Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поглощение видимого и УФ-излучений органическими соединениями

    Поглощение видимого и УФ-излучений органическими соединениями [c.139]

    В фотометрическом анализе используют поглощение электромагнитного излучения в УФ-, видимой и ИК-областях спектра. Наибольшее распространение получили фотометрические методы анализа, основанные на поглощении в видимой области спектра, т. е. в интервале длин волн 400—780 нм. Это объясняется возможностью получения множества интенсивно окрашенных органических и неорганических соединений, пригодных для их фотометрического определения в видимой области спектра с помощью достаточно несложных и относительно недорогих приборов. [c.53]


    Для исследования органических соединений используются различные области электромагнитного спектра Излучение, соответствующее ультрафиолетовой и видимой областям спектра(1000—8000° А), вызывает переходы внешних, валентных, электронов на более высокие энергетические уровни, а также изменение колебательной и вращательной энергии молекул. Поэтому ультрафиолетовые и видимые спектры молекул состоят из широких полос поглощения. Положение полос поглощения, их форма и интенсивность определяются строением молекулы (наличие кратных связей, функциональных групп). В ряде случаев УФ и видимые спектры бывают настолько характерны, что могут служить для идентификации соединений. Многие полосы поглощения в УФ и видимых спектрах имеют очень высокую интенсивность, что позволяет работать с очень малыми количествами веществ. Количественная зависимость между интенсивностью поглощения и концентрацией веществ позволяет применять УФ и видимые спектры в количественном анализе. [c.213]

    Область 4000—8000 А—видимая область. В качестве материала оптики используется стекло (кварц также прозрачен в этой области, но имеет меньшую дисперсию). В качестве источника излучения применяется вольфрамовая лампа, приемником излучения служит фотоэлемент. Обычно измерение спектров поглощения органических соединений в пределах 1850—10 000 А (в средней ультрафиолетовой и видимой областях) проводится на одном приборе, снабженном кварцевой оптикой, сменными источниками и приемниками излучения. [c.10]

    Поглощение в ИК-области является результатом переходов между колебательными энергетическими уровнями молекул. В частности, это поглощение обусловлено исключительно обертонами и комбинациями колебаний атомов водорода. Полосы могут наблюдаться для С-Н, N-H, О-Н и других функциональных групп, содержащих водород. Полосы поглощения в ближней ИК-и ИК-областях на несколько порядков слабее, чем полосы в ультрафиолетовой и видимой областях таким образом, ближняя ИК- и ИК-области слабо подходят для целей следового анализа. Полосы в этих областях относительно узкие и являются достаточно характерными для функциональных групп, поглощающих падающее излучение. В результате при анализе смесей органических соединений измерение поглощения в этих диапазонах длин волн дает существенно большую селективность, чем в УФ- и видимой областях. Приборы для ближней ИК-области со встроенным фильтром широко используются в промышленном анализе. [c.657]


    Особым случаем флуоресценции является флуоресценция пигментов под действием дневного света Такие пигменты вводятся в дневные флуоресцентные краски, обладающие исключительно ярким цветом Они способны не только отражать часть падающего света, но и превращать поглощенную часть в видимое излучение В качестве дневных флуоресцентных пигментов применяют органические соединения, обладающие способностью превращать ультрафиолетовое и коротковолновое излучение в длинноволновое [c.351]

    Общие соображения.. Газообразный кислород лишь незначительно поглощает в близкой ультрафиолетовой и видимой областях спектра область его интенсивного поглощения расположена ниже 2000 А. За исключением насыщенных алифатических углеводородов, почти все органические молекулы поглощают при более длинных волнах, и, следовательно, в смеси кислорода с органическим соединением излучение поглощает в основном органическое соединение. [c.276]

    Поглощение органическими соединениями электромагнитного излучения в ультрафиолетовой и видимой областях света обусловлено электронными переходами между занятыми и вакантными молекулярными орбиталями (МО). Флуоресцентное излучение вызвано обратными электронными переходами [c.204]

    Органические соединения поглощают электромагнитное излучение при определенных длинах волн эти длины волн и интенсивность поглощения могут дать ценную структурную информацию. Поглощение в инфракрасной (ИК) области (разд. 3.9) дает информацию о функциональных группах, входящих в состав молекулы, тогда как поглощение в ультрафиолетовой (УФ) и видимой областях дает информацию о степени сопряжения. [c.67]

    В настоящее время под УФ-спектроскопией часто подразумевается изучение не только собственно ультрафиолетовой, но также и видимой части спектра. Однако сходство в процессах, происходящих при поглощении видимого и ультрафиолетового излучения, и в первую очередь сходство их химического действия было обнаружено не сразу, а общая для них методика изучения стала разрабатываться уже после того, как обе эти области исследовались в течение многих десятилетий раздольно. Естественно, что изучение видимого спектра началось раньше, и оно представляло значительно больший интерес для химиков, так как было тесно связано с проблемой цветности химических соединений, а во второй половине XIX в. и с практическими запросами со стороны химии красителей. Вот почему мы считаем целесообразным выделить первоначальную историю изучения видимой части спектра органических соединений в отдельный параграф, тем более, что при этом предоставится возможность также привести необходимые сведения и но общей истории спектроскопии. [c.225]

    Явление фотохромизма обычно отождествляют с обратимым изменением цвета вещества под действием света. Фотохромный процесс — это частный случай фотохимических реакций и фотофизических превращений, основной особенностью которого является обратимость. Прямой фотохромный процесс происходит под действием света на вещество А, которое имеет меньший запас внутренней энергии, чем конечный продукт В. Обратная реакция В->-А может происходить как при поглощении света, так и спонтанно с излучением фотона или выделением тепла. Фотохромными свойствами обладает широкий круг органических соединений в различных агрегатных состояниях, а также неорганические кристаллы и стекла. Как правило, прямой процесс происходит под действием УФ- или видимого света изменения спектра поглощения могут происходить в УФ-, видимой и ИК-области спектра. [c.190]

    Для исследования органических соединений применяются инфракрасная (ИК), ультрафиолетовая (УФ) и видимая области спектра и область радиоволн. Спектры поглощения в ИК-, видимой и УФ-областях называются оптическими спектрами поглощения, так как в них используется оптический метод разложения излучения для получения монохроматического света с помощью призм и дифракционных решеток. Принципиальная блок-схема прибора для регистрации оптических спектров дана на рисунке 26. [c.34]

    В органических соединениях при поглощении ультрафиолетового и видимого излучения происходит возбуждение валентных электронов одинарных и кратных связей (а- и я-электронов) и электронов неподеленных пар гетероатомов (а-электронов). Энергия различных типов электронов представлена на рисунке 31. [c.45]

    Красителями называются органические соединения, обладающие способностью интенсивно поглощать и преобразовывать энергию электромагнитных излучений (световую энергию) в видимой и ближних ультрафиолетовой и инфракрасной областях спектра и применяемые для придания (сообщения) этой способности другим телам. В зависимости от характера преобразования поглощенной энергии эти соединения обладают цветом (окраской), люминесценцией или способностью воздействовать на фотохимические процессы. В первом случае они применяются для окращивания различных материалов (красители в узком значении этого слова), во втором — для придания материалам люминесцентных свойств (органические люминофоры и оптические, или флуоресцентные, отбеливатели), а также в специальных устройствах, в которых используют люминесцентные материалы (активные компоненты жидкостных лазеров и модуляторы добротности лазеров), в третьем — для повышения или понижения светочувствительности фотоматериалов (оптические сенсибилизаторы и десенсибилизаторы). [c.11]


    Главные физические константы, которые определяют для органических веществ, следующие температура кипения (т. кип.), температура плавления (т.пл.), показатель преломления п) для монохроматического излучения определенной длины волны, удельный вес [d), растворимость в различных растворителях, теплота сгорания. В специальных случаях определяют вращение плоскости поляризации света (у оптически активных веществ), поглощение света в ультрафиолетовой, видимой или инфракрасной области, диэлектрическую постоянную, поверхностное натяжение, вязкость, электропроводность и т. д. Разумеется, эти свойства полезны не только для характеристики вещества они могут представлять определенный теоретический илп практический интерес как таковые (см. главу Физические свойства органических соединений ). [c.15]

    Вещества, поглощающие только в ультрафиолетовой области, для глаза человека являются бесцветными. Вещества, поглощающие в видимой области, представляются окращенными. Этого следует ожидать для органических соединений с сопряженными системами я-электронов (например, полнены) или для неорганических ионов с частично заполненными электронными уровнями (так, u I1s 2s /7 3sV ii 4s ] имеет зеленоватую окраску , u [ls 2s p 3s p d 4s ] бесцветен). Окраска неорганического соединения появляется в случае сильного поляризующего действия соседних частиц, например желтая окраска Agi . В определенной области поглощения глаз человека воспринимает цвет, являющийся только лишь дополнительным к поглощаемому световому излучению (табл. 5.14). [c.229]

    Поглощение света в видимой и ультрафиолетовой областях вызывает возбуждение электронов. Ближнее инфракрасное излучение возбуждает молекулы до высших колебательных состояний (высших частот движения молекул, изгибающих и растягивающих связи). Микроволны, энергия которых в расчете на один фотон очень мала, переводят молекулы как единое целое на высшие вращательные уровни. Электронные и колебательные спектры широко используются для характеристики органических соединений. На рис. 28.2 суммированы соотношения между поглощением света в различных спектроскопических областях и типами возбуждения молекул, вызываемого поглощением света. [c.619]

    Кроме этих явлений, люминесценция может быть возбуждена при облучении гамма-лучами, рентгеновскими лучами, электронами, альфа-частицами И вообще быстрыми частицами. Во всех случаях, однако, излучение света обусловливается возбужденной молекулой. Однако акт воздействия может быть отделен от акта люминесценции рядом промежуточных процессов, из которых можно упомянуть ионизацию, захватывание ионов и электронов и последующую рекомбинацию, приводящую к образованию возбужденных состояний. Механизм таких процессов часто представляет значительный самостоятельный интерес и может иметь большое практическое значение, например в сцинтилляционных счетчиках. Однако на этих вопросах мы не будем здесь останавливаться, поскольку им посвящены другие главы и разделы этой книги. Несмотря на сделанные замечания и на то, что в книге Физика и химия твердого состояния органических соединений (изд. Мир , 1967) имеется специальная глава, посвященная поглощению света в видимой и ультрафиолетовой областях спектра, тем не менее представляется уместным рассмотреть здесь некоторые вопросы поглощения света. Поглощение света является, несомненно, наиболее избирательным методом получения возбужденных молекул. Кроме того, этот метод наиболее часто используется, и поэтому некоторые общие замечания будут не лишними. [c.95]

    Цвет большинства объектов обусловлен входящими в них веществами, которые поглощают энергию излучения в определенных участках видимого спектра. Такие красящие вещества называют, если они нерастворимы — пигментами (красками), если растворимы — красителями. Свойство окрашивающего вещества, вследствие которого он поглощает большую или меньшую части энергии именно в данном участке видимого спектра, а не в другом, обусловлено его химическим строением. Раньше пигменты и краски добывались экстракцией из тканей животного характера (перьев определенных пород кур, некоторых моллюсков) или из растений (индиго, марена), теперь прогресс органической химии дал возможность получать эти и многие другие окрашивающие вещества синтетическим путем. Химические теории цвета получаемых соединений пытаются найти связь между избирательным поглощением падающей на них световой энергии и их химическим строением. Эти теории крайне неполны, но тем не менее имеют огромное значение в поисках и разработке химиками все более полезных окрашивающих веществ. [c.44]

    Электроны, участвующие в образовании двойной и тройной связей органических молекул, относительно легко возбуждаются под действием излучения, поэтому вещества с ненасыщенными связями обычно обладают максимумами поглощения, используемыми в анализе. Органические функциональные группы с ненасыщенными связями, поглощающие в видимой и УФ-областях, называют хромофорами. В табл. 24-1 перечислены наиболее известные хромофоры и указано примерное положение их максимумов поглощения. Данные о длине волны и интенсивности поглощения в максимуме могут служить лишь приблизительным критерием при идентификации вещества, так как на положение максимума влияют растворители и структурные особенности соединения. Более того, если два хромофора сопряжены, наблюдается сдвиг максимума, обычно в длинноволновую область. Наконец, полосы в видимой и УФ-областях, как правило, уширяются вследствие колебательных эффектов, поэтому точное определение положения максимума затруднено. [c.141]

    Электронные спектры поглощения различных органических и неорганических соединений могут лежать не только в ближней ИК, видимой и ближней УФ областях, но и в далекой УФ области, вплоть до энергий излучения, приводящих к ионизации молекул. Изучены переходы электронов валентных оболочек в молекулах, ионах и комплексах самых разных типов, для чего использовались как стандартные для химических лабораторий спектрофотометры, так и более сложные вакуумные спектрометры высокого разрешения. Для целей идентификации соединений и решения структурных проблем обычно используются характерные полосы поглощения электронных спектров в области 180...8000 нм, которые только и приводятся в большинстве справочников и руководств по абсорбционной УФ спектроскопии. Если в этой области вещество не поглощает, то его обычно называют прозрачным, хотя в далекой УФ области оно может иметь свой спектр поглощения. [c.320]

    Применение С. в УФ и видимой областях спектра основано на поглощении электромагн. излучения соединениями, содержащими хромофорные (напр., С=С, С=С, С=0) и ауксохромные (ОСН3, ОН, NHj и др.) группы (см. Цветность органических соединении). Поглощение излучения в этих областях связано с возбуждением электронов а-, к-и -орбиталей осн. состояния и переходами молекул в возбужденные состояния а -> а, и -> а, п- к и п- п (переходы перечислены в порядке уменьшения энергга, необходимой для их осуществления см. также Молекул.чрные спектры). Переходы ст -> а находятся в далекой УФ области, напр, у парафинов при 120 нм. Переходы и-> ст наблюдаются в УФ области напр., орг. соед., содержащие и-электроны, локализованные на орбиталях атомов О, N, Hal, S, имеют Яолосы поглощения при длине волны ок. 200 нм. Линии, соответствующие переходам л -> л, напр., в спектрах гетероциклич. соединений проявляются в области ок. 250-300 нм и имеют большую интенсивность. Полосы поглощения, соответствующие переходам и -> я, находятся [c.396]

    Чтобы яснее представить, почему большинство синтезируемых в биохимической лаборатории живой клетки веществ бесцветные и лишь некоторые соединения (пигменты) имеют окраску, нужно обратиться к некоторым свойствам органических соединений. Рассмотрим химические и физико-химические закономерности строения органических соединений, обусловливающих цветность вещества, т. е. оказывающих физиологическое воздействие на человеческий глаз и вызывающих зрительное восприятие первичного цвета. Электромагнитные излучения с диапазоном волн 365—750 нм (а в специальных условиях 302—950 нм) воспринимаются человеком с ощущением цвета. Цветность микробных пигментов, как и цветность любого органического соединения, зависит от неиасыщенности и поляризуемости, т. е. наличия двойных и тройных связей или же свободных радикалов. Все микробные пигменты имеют в молекуле двойные связи. Существует взаимосвязь между ненасы-щенностью соединения и поглощением света в видимой области спектра. Ненасыщенные группы с областью поглощения 180— 800 нм названы хромофорами . Введение хромофоров в бесцветные (прозрачные) соединения превращают их в вещества, поглощающие свет в видимой области, т. е. обладающие цветностью они названы хромогенами. Имеются данные о строении хромофорных радикалов. Гиллем и Штерн [64] приводят перечень следующих хромофорных групп  [c.44]

    Во второй половине XIX в. началось также изучение взаимодействия органических соединений с излучением. Хотя некоторые из спектроскопических методов исследования возникли и успели себя зарекомендовать еще в середине структурного периода, их применению препятствовала относительная сложность аппаратуры, например, по сравнению с той, которой пользовались в рефрактометрии или поляриметрии, и отсутствие сколько-нибудь удовлетворительной теории спектроскопических методов, к-оторой и не могло быть до возникновения электронннгх представлений в физике и химии. Первоначально в XIX в, получили развитие методы, основанные на поглощении веществом видимого света, ультрафиолетового и инфракрасного излучения. [c.195]

    Спектры в видимой и УФ-областях не очень четко выpa> eны и обычно имеют мало максимумов и минимумов. Поэтому их использование для характеристики органических соединений весьма ограничено. Значительный успех молекулярной спектроскопии был обусловлен открытием ИК-области спектра. Благодаря дальнейшему развити.ю термоэлементов, явившихся детекторами термоизлучения, эта область спектроскопии стала более чувствительной последнее увеличило разрешающую способность монохроматоров. Инфракрасная область простирается от красного конца видимой части спектра до области коротких электромагнитных волн. Интервал от 0,75 до 3-10- м обозначают как область близкого ИК-излу-чения, интервал от 3 до 40 10 м как область среднего, а выше этих величин волн — область далекого ИК-излучения. Поглощение в близкой и средней областях основано на совпадении частоты колебания молекул с частотой колебания волн этой области. В интервале дальнего ИК-излучения вращательное движение молекул происходит вокруг осей главного момента инерции. [c.198]

    Перед тем как изложить результаты экспериментальных работ в области флуоресценции солей уранила, по-видимому, целесообразно дать краткие замечания относительно методика измерения интенсивности медленно затухающей флуоресценции (наиболее известным лрнмером этого процесса является флуоресценция солей уранила). В случае работы с красителями или другими органическими соединениями, флуоресценция которых прекращается почти одновременно (точнее, через 10 сек) с прекращением освещения, интенсивность флуоресценции обычно измеряют при постоянном освещении. Чтобы определить выход, количество световой энергии (или число квантов), испускаемой в секунду в установившемся состоянии, сравнивают с количеством световой энергии (или числом квантов), поглощенной за тот же период времени. С другой стороны, в опытах по медленно затухающей флуоресценции или фосфоресценции (различие между этими двумя явлениями см. ниже, на стр. 184) излучение часто возбуждают вспышкой, и мгновенную интенсивность излучения измеряют по истечении различных промежутков времени, прошедшего после вспышки, после чего проводят графическое интегрирование. Кроме того, полную энергию, выделившуюся после одной вспышки, можно опреде лить с помощью того или иного интегрирующего приспособления. В этом случае выход флуоресценции часто выражается как отношение полной световой энергии, выделившейся после вспышки, к количеству световой энергии, поглощенному при вспышке. Насколько выход, определенный этим методом, идентичен (или почти идентичен) выходу при постоянном освещении, зависит от длительности вспышки tf по сравнению с действительным, а не естественным временем жизни возбужденного состояния т. Если продолжительность вспышки велика по сравнению с указанным временем жизни типичных флуоресцирующих красителей (т <10 сек, в то время как вспышка может [c.177]

    Как уже указывалось выше, поглощеаие вещества в ближнем ультрафиолете и видимой области связано с возбуждением я->я - и /г- -я -переходов. Эти переходы реализуются только в молекулах, содержащих ненасыщенные группировки. Атомную группировку (включающую хотя бы одну кратную связь), которая сообщает соединению способность к избирательному поглощению в ближнем ультрафиолете или видимой области, называют хромофором. Хромофоры разделяются на изолированные и сопряженные. К первым относят группировки с одной кратной связью, такие, как С = С, С = 0, N = N и т. п., а ко вторым — структурные элементы, представляющие собой системы сопряженных кратных связей. Соединение, содержащее сопряженный хромофор, отличается более длинноволновым и более интенсивным поглощением по сравнению с соединением, включающим те же, но изолированные кратные связи. В последнем случае спектр полифункционального соединения можно трактовать просто как результат суммирования поглощения соответствующих изолированных хромофоров. Некоторые из хромофоров (например, сопряженный хромофор С = С—С = С) обеспечивают поглощение в ближнем ультрафиолете за счет только л->л -перехода, другие (как изолированный хромофор С = О)—за счет м- -л -перехода, а третьи (например, сопряженный хромофор С = С—С = 0) — вследствие реализации как так и - -я -переходов. Атомную группировку, не содержащую кратных связей, которая сама по себе не обеспечивает соединению избирательного поглощения в ближнем ультра- фиолете, но включение которой в систему л->-я -хромофора приводит к увеличению длины волны поглощаемого излучения и увеличению интенсивности поглощения, называют аук охромом. Типичными ауксохро-мами являются ОН, ЫНг, 5Н, т. е. группы, содержащие гетероатом со свободной электронной парой. Многочисленные изолированные и сопряженные хромофоры, а также структурные элементы, представляющие собой разнообразные сочетания хромофоров и ауксохромов, обеспечивают наблюдаемое разнообразие электронных спектров органических молекул. [c.55]

    При проведении любых исследований по люминесценции очень важно правильно подобрать источник света. Следует учитывать, что только поглощенный свет может привести к люминесценции или химической реакции (закон Гротгуса —Дрепера), а поэтому источник света должен иметь сильное испускание в области сильных полос поглощения исследуемого соединения. К счастью, большинство рассматриваемых в этой главе органических соединений, особенно ароматического ряда, сильно поглощают в ультрафиолетовой области спектра. Некоторые из больших молекул, например красители, поглощают также в видимой области, но имеют еще более интенсивные полосы поглощения в ультрафиолетовой области. Вследствие этого линия испускания ртути 3650 А особенно удобна для исследований по флуоресценции и фосфоресценции. В разнообразных имеющихся в продаже лампах черного света используется стекло Вуда, черное стекло, содержащее 9% окиси никеля, которая почти полностью отрезает видимое излучение и свободно пропускает свет с длиной волны 3650 А. Для таких соединений, как бензол и нафталин, сильные полосы поглощения которых лежат ниже 3650 А, используются кварцевые лампы, пропускающие резонансную линию 2537 А. [c.81]

    Опсин, подобно другим белкам, лишенным нростетических групп, не погло-ш ает видимого света. Цвет родопсина и его чувствительность к свету определяются присутствием 11-цис-ретиналя, являюш его-ся высокоэффективным хромофором. Благодаря 11-цис-ретиналю родопсин обладает широкой полосой поглош ения в видимой области спектра с максимумом при 500 нм, что прекрасно соответствует солнечному излучению. Примечательна также интенсивность поглощения видимого света родопсином. Коэффициент экстинкции родопсина при 500 нм очень высок, а именно 4 10 см М (рис. 37.26). Суммарная сила поглощения видимого света родопсином приближается к максимальным значениям для органических соединений. Высокие хромофорные качества 11-г<г/с-ретиналя обусловлены тем, что он является поливном. Чередование в нем шести одинарных и двойных (ненасыщенных) связей создает длинную ненасыщенную систему для переноса электрона. [c.342]

    Фотохимические реакции широко применяют в препаративной органической химии и в меньшей мере - в неорганической из-за слабого поглощения неорганическими соединениями видимого света и ультрафиолетового излучения. [c.578]


Смотреть страницы где упоминается термин Поглощение видимого и УФ-излучений органическими соединениями: [c.93]    [c.734]    [c.287]    [c.290]    [c.17]    [c.51]   
Смотреть главы в:

Основы аналитической химии Часть 2 -> Поглощение видимого и УФ-излучений органическими соединениями




ПОИСК





Смотрите так же термины и статьи:

Видимость



© 2025 chem21.info Реклама на сайте