты в присутствии HjOj титан не сорбируется [28, 29]. Цирконий также образует комплексы с аскорбиновой кислотой, пригодные для его отделения. Из растворов, содержащих аскорбиновую кислоту (pH 4 — 4,5), торий сорбируется сильноосновными анионообменниками. Вместе с торием на ионообменнике удерживаются уран, титан, цирконий, ванадий, вольфрам и молибден, в то время как другие элементы не сорбируются на нем. [c.230]

    Окисление спиртов является одним из основных способов получения карбонильных соединевий. Традиционным методом проведения гомогенного окисления спиртов (окислительное дегидрирование) является использование соединений хрома(УХ) или ванадия(У) в качестве окислителей. Однако постоянно возрастающие требования к экономичности и экологической безопасности химического процесса не позволяют широко использовать в промышленности данный способ. Особый интерес для химической индустрии представляет применение кислорода или пероксида водорода как чистых окислителей для получения карбонильных соединений при окислении спиртов. Существующий в промышленности процесс жидкофазного окисления первичных и вторичных спиртов кислородом в реакции автоокисления происходит при повышенной температуре (100-140 С) с образованием соответственно альдегидов и кетонов, а также пероксида водорода. В случае окисления первичных спиртов выход альдегидов, как правило, невысок, так как альдегиды в условиях процесса легко окисляются дальше в карбоновые кислоты. [c.619]

    В гомолитических реакциях перенос электрона возможен не только по одноэлектровному, но и по многоэлектронному механизму. Многоэлектронные переходы между катализатором и реагентами реализуются, если в активный центр катализатора входит несколько атомов переходного металла (например, в кластерах). Так, при разложении пероксида водорода активны комплексные соединения, содержащие два иона железа(Ш), а при восстановлении азота до гидразина - комплексные соединения, содержащие два и более ионов ванадия(П). [c.639]

    Натрия пероксид. ЫагОг, Т ,т = 460 °С. Щелочно-окис-лительный плавень. Применяют при определении серы, хрома, ванадия, марганца, кремния, фосфора в рудах и ферросплавах, молибдена в молибденовом блеске и др. Сплавление проводят с 6-8-кратным количеством плавня в железных, никелевых и серебряных тиглях. [c.48]

    Жидкофазное эпоксидирование алкенов алкилпероксидами или пероксидом водорода в присутствии переходных металлов в качестве катализаторов хорошо изучено [5, 36, 37]. Установлено, что комплексы ванадия, молибдена, вольфрама и хрома (особенно, ванадия и молибдена) являются наиболее эффективными катализаторами эпоксидирования [38—43]. Наилучшими ка- [c.330]

    Углерод. Карбид титана растворяют в смеси соляной и азотной кислот, в разбавленной фтористоводородной кислоте, в смеси азотной и фтористоводородной кислот, в смеси серной (1 4) и небольшого количества азотной кислоты при нагревании. Для определения азота растворение проводят в смеси концентрированной серной кислоты с сульфатом калия. Карбид циркония растворяют в серной кислоте (1 4), добавляя по каплям азотную кислоту проводят также сплавление с едким натром расплавляют 2—3 г NaOH в никелевом тигле при 350— 400 °С, на остывший плав помещают навеску (0,1 г) и, постепенно нагревая до 700—800 С, производят сплавление. Карбид ванадия растворяют в азотной кислоте (1 2). Карбид хрома сплавляют с 10-кратным количеством пероксида натрия. Карбид молибдена растворяют в концентрированной азотной кислоте. Карбид вольфрама растворяют в смеси фтористоводородной и азотной кислот. Карбид гафния растворяют в серной кислоте (1 1) с добавкой по каплям азотной кислоты. Карбиды щелочноземельных металлов растворяют в соляной кислоте (1 20). Карбид бора сплавляют в железном тигле со смесью едкого натра и пероксида натрия (1 1) или спекают с карбидом бария при 950 °С в течение [c.13]


Смотреть страницы где упоминается термин Ванадий пероксиды: [c.151]    [c.317]    [c.305]    [c.430]    [c.85]    [c.109]    [c.196]    [c.342]    [c.194]    [c.523]    [c.11]    [c.14]    [c.672]   
Учебник общей химии (1981) -- [ c.290 ]




ПОИСК





Смотрите так же термины и статьи:

Ванадия руды сплавление с пероксидом натри

Пероксиды



© 2025 chem21.info Реклама на сайте