Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Излучения ионизирующие свойства

    Действие ионизирующего излучения на полимеры, в отличие от воздействия на другие твердые тела, например на ионные кристаллы, в которых при облучении обычно происходят радиационные повреждения, часто приводит к улучшению их свойств. [c.196]

    При действии ионизирующего излучения на мономер в нем могут образовываться свободные радикалы, сольватированные электроны и ионы, которые могут служить в качестве активных центров. К преимуществам радиационной полимеризации относятся возможность полимеризации любых мономеров, высокая степень чистоты продукта, независимость скорости инициирования от температуры, простота управления процессом, например изменением мощности дозы. В отличие от фотополимеризации отсутствует зависимость от оптических свойств среды. [c.197]


    Радиационная деструкция происходит под влиянием нейтронов, а также а-, р-, у-излучения. В результате разрываются химические связи (С—С, С—Н) с образованием низкомолекулярных продуктов и макрорадикалов, участвующих в дальнейших реакциях. Облучение полимеров изменяет их свойства с образованием двойных связей или пространственных структур (трехмерной сетки) или приводит к деструкции. Но иногда происходит и улучшение качеств облучаемого полимера. Например, полиэтилен после радиационной обработки приобретает высокую термо- и химическую стойкость. Радиоактивное излучение, ионизируя полимерные материалы, способно вызывать в них и ионные реакции. [c.411]

    Под действием больших энергий ионизирующих излучений, активирующих молекулы смазочного материала, в них происходит разрыв химических связей. При взаимодействии образовавшихся свободных радикалов между собой или с другими активированными молекулами получаются новые соединения, строение и свойства которых отличаются от исходных. Обычно протекают реакции полимеризации и окисления, при которых образуются летучие продукты малого молекулярного веса. Минеральные и синтетические масла после облучения темнеют, становятся более вязкими, а при поглощении больших доз излучений даже желатинируются или твердеют. То же происходит в консистентных смазках с масляной основой. На начальной стадии облучения структурный каркас мыльных смазок разрушается, и смазки размягчаются. В дальнейшем при желатинировании жидкой фазы смазки затвердевают, становятся хрупкими. Глубина изменений зависит от дозы поглощенных излучений и химического состава смазки. Значительные изменения свойств большинства смазок начинают проявляться при поглощенной дозе излучений 1-10 рад. Однако разработаны смазки, в 5—7 раз более стойкие [12]. [c.666]

    Электрохимия и коррозия под действием ионизирующих излучений. Электрохимические свойства искусственных радиоактивных элементов, особенно актиноидов с порядковыми номерами выше 95, до настоящего времени недостаточно изучены. [c.8]

    Свойство радиоактивного излучения ионизировать газы находит техническое применение в радиоизотопных нейтрализаторах статических зарядов. [c.194]

    Наименьшей ионизирующей и наибольшей проникающей способностью характеризуются гамма-лучи. Гамма-лучи имеют значительно большую проникающую способность, чем бета- и альфа-лучи. Прохождение гамма-лучей через вещество вообще не может быть охарактеризовано длиной пробега. Ослабление потока гамма-лучей при прохождении через вещества подчиняется экспоненциальному закону и характеризуется коэффициентом ослабления [I, который зависит от энергии излучения и свойств вещества., . [c.60]


    Действие ионизирующих излучений. Под влиянием ионизирующих излучений полимеры претерпевают глубокие химические и структурные изменения, приводящие к изменению физико-химических и физико-механических свойств. Регулируя интенсивность облучения, можно изменять свойства полимеров в заданном направлении, например переводить их в неплавкое, нерастворимое состояние. Такая обработка некоторых полимеров уже применяется в промышленном масштабе. Облученный полиэтилен обладает очень высокой термостойкостью, химической стойкостью и другими ценными свойствами (рис. 47). [c.292]

    Очень подробно изучался состав и ИК-спектры сополимера винилхлорида с винилиденхлоридом при разных степенях превращения >426. И39 JJ влияние ионизирующего излучения на свойства этого сополимера 429. Описаны диэлектрические >446 реологические 425 и термомеханические 44 свойства сополимера винилхлорида с винилиденхлоридом и химическая и механическая стабильность латексов этого сополимера 4 . [c.513]

    Наименьшей ионизирующей способностью и наибольшей проникающей способностью обладают фотонные излучения. Во всех процессах взаимодействия электромагнитного излучения со средой часть энергии преобразуется в кинетическую энергию вторичных электронов, которые, проходя через вещество, производят ионизацию. Прохождение фотонного излучения через вещество вообще не может быть охарактеризовано понятием пробега. Ослабление потока электромагнитного излучения в веществе подчиняется экспоненциальному закону и характеризуется коэффициентом ослабления л, который зависит от энергии излучения и свойств вещества. Особенность экспоненциальных кривых состоит в том, что они не пересекаются с осью абсцисс. Это значит, что какой бы ни была толщина слоя вещества, нельзя полностью поглотить поток фотонного излуче- [c.67]

    Радиационно-химические реакции. Достаточно сильное воздействие на молекулы реагирующих веществ оказывают ионизирующие излучения (7-излучение, поток нейтронов и т. д.), их химическое действие изучается в радиационной химии. На базе исследований радиационно-химических реакций возникла радиационно-химическая технология, достоинством которой является высокая скорость реакций при сравнительно низких давлениях и температурах, возможность получения материалов высокой чистоты и др. К наиболее важным процессам радиационнохимической технологии относятся полимеризация мономеров, вулканизация каучука без серы, сшивание полимеров, улучшение свойств полупроводников, очистка вредных газовых выбросов и сточных вод и др. [c.121]

    Полимеры обладают чень высокой устойчивостью к ионизирующему излучению, механические свойства пленки не ухудшаются после облучения дозой ЮООО Мрад. [c.275]

    Единственным обнаруженным свойством этой гипотетической примеси было ионизирующее излучение. Это свойство и было названо радиоактивностью. Пьер и Мария Кюри, обладая высокой научной интуицией и блестящим экспериментальным талантом, поставили перед собой задачу выделить химическим путем эту предполагаемую примесь. Применяя новый метод сочетания химических операций с количественным измерением радиоактивности, в июле 1898 г. супруги Кюри открыли новый радиоактивный элемент, названный ими полонием. Затем в декабре 1898 г. они открыли еще один радиоактивный элемент—радий. Так было положено начало развитию радиохимии как науки, изучающей химические и физико-химические свойства радиоактивных элементов. (радиоактивных изотопов) и их соединений, разрабатывающей методы их выделения, концентрирования и очистки. Характерной особенностью радиохимии является изучение свойств радиоактивных изотопов по их ядерным излучениям. [c.11]

    Обычно все определения радиоактивности проводят с помощью детекторов, действие которых основано либо на ионизирующих свойствах излучений, проходящих через газ или полупроводник, либо на способности этих излучений вызывать возбуждение атомов и молекул среды с последующим испусканием фотонов светового излучения (сцинтилляционные детекторы). Измерив активность данного образца в начальный момент времени (/о) и через промежуток времени можно построить за- [c.206]

    Стабилизаторы. Эти вещества служат для защиты полимерных материалов от деструкции, вызываемой действием окислителей, света, ионизирующего излучения, механическими воздействиями и др. Их вводят в полимер в небольших количествах для длительного сохранения его потребительских свойств. Ассортимент стабилизаторов полимерных материалов насчитывает около 2000 веществ, являющихся большей частью органическими соединениями. [c.10]


    Благодаря небольшому содержанию двойных связей бутил-каучук стоек к действию кислорода. Соли металлов переменной валентности (Си, Мп, Ре) оказывают незначительное влияние на стойкость каучука [14]. При воздействии ближнего УФ-света или ионизирующих излучений он сильно деструктирует. Для стабилизации в него вводят до 0,5% антиоксиданта (неозона Д, НГ-2246, ионола). Бутилкаучук легче растворяется в углеводородах жирного ряда, чем в ароматических, нерастворим в спиртах, эфирах, кетонах, диоксане, этилацетате и растворителях, содержащих амино- и нитрогруппы. Ниже приведены некоторые физические свойства бутилкаучука [15]  [c.349]

    Характер взаимодействия ионизирующего излучения е веществом определяется параметрами частиц и свойствами вещества. При взаимодействии заряженных частиц со средой основной причиной потерь энергии являются столкновения с атомами (электронами и ядрами), приводящие к ионизации и многократным рассеяниям. Потеря энергии электронами происходит также в результате радиационного торможения, а для тяжелых частиц (протон, а-частица) - потенциального рассеяния на ядрах и ядерных реакций. При взаимодействии 7-излуче ния со средой потеря энергии объясняется Комптон-эффектом (рассеяние 7-кванта на электронах), фотоэффектом (поглощение у-кванта с передачей энергии электрону), образованием электронно-позитронных пар (при энергиях V-квантов 1,02 МэВ) и ядерных реакций (при 10 МэВ). [c.107]

    При облучении материалов ионизирующим излучением может происходить и улучшение их свойств. Так, например, при облучении полиэтилена происходит сшивание молекул полиэтилена. Свойства сшитого полиэтилена значительно отличаются от свойств полимера, не подвергавшегося действию радиации. На этой основе создана технология производства кабельных изделий повышенной термической, химической и радиационной стойкости с хорошими электроизоляционными свойствами. Радиационной модификации можно подвергнуть и другие материалы, в частности древесину. Радиационная модификация древесины состоит в том, что ее пропитывают мономерами и затем облучают. Таким путем получают замечательные древесные пластики, не имеющие природных аналогов. Эти пластики не гниют и не набухают, легко окрашиваются и обрабатываются они красивы и достаточно дешевы. [c.213]

    Линейный коэффициент ослабления ионизирующих излучений, так же как и коэффициент затухания ультразвуковых волн, зависит от природы и свойств контролируемого изделия и источника излучений. Он является важным параметром контроля,определяющим проникающую способность излучений и выявляемость дефектов. Другими основными параметрами радиационного контроля, влияющими на его производительность и выявляемость дефектов конкретного изделия, являются мощность экспозиционной дозы и энергия источника излучения, дозовый фактор накопления, абсолютная и относительная чувствительность метода, нерезкость и контрастность изображения, эффективность и разрешающая способность детектора [61 ]. [c.117]

    Как правило, срок службы битумных материалов под действием ионизирующего излучения значительно снижается. Степень этого снижения зависит от многих факторов и в частности от природы и мощности источника излучения, а также от продолжительности экспозиции. Мягкое а-излучение, например, проникающее только через тонкий поверхностный слой материала, вызывает при достаточно продолжительной экспозиции существенные, но лишь местные изменения (или разрушения) битумного слоя. Однако иногда воздействие излучения на поверхность может оказаться полезным. Тем не менее проникающее излучение высокой энергии типа 7-излучения, жесткого р-излучения или нейтронного излучения (или их сочетание) может вызвать значительные изменения и (или) разрушение не только на поверхности материала, но и на глубине до 1 м и более. Во всех случаях чем больше продолжительность экспозиции, тем значительнее изменения, вызываемые излучением. Если тонкий слой (типа кровельного битумного материала) разрушается под действием а-, или мягкого излучения, то он теряет свои свойства (происходит ускоренное старение), и его пригодность снижается. Однако если такой слой — только небольшая часть толстого слоя или большой массы материала, ухудшения почти не наблюдается, так как по отношению ко всей массе такое разрушение незначительно и изменение физических свойств всей массы материала практически обнаружить трудно. [c.166]

    Готовые асфальтовые покрытия. Как правило, физические свойства сборных битумных покровных материалов под действием ионизирующего излучения изменяются так же, как и свойства битумных пленок. На сборные битумные покрытия, используемые обычно для обкладки ирригационных каналов, облучение дозой мощностью 5-10 Р, очевидно, не оказывает влияния. При облучении дозой 10 Р пластина (конструкция сэндвич толщиной 12,7 мм из смеси органического наполнителя и битума между слоями войлока) делалась слегка хрупкой, что не препятствовало ее использованию. С увеличением дозы излучения до 5-10 Р скорость выделения газа возрастала максимально до 56 см /(г-10 Р). При облучении более интенсивным источником скорость выделения газа была в 10 раз больше. [c.172]

    Вместе с тем многие полимеры обладают большим сопротивлением на разрыв и сдвиг, высокой ударной прочностью и отличаются почти полным отсутствием хрупкости. Громадное большинство полимеров имеет малую теплопроводность и высокие изоляционные свойства (очень низкая электропроводность), характеризуется стойкостью к действию ионизирующих излучений. [c.126]

    Радиационная химия. Достаточно сильное воздействие на молекулы реагирующих веществ оказывают ядерные излучения (у-излу-чение, поток нейтронов и др.) их химическое действие изучается в радиационной химии. Ядерные излучения можно использовать для улучшения свойств полимеров, для вулканизации каучуков без добавок серы и т. п. Под действием ионизирующих излучений кислород превращается в озон, алмаз — в графит, SO2 в присутствии кислорода — в SO3 и т. п. [c.125]

    Таким образом, световое и ионизирующее излучения активно воздействуют на полимеры, приводя к развитию в них ряда химических превращений, которые сильно изменяют физические и механические свойства полимеров. В углеводородных полимерах происходит отрыв атомов водорода от молекулярных цепей полимера, образование в них свободных радикалов. В дальнейшем [c.248]

    Оптические свойства соединений элементов, возникающие при воздействии электромагнитного излучения, также находятся в прямой зависимости от строения электронной оболочки атома. Энергия переноса электронов с одной оболочки на другую или отрыва их от атома количественно определяется потенциалом ионизации. Потенциалы ионизации убывают в группах сверху вниз и возрастают в периодах слева направо. Легче всего ионизируются щелочные и щелочно-земельные металлы. Этим объясняется яркое окрашивание пламени при внесении в него солей указанных элементов. [c.33]

    В результате действия ионизирующих излучений на некоторые, вещества и смеси веществ могут протекать реакции, ведущие к -образованию технически важных продуктов. В настоящее время исследованы такие процессы, как радиационно-химическая полимеризация, изменение свойств полимеров в результате сшивания, низкотемпературный крекинг нефти, синтез гидразина из аммиака, окислов азота из воздуха и ряд других процессов. Особый интерес представляют цепные реакции под действием ионизирующего излучения. К таким реакциям относятся окисление углеводородов, их галоидирование, сульфоокисление, сульфохлорирование, полимеризация и др. [c.597]

    Можно объяснить наблюдаемые явления, если допустить, что под действием разности потенциалов нейтральные частицы газа диссоциируют на заряженные частицы одни из них положительные, другие отрицательные,— газ ионизируется. Под действием электрического поля заряженные частицы движутся ускоренно к катоду и аноду соответственно, приобретая значительную кинетическую энергию. Энергия, в форме световой, выделяется при столкновении двух частиц противоположных знаков тогда давление газа должно быть достаточным для осуш ествления большого числа столкновений. Когда давление газа достигает 10 мм рт. ст., среднее расстояние между частицами велико вероятность столкновений заметно уменьшается. Положительные частицы свободно движутся в электрическом поле. Они имеют относительно большую массу и обладают высокой кинетической энергией. При бомбардировке ими катода атомы материала катода испускают лучи. Эти катодные лучи состоят из отрицательных частиц, аналогичные частицы возникают при ионизации газа и вливаются в пучок катодных лучей. Катодное излучение было подробно изучено Круксом и Перреном Е 1895 г. Оно обладает, в частности, следующими свойствами  [c.8]

    Уже более 30 лет ученым известны радиозащитные свойства некоторых химических веществ. Их изучение проводится в интересах защиты здоровых тканей у тех больных, которые в связи с онкологическими заболеваниями подвергаются интенсивной радиотерапии. Очевидна и необходимость защиты человека от воздействия ионизирующих излучений при ликвидации последствий аварий на атомных установках и в случае военного конфликта с применением ядерного оружия. Дальнейшее проникновение человека в космос также не мыслится без разработки соответствующих радиозащитных мероприятий. [c.10]

    В результате облучения изменяются многие физические свойства полимеров механические, электрические и др. Направленное полезное изменение свойств полимеров в результате облучения лежит в основе технологии радиационного модифицирования материалов. По объему продукции, выпускаемой с использованием ионизирующего излучения, радиационное модифицирование полимеров занимает одно из первых мест. На основе этой технологии базируются следующие радиационно-химические процессы модифицирование полиэтиленовой и поливинилхлоридной изоляции кабелей и проводов, изготовление упрочненных и термоусаживаемых пленок, труб и фасонных изделий, получение пенополиэтилена и вулканизация полиоксановых каучуков. Ионизирующее излучение применяют также в производстве теплостойких полиэтиленовых труб и в шинной промышленности. [c.196]

    Радиоактивное излучение в одних случаях значительно увеличивает скорость коррозии, в других не влияет на нее, в третьих оказывает защитное действие. Радиоактивное излучение нарушает кристаллическую решетку металлов и изменяет их свойства [11 ]. Коррозионная среда в результате поглощения энергии излучения ионизируется и возбуждается. Излучение оказывает действие за счет трех факторов радиохимического эффекта, который облегчает катодный процесс в результате образования окислителей — деполяризаторов деструкционного эффекта, который изменяет характер поверхности металла, вплоть до полной потери защитных свойств оксидных пленок фоторадиационного эффекта, ускоряющего коррозию в результате облегчения катодного процесса. [c.11]

    Способность ПЭВД, как и других полиолефинов в определенной мере взаимодействовать с различными соединениями используется на практике для направленного изменения свойств — химического модифицирования. Широко изучены процессы хлорирования, сульфохлорирования, фосфонирования, окисления с последующей прививкой различных функциональных групп и созданием привитых сополимеров. Большую роль играют процессы физико-химического модифицирования, сочетающие воздействие химических реагентов с воздействием УФ-излучения, ионизирующего излучения. Вопросы направленного изменения структуры и свойств ПЭВД и других полиолефинов подробно рассмотрены в монографии [154]. [c.163]

    Каргин В. А., Т а у б м а н А. Б., Янова Л. П., Беляева 3. Ф., Влияние ионизирующего излучения на свойства сополимеров винилхлорида и винилиден.хлорида. Сб., Действие ионизирующих излучений на неорганические и органические системы. Изд. АН СССР, 1958, стр. 325. [c.277]

    Пленка полипиромеллитимида диаминодифенилоксида прозрачна. Тонкие пленки окрашеды в золотисто-желтый, толстые — в коричневый цвет. Их отличают высокая термо- и хемостойкость, хорошие механические и электрические свойства, а также устойчивость к действию ионизирующих излучений [353]. Свойства пленок полипиромеллитимида диаминодифенилоксида приведены ниже [354, 356]  [c.719]

    Не менее важным свойством фторопласта-4 является высокая теплостойкость. Рабочая температура эксплуатации аппаратуры из фторопласта-4 лежит в интервале от —190 до -Ь250°С. При более высоких температурах фторопласт-4 подвергается деструкции. Деструкция фторопласта-4 происходит при температуре 250—350° С. При действии на фторопласт-4 ионизирующего излучения также наблюдается его деструкция. [c.431]

    Радиоизотопные ионизаторы представляют собой излучатели радиоактивных частиц, которые обладают свойством ионизировать тот объем воздуха, через который они про.чодят. Для ионизации воздуха используют а- и -излучения. Наибольшее применение в радиоизотопных ионизаторах получили плутоний-239, прометий-147 и итрий-90. Эффективная ионизирующая способность плутония-239 наблюдается на расстоянии до 40 мм от поверхности источника излучения, а прометия-147— до 400 мм. [c.175]

    В книге обобщен оригинальный материал по физическим, физико-химическим, реологи смм и другим свойствам битумов, приведены теоретические сведения по реакциям совместимости битумов, подробно освещено действие ионизирующих излучений и микроорганизмов на битумные материалы, описаны основы использования битумов как конструкционных материалов (взаимодействие с наполнителями, модификаторами и др.). Приведены также практические сведения по использованию битумных покрытий. [c.4]

    Расщепление атома урана было практически осуществлено Энрико фермл 2 декабря 1942 г. в США. В процессе развития ядерной "Технологии было1у хансв но, длительное облучение действует разрушающе на большинство известных органических материалов. Поэтому возникла необходимость в исследовании эксплуатационных свойств таких материалов, как пластмассы, покрытия и битумы в зоне ионизирующего излучения и способности их противостоять его воздействию. С этой целью необходимо было испытать ряд битумных материалов и установить возможность их использования в качестве экономичной защиты емкостей для жидких радиоактивных отходов [c.154]

    Источниками соответствующей информации являются литература и документы, находящиеся в фондах Окриджской национальной лаборатории (штат Теннесси, США), а главным образом — экспериментальные данные, полученные Хойбергом и Уотсоном [1, 21. Весьма небольшая часть указанных работ относится непосредственно к влиянию излучения на основную химическую структуру битумсв. Первоначально эти данные нссили эмпирический характер и указывали на изменения физических и технических свойств битумсв под действием излучения. Первые сведения были получены в результате работы, субсидированной правительством США. Весьма вероятно, что у промышленных фирм имеются дополнительные сведения. Однако о влиянии ионизирующего излучения на битумы известно еще весьма недостаточно. [c.154]

    При хранении и эксплуатации полимеров, полимерных материалов и изделий постепенно ухудшаются их физико-мехаии-ческие свойства. Такое необратимое изменение свойств во времени называется старением. Основной причиной старения полпмеров является действие кислорода воздуха. Кислород наряду с различными активирующими факторами (свет, тепло, ионизирующие излучения и др.) вызывает в полимерах сложные процессы, в том числе реакции окисления, деструкции, струк-Т фирог ания и т. п. Особенно велика роль процессов окисления при старении эластомеров, так как в состав их макромолекул обычно входят реакциоиносиособные двойные связи и сс-метиленовые группы. С целью предотвращения вредного влияния кислорода в каучуки, как и вообще в полимеры, вводят различные добавки стабилизаторов — ингибиторов окисления. [c.28]

    Радиоактивное излучение обладает способностью ионизировать окружающий воздух. Это свойство можно показать на простом приборе. К металлическому стержню, укрепленному на изолирующей подставке, прикреплены тонкие полоски бумаги в виде султана. Если наэлектризовать эбонитовую палочку трением и зарядить металлический стержень, бумажки, с ним скрепленные, разойдутся в разные стороны из-за взаимного отталкивания, так сказать, встанут дыбом. Под-несем к султану радиоактивное вещество, например эмаль, содержащую Р-излучатель — изотоп прометия б1 Рт. Султан быстро опадает, бумажки перестают отталкиваться друг от друга и от стержня. При повторении опыта происходит все то же самое. [c.218]

    И. Г. Половченко [1] предложил радиометрический метод для контроля качества материала доменной шихты. Исследования, проведенные им на заводе им. Ф. Э. Дзержинского, преследовали цель непрерывного контроля движения шихтовых материалов в шахте доменной печи с помощью радиоактивных индикаторов. Для этого были необходимы сведения о свойстве шихтовых материалов, которые в то время отсутствовали. Характеристики ослабления потока у-квантов снимали в слое шихты на различном расстоянии между источником у-излучения (Со ° активностью от 9 до 280 мКи) и детектором (галогенным счетчиком типа СТС-5). В частности, получены характеристики и для кокса. Удаление из кокса фракции >80 мм резко изменяло ослабление и сокращало расстояние, при котором наступало значительное ослабление потока ионизирующего излучения. Для кокса без фракции ниже 40 мм ослабление снижалось еще более значительно. На основании проведенных исследований И. Г. Половченко приходит к выводу, что коэффициент ослабления весьма чувствителен к изменению ситового состава. [c.65]

    К. В. Чмутов и др. [269] изучили действие ионизирующего излучения потока ускоренных электронов на анионообменные смолы (АВ-17, АВ-18 и АВ-27). Доза облучения смол, производимого в 7 н. ННОз, колеба-цась в пределах 0,05-10 —1,5-эе/г [(0,03- -0,94) X Х10 рад]. Авторы считают, что при облучении этих смол, представляющих собой сополимеры стирола с дивинилбензолом с различными ионообменными группами, происходит разрыв связи С — N и вследствие этого отрыв ионообменных групп. Легче всего отрывается чет-вертично аммониевая группа —Ы(СНз)з у анионита АВ-17. На основании результатов экспериментов авторы приходят к выводу, что при облучении дозой до 2-1023 30 2 (1,25-10 рад) в этой среде наиболее стоек анионит АВ-18, так как значительных изменений его ионообменных свойств не наблюдалось. [c.197]


Смотреть страницы где упоминается термин Излучения ионизирующие свойства: [c.355]    [c.87]    [c.11]    [c.186]   
Основы техники безопасности и противопожарной техники в химической промышленности Издание 2 (1966) -- [ c.93 ]




ПОИСК





Смотрите так же термины и статьи:

Излучение свойства

Излучения ионизирующи

Ионизирующие излучения



© 2025 chem21.info Реклама на сайте