Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ван-дер Ваальса межмолекулярные

    Устойчивость дисперсных систем определяется балансом энергии притяжения и энергии отталкивания частиц. Энергия притяжения обусловлена межмолекулярными силами, главным образом силами Ван-дер-Ваальса. В первом приближении эта энергия обратно пропорциональна квадрату расстояния между частицами. По теории ДЛФО (Дерягина, Ландау, Фервея, Овербека), учитывающей только электростатическую составляющую расклинивающего давления (давления отталкивания), энергия отталкивания убывает с расстоянием по экспоненциальному закону. [c.161]


    Взаимодействия атомов и молекул с поверхностями твердых тел в рамках молекулярных моделей принято подразделять на два типа. Взаимодействие типа физической адсорбции имеет место, когда молекула удерживается у поверхности силами Ван-дер-Ваальса, т. е. не происходит перераспределения электрического заряда в системе. Полуэмпирический подход к расчету взаимодействий адсорбент—адсорбат основан на методе атом-атомных потенциалов, согласно которому энергия межмолекулярного взаимодействия представляется в виде суммы энергий парных взаимодействий атомов, а параметры атом-атомных потенциалов определяют исходя из опытных данных. Другой тип взаимодействия атомов и молекул с поверхностями твердых тел представляет хемосорбция. В этом случае происходит перераспределение заряда в системе и образуется химическая связь между поверхностью и субстратом. Хемосорбция представляет наибольший интерес с точки зрения гетерогенного катализа, поскольку катализ имеет донорно-акцепторный механизм [2]. [c.61]

    Природа сил межмолекулярного взаимодействия в растворах углеводородов. Согласно современным представлениям о межмо — лекулярном взаимодействии, в растворах диэлектриков (в частности, в растворах углеводородов) действуют силы Ван-дер-Ваальса (трех типов) и водородные связи. [c.214]

    В веществах с молекулярной структурой проявляется межмолекулярное взаимодействие. Силы межмолекулярного взаимодействия, называемые также силами Ван-дер-Ваальса, слабее сил, приводящих к образованию ковалентной связи, ио проявляются они на больших расстояниях, В их основе лежит-электростатическое взаимодействие молекулярных диполей. [c.71]

    Межмолекулярное взаимодействие. При изучении свойств различных веществ наряду с внутримолекулярными взаимодействиями, обусловленными действием валентных (химических) сил и характеризующимися насыщенностью, большими энергетическими- эффектами и специфичностью, следует учитывать и взаимодействие между молекулами вещества. При расширении газов, конденсации, адсорбции, растворении и во многих других процессах проявляется действие именно этих сил. Межмолекулярные силы часто называют силами Ван-дер-Ваальса (в честь ученого, который предложил уравнение состояния газа, учитывающее межмолекулярное взаимодействие). [c.135]

    Три типа сил Ван-дер-Ваальса, обусловливающие притяжение между молекулами, являются дальнодействующими. Энергия притяжения уменьшается с расстоянием медленно, пропорционально третьей — шестой степени расстояния. На коротких расстояниях заметными становятся силы отталкивания, которые называют короткодействующими. Энергия межмолекулярного взаимодействия слагается из энергии притяжения и р и отталкивания Уотт. [c.237]


    Валентно насыщенные газовые молекулы (КНд, СО2,1, или атомы инертных газов) взаимодействуют между собой. Это проявляется хотя бы в том, что при их сближении в результате повышения давления и при снижении их скорости в результате понижения температуры все газы переходят в конденсированное состояние жидкое или твердое. При умеренных давлениях взаимное притяжение молекул сказывается также в повышенной сжимаемости газов по сравнению с рассчитанной по уравнению идеальных газов. Об отталкивании молекул свидетельствует то, что, начиная с определенного предела при очень высоких давлениях, сжимаемость газов становится меньше рассчитанной по уравнению идеальных газов. Поскольку первое уравнение состояния газов, учитывающее эти факты, было предложено голландским физи-ко-химиком Ван-дер-Ваальсом, межмолекулярным силам было присвоено его имя. [c.275]

    В зависимости от механизма сорбции — молекулярная и хемосорбционная хроматографии. В молекулярной хроматографии природа сил взаимодействия между неподвижной фазой (сорбентом) и компонентами разделяемой смеси — межмолекулярные силы типа сил Ван-дер-Ваальса. К хемо-сорбционной хроматографии относят ионообменную, осадочную, комплексообразовательную (или лигандообменную), окислительно-восстановительную. Причиной сорбции в хемосорбционной хроматографии являются соответствующие химические реакции. [c.320]

    Силы сцепления, действующие между одиночными молекулами и приводящие вначале к образованию молекулярной жидкости, а затем молекулярных кристаллов, получили название межмолекулярных сил или сил Ван-дер-Ваальса. Межмолекулярное [c.97]

    Таким образом, межмолекулярное взаимодействие обусловлено силами Ван-дер-Ваальса и водородной связью, причем в водородной связи существенную роль играет и донорно-акцепторное взаимодействие. [c.45]

    По Ван-дер-Ваальсу (1873 г.), в реальных газах, в отличие от идеальных, возникают силы межмолекулярного взаимодействия и молекулы обладают определенным объемом (т. е. не рассматриваются только как материальные точки). Уравнение Ван-дер-Ваальса для 1 моль реального газа  [c.132]

    Молекулы веществ, находящиеся в твердом, жидком и газообразном состоянии, взаимодействуют друг с другом с разными по энергии силами — силы Ван-дер-Ваальса, водородная связь, химическая связь и др. Такое взаимодействие определяет конденсированное состояние вещества. Эти силы приводят к появлению в жидкостях и газах сольватов и ассоциатов, обусловливают диссоциацию молекул и других частиц в любых агрегатных состояниях вещества, они же характеризуют появление структуры (полиэдры, ансамбли полиэдров или кластеры) в веществе в разных его агрегатных состояниях, определяя аморфную или кристаллическую структуру. Межмолекулярное взаимодействие частиц в системе приводит к отклонению их свойств от идеальных. Такие системы называют неидеальными или реальными. Свойства индивидуальных реальных систем (веществ в чистом виде) могут быть рассчитаны с помощью уравнений состояния вещества. Этих уравнений в литературе приведено несколько сотен. Свойства же смесей расчету пй уравнениям состоянию не поддаются. Это определяется сложностью изменения свойств смесей с изменением их состава. [c.220]

    Поскольку прямоугольная потенциальная яма содержит много качественных характеристик, присущих реальным межмолекулярным силам, необходимо выяснить, каким образом он предсказывает вириальные коэффициенты. На фиг. 4.4 показаны зависимости В(Т) и С Т) для двух значений параметра . Эти зависимости приведены к безразмерному виду с помощью температуры Бойля Т и молекулярного объема Ван-дер-Ваальса [c.183]

    Приводимые ниже данные относятся только к растворимости парафина, находящегося в крупнокристаллическом состоянии. Вследствие неоднородности парафина и множества входящих в его состав компонентов понятие о его растворимости является до некоторой степени относительным, поскольку насыщенный раствор наиболее высокоплавких парафинов будет ненасыщенным для находящихся в растворе легкоплавких компонентов.. Кроме того, легкоплавкие компоненты парафина являются растворителем по отношению к высокоплавким компонентам. Растворимость объясняется [41,42] взаимным притяжением молекул растворителя и растворяемого вещества. Современная молекулярная теория растворов базируется на том, что свойства растворов определяются в основном межмолекулярным взаимодействием, относительными размерами, формой молекул компонентов и их стремлением к смешению, которое сопровождается ростом энтропии [43]. Притяжение между молекулами органических соединений создается силами Ван-дер-Ваальса и водородными связями. Силы Ван-дер-Ваальса слагаются из следующих трех составляющих. [c.69]

    Описанная структура полимера ведет себя подобно коагуляционной структуре. Сходство в поведении этих структур заключается в том, что для них характерны химические связи внутри частиц и на порядок меньше межчастичные взаимодействия. С увеличением полярности макромолекул уменьшается их гибкость, а для межмолекулярных взаимодействий становятся характерными все три типа сил Ван-дер-Ваальса. Наличие таких функциональных групп, как 0Н, —СООН, —ЫНг, обусловливает возникновение более прочных водородных связей. С ростом межмолекулярного притяжения полимер превращается в более твердое, менее эластичное и даже хрупкое вещество, теряющее плавкость и растворимость. Полимеры с химическими связями между макромолекулам (пространственные) нерастворимы и неплавки при нагревании. По свойствам они соответствуют конденсационным структурам. [c.391]


    Более глубокое понимание зависимости средней силы межмолекулярного взаимодействия от температуры может быть достигнута на основании уравнения состояния Ван-дер-Ваальса. После дифференцирования уравнения (12) и подстановки получаем  [c.23]

    Низкотемпературные агрегативные комбинации наблюдаются при низких температурах, когда преимущественно на физическом уровне взаимодействуют надмолекулярные структуры, включающие парафиновые и асфальтеновые фрагменты. При понижении температуры межмолекулярные взаимодействия обусловлены силами Ван-дер-Ваальса. Формируются обратимые низкотемпературные комбинации высокомолекулярных соединений нефти — парафиновых, ароматических углеводородов, смол, асфальтенов. [c.52]

    Ван-дер-ваальсов радиус атома проявляется при межмолекулярном взаимодействии (см. разд. 29.3). [c.492]

    В молекулярных кристаллах (рис. 1.9, г) присутствуют молекулы, связь между которыми осуществляется силами межмолекулярного взаимодействия, называемыми силами Ван-дер-Ваальса (см. разд. 1.10). Силы эти гораздо слабее сил, рассмотренных ранее, и энергия связи в решетке молекулярного типа составляет всего лишь 8—12 кДж/моль. Тела с такой структурой обычно очень мягкие, обладают низкой температурой плавления, высокой летучестью, низкими тепло- и электропроводностями, а также хорошей растворимостью, особенно в родственных растворителях. В качестве представителей веществ, образующих кристаллы молекулярного типа, можно назвать диоксид углерода, аргон и большинство органических соединений. [c.37]

    Как известно, приложения соотношений термодинамики к идеальным системам наиболее просты. Отклонения от идеальных соотношений обусловлены проявлением межмолекулярного взаимодействия, которое тем интенсивнее, чем больше концентрация растворенного вещества (если речь идет о растворах). При этом важно отметить, что для растворов неэлектролитов межмолекулярное взаимодействие обусловлено действием сил поляризационного происхождения или связанных с ними слабых сил Ван-дер-Ваальса, которые заметно проявляются лишь при значительных концентрациях. Однако в растворах электролитов электростатические взаимодействия зарядов свободных ионов заметно проявляются уже при самых крайних разбавлениях. [c.381]

    Однако чисто термодинамическое рассмотрение не в состоянии уточнить вид этой функции. Для этого необходимо обратиться к экспериментальным данным или к теоретическому рассмотрению межмолекулярных взаимодействий, что и было сделано в гл. I на примере модели Ван-дер-Ваальса. [c.28]

    Устойчивость и коагуляция связаны непосредственно с взаимодействием частиц дисперсной фазы между собой или с какими-либо макроповерхностями. Это взаимодействие также определяет адгезию частиц к макроповерхностям и структурообразование в дисперсных системах. Поэтому в основе любой теории устойчивости лежит соотношение между силами притяжения и отталкивания частиц. Существует единое мнение в отношении природы сил притяжения, которые обусловлены межмолекулярными силами Ван-дер-Ваальса. Силы же отталкивания между частицами могут иметь разную природу, соответствующую факторам устойчивости. Предложено несколько теорий, объясняющих те или иные экспериментальные факты с различных позиций (Дюкло, Фрейндлих, Мюллер, Рабинович, Оствальд и др.). Однако все эти теории были односторонними, они не учитывали и не объясняли многие факты. Создание общей количественной теории устойчивости дисперсных систем оказалось крайне трудной задачей. [c.325]

    Растворы можно различать по агрегатному состоянию — твердые, жидкие и даже говорят о газообразных растворах, имея в виду газовые смеси. Последним, точнее идеально-газовым смесям, было уделено некоторое внимание в гл, V в связи с химическим равновесием. О твердых растворах, являющихся предметом изучения, главным образом физики твердого тела и металловедения, будет более подробно упомянуто в следующей главе. В этой же главе будут обсуждаться лишь жидкие растворы — системы, весьма разнообразные по своей природе и характеру межмолекулярного взаимодействия. Так, при растворении серной кислоты в воде наблюдается выделение большого количества теплоты, отмечается образование ряда гидратов определенного состава. Отчасти на основании этих наблюдений Д. И. Менделеев развивал свою химическую теорию растворов. Несомненно, что силы, действующие в упомянутых гидратах серной кислоты, приближаются по св ему характеру к силам химической связи. В качестве другого крайнего случая можно указать на растворы веществ типа аргона и неона (илн других элементов нулевой группы), когда проявляется действие сил только физической природы — относительно слабых сил Ван-дер-Ваальса. [c.262]

    При переходе вниз по группе температуры и энтальпии плавления и кипения простых веществ возрастают, что объясняется усилением межмолекулярных взаимодействий (силы Ван-дер-Ваальса) в структурах кристаллической и жидкой фаз при увеличении массы и размера атома. Энтропии плавления благородных газов почти не изменяются, но энтропии испарения (при температуре кипения) возрастают при переходе вниз по группе, что также свидетельствует об усилении межмолекулярных взаимодействий. [c.13]

    МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ — взаимодействие двух элек-тронейтральных молекул, вызываемое силами притяжения или отталкивания. Межмолекулярные силы притяжения, называемые иногда силами Ван дер Ваальса, много слабее валентных сил, но именно М. в. обусловливает откло нения от законов идеальных газов, переходы от газообразного состояния к жидкому, существование молекулярных кристаллов, явления переноса (диффузия, вязкость, теплопроводность), тушение люминесценции, уширение спектральных линий, адсорбции и др. М. в. всегда представляет собой первую стадию элементарного акта химической бимолекулярной реакции. При больших расстояниях между молекулами, когда их электронные оболочки не перекрываются, преобладают силы притяжения при малых расстояниях преобладают силы отталкивания. Короткодействующие силы имеют ту же природу, что и силы химической (валентной) связи и возникают при условии, когда электронные оболочки молекул сильно перекрываются. Частным случаем М. в. является водородная связь. М. в. определяет агрегатное состояние вещества и некоторые физические свойства соединений. [c.157]

    Чтобы понять характер взаимодействия между частицами, следует остановиться на типах связи, которая может возникать между частицами. Тип связи между частицами вещества в жид ком состоянии в зависимости от энергии связи может изменяться в очень широких пределах — от межмолекулярных сил (сил Ван-дер-Ваальса) до истинно химической связи. [c.72]

    Молекулы смолы связаны в очень длинные цепочки, илп нити (макромолекулы), ирочнымп химическими связями, которые действуют только вдоль цепочек. В то же время такая цепочка смолы во многих местах по своей длине взаимодействует с соседними цепочками. Это взаимодействие заключается в том, что между углеродными атомами близко расположенных питевтщиых молекул смолы действуют сравнительно слабые физические связи, так называемые силы Вап-дер-ваальса (межмолекулярные силы притяжения). Радиус действия зтих сил очень ограничен п они проявляются только при близком расположении пли даже соприкосновении соседних нитевидных молекул. [c.132]

    Силы межмолекулярного взаимодействия, называемые также силами Ван-дер-Ваальса, слабее кокалентпых сил, ио пр011вляются па OojihiijHx расстояниях. В основе нх лежит электростатическое взаимодействие диполей, ио в различных веществах механизм воз никновения диполей различен. [c.157]

    Многие молекулы, например Н , N3, О2 и 2, образуют молекулярные кристаллы,, потому что все валентные орбитали входящих в них атомов использованы для построения внутримолекулярных связей либо заняты несвязывающими электронами. Вследствие этого межмолекулярные связи, удерживающие молекулы вместе в кристаллах, оказываются намного слабее, чем внутримолекулярные связи в отдельных молекулах. Слабые силы, обусловливающие межмолекулярную связь, называются вандерваальсовыми силами по имени впервые изучавщего их голландского ученого Я. Ван-дер-Ваальса. [c.611]

    Рассмотрим зависимость от расстояния энергии притяжения частиц — молекуляриой составляющей расклинивающего давлс ния. Из сил Ван-дер-Ваальса наиболее универсальными и существенными силами притяжения являются лондоновские силы дисперсионного взаимодействия. Как уже отмечалось, дисперсионное взаимодействие слабо экранируется, и поэтому взаимодействие между частицами легко определить суммированием взаимодействий между молекулами или атомами в обеих частицах, например, с помощью интегрирования. Такой приближенный расчет в предположении аддитивности межмолекулярных (межатомных) взаимодействий был проведен де Буром и Гамакером. Для вывода уравнения энергии молекулярного притяжения между частицами воспользуемся уравнением энергии притяжения одной молекулы (атома) к поверхности адсорбента (в данном случае частицы), приведенном в разд. III. А, посвященном адсорбции (111.6)  [c.328]

    Ван-дер-ваальсовы молекулы. Поскольку энергия межмолекулярного взаимодействия во многих случаях не превышает 1000— 2000 Дж/моль, соединения за счет сил Ван-дер-Ваальса обычно не образуются. Этому препятствует тепловое движение 1/ . кТ). Однако при низких температурах, если /о кТ, удается обнаружить комплексы, такие, как гидраты благородных газов, частицы типа Аг2, Хез, АгНС1, АгЫг и др. Такие молекулы, образовавшиеся за счет ван-дер-ваальсового взаимодействия, называют ван-дер-вааль-совыми. Для них характерны большие равновесные расстояния и очень малые энергии связи. В принципе ван-дер-ваальсово соединение могут образовывать любые две молекулы, если Уд кТ. [c.136]

    Однако й ypaBHeHHe состояния Ван-дер-Ваальса ни для какого вещества не является точным, так как межмолекулярные силы не подчиняются такому простому закону, который Ван-дер-Ваальс положил в основу своего уравнения. [c.71]

    Свойства веществ обусловливаются не только внутримолекулярными, но и межмолекулярными взаимодействиями. Межмолекулярные взаимодействия проявляются в процессах конденсации, растворения, сжатия реальных газов и т. д. и называются силами Ван-дер-Ваальса. Они отличаются от химических сил взаимодействия тем, что имеют электрическую природу, проявляются на значительно больших расстояниях, характеризуются небольшими энергиями (10—20 Дж/моль), а также отсутствием насыщаемости и специфичности. Энергия химических сил в 7—10 раз больше межмолекулярных. Как показывают квантово-механические расчеты, энергия ван-дер-ваальсова взаимодействия слагается из электростатической, индукционной и дисперсионной энергией. [c.235]

    Между, молекулами как однородных, так и разнородных веществ существует взаимодействие. Это подтверждается существованием веществ в твердом, жидком и газообразном состоянии, изменением температуры газа при его расширении и сжатии, процессами конденсации и адсорбции, изменением объема при растворении твердых и жидких тел и т. п. Энергия межмолекулярного взаимодействия меньше энергии химического взаимодействия. Если при образовании моля жидкой воды из водорода и кислорода выделяется 286 кдж теплоты, то для перевода моля жидкой воды в парообразное состояние при 25° С требуется всего 44 кдж. Межмолекулярное взаимодействие называется ван-дер-ваальсовым взаимодействием, а силы межмолекулярного взаимодействия — силами Ван-дер-Ваальса, [c.75]

    Аддукты такого вида получаются также при таком плотном контакте твердых тел, при котором возникают ван-дер-ваальсов-ские связи, а также твердых и жидких тел. Следует заметить, что молекулярный контакт может в той или иной мере иметь место и при простом соприкосновении твердых тел. Но обычно площадь его крайне мала из-за неровностей поверхности твердых тел и разделения их прослойками сорбированного газа или жидкости, поэтому аддуктообразование при контакте твердых тел наблюдается только при определенных условиях, при которых плотность межмолекулярных связей, образующихся при их контакте, достаточно велика. Главные из этих условий — тесное сближение и удаление с поверхности контактирующих твердых тел мешающих примесей. Даже не очень сильное нагревание в вакууме позволяет прочно связывать твердые тела, плотно примыкающие друг к другу Плоскими чистыми поверхностями. На этом основан известный метод диффузионной сварки, в процессе которой совершается, однако, переход от молекулярного к атомному соединению (см. гл. IV). [c.37]

    Классификация по межфазному взаимодействию. На границе раздела фаз всегда проявляется взаимодействие между веществами дисперсной фазы и дисперсионной среды за счет межфазной свободной энергии (нескомпенсированных сил Ван-дер-Ваальса), но степень его проявления у различных веществ различна. В зависимости от этого дисперсные системы могут быть лиофильными (1уо — растворяю рЬ11ео — люблю) или лиофобными (рЬоЬоз — страх). Для первых характерно сильное межмолекулярное взаимодействие вещества дисперсной фазы со средой, а для второй — слабое. Это взаимодействие приводит к образованию сольватных (гидратных, если средой является вода) оболочек вокруг частиц дисперсной фазы. [c.72]

    Влияние полярности НЖФ на селективность и порядок разделения компонентов обусловлено соотношением вклада сил межмолекулярного взаимодействия сорбата с НЖФ в общую энергию этого вза-кмодействия. Межмолекулярные силы (когезионные силы Бан-дер-Ваальса) имеют электростатическую природу. Они подразделяются на ориентационные, индукционные и дисперсионные. [c.192]

    Осуществление анализа фазовых равновесий на строго термодинамической основе возможно двумя методами. Один из них— аналитический — использует дифференциальные уравнения типа уравнения Ван-дер-Ваальса — Сторонкина, а другой — геометрический — дает картину фазовых соотношений с помощью кривых концентрационной зависимости изобарно-изотермического потенциала. Оба метода, будучи в принципе абсолютно строгими, не позволяют рассматривать конкретные системы, так как дают только качественную картину фазовых соотношений. Для перехода к численным решениям требуется привлечь модельные представления о характере межмолекулярного взаимодействия в растворах, позволяющие получить конкретную форму выражения термодинамических функций, чтобы определить соотношения между параметрами состояния рассматриваемой системы. [c.326]


Смотреть страницы где упоминается термин Ван-дер Ваальса межмолекулярные: [c.102]    [c.256]    [c.297]    [c.89]    [c.115]    [c.164]    [c.30]    [c.37]    [c.70]    [c.48]    [c.107]   
Учебник общей химии (1981) -- [ c.83 , c.87 ]




ПОИСК





Смотрите так же термины и статьи:

Ван-дер-Ваальса

Ван-дер-Ваальса силы Межмолекулярное притяжение

Ван-дер-Ваальса силы межмолекулярные

Межмолекулярное притяжение. Вандер-Ваальса силы

Межмолекулярные

Межмолекулярные взаимодействия. Силы Ван-дер-Ваальса. Водородная связь



© 2025 chem21.info Реклама на сайте