Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Силы межмолекулярного притяжения

    Химическое строение звеньев макромолекулярных цепей влияет на величину сил межмолекулярного взаимодействия. Полимеры, принадлежащие к группе алифатических углеводородов, не имеют полярных групп, поэтому в них связь между отдельными макромолекулами является только результатом действия дисперсионных сил. Дисперсионные силы межмолекулярного притяжения возникают вследствие поляризации молекул под влиянием непрерывного изменения взаимного положения электронов и ядер в каждом атоме, входящем в состав макромолекулы. Величина дисперсионных сил сравнительно мало зависит от температуры, но резко возрастает с уменьшением расстояния между макромолекулами. Силу межмолекулярного взаимодействия характеризуют величиной энергии когезии. Энергией когезии называют энергию, которую необходимо затратить для удаления молекулы из твердого или жидкого тела. Величина энергии когезии приблизительно равна теплоте испарения при постоянном объеме. Для полимеров аморфной и неполярной структуры величина молярной энергии когезии, отнесенной к отрезку [c.27]


    Плавление наступает тогда, когда эффективное поперечное сечение, приходящееся на одну цепь, становится больше,-чем это допускается силами межмолекулярного притяжения, скрепляющими кристалл. [c.230]

    Для производства ХВ могут использоваться только полимеры, состоящие из гибких макромолекул линейной или слабо разветвленной формы, с высокой молекулярной когезией, обеспечивающей прочное сцепление макромолекул под воздействием сил межмолекулярного притяжения, молекулярной массой в пределах 10-10 —10 и достаточно узким молекулярно-массовым распределением. [c.410]

    При отрыве молекул с большим запасом энергии с поверхности общая энергия испаряющейся жидкости перераспределяется уходящие в окружающее газовое пространство быстрые молекулы, преодолевая силы межмолекулярного притяжения, часть энергии расходуют на совершение работы отрыва, в результате чего энергия остающихся еще молекул в жидкости убывает й жидкость постепенно охлаждается. Для того чтобы процесс испарения протекал при Г=1<1ет, необходимо 98 [c.98]

    Имеют ли отношение силы межмолекулярного притяжения к другим свойствам жидкостей, таким, как вязкость или температура затвердевания Поищите в справочниках и расположите пентан, октан и декан в порядке увеличения вязкости. Учитель проверит ваши данные. [c.184]

    Для линейных полимеров довольно характерна представленная на рис. 214 зависимость прочности на разрыв от степени полимеризации Р. При малых Р прочность мала, но быстро возрастает при увеличении степени полимеризации от 100 до 300 и, начиная с Р, равного 400, остается почти постоянной. Это объясняется тем, что при малой величине молекул полимера для разрыва его приходится преодолевать только сравнительно слабые силы межмолекулярного притяжения (молекулы скользят одна вдоль другой, а при боль, шей длине цепей, вследствие рассмотренных выше особенностей [c.588]

    Силы межмолекулярного притяжения по своим абсолютным значениям являются весьма существенными и достигают максимума на расстояниях между частицами значительно меньщих по сравнению с их размерами. С увеличением размеров частиц на соответствующих им расстояниях силы межмолекулярного притяжения несколько уменьшаются. [c.40]

    Элементарный акт коагуляции в дисперсной системе происходит вследствие взаимодействия частиц в ближнем или дальнем минимуме потенциальной энергии, в которых силы межмолекулярного притяжения преобладают над силами электростатического отталкивания (см. рис. 1П.1). [c.71]

    Кроме того, имеются и другие причины, обусловливающие возникновение сил сцепления между частицами и определяющие значение дополнительного слагаемого То в условиях потери устойчивости стационарного слоя (1.3). Это, например, влажность, создающая капиллярные мостики вокруг мест соприкосновения частиц. Затем статическое электричество, возникающее при трении насыпаемых частиц. Для очень мелких частиц с диаметром 40—60 мкм начинают играть существенную роль вандерваальсовы силы межмолекулярного притяжения поверхностных слоев зерен. [c.26]


    При низких и средних давлениях и температурах, характерных для компрессоров, большинство газов практически можно полагать идеальными, но при высоких давлениях все газы следует рассматривать как реальные. Многоатомные газы и пары при температурах, близких к критической, не следуют уравненню состояния идеального газа даже при средних и низких давлениях объем реального газа вследствие действия сил межмолекулярного притяжения в этих условиях меньше, чем идеального. [c.9]

    Величина Ь — избыточный объем газа — учитывает собственный объем молекул газа и влияние сил межмолекулярного притяжения. В отличие от константы, аналогично обозначаемой в уравнении состояния Ван-дер- [c.10]

    Проблемы коагуляции и коалесценции дисперсной фазы существуют только в промывочных жидкостях, представляющих собой обращенные эмульсии, т. е. в эмульсиях, дисперсионной фазой которых является углеводородная жидкость. В прямых эмульсиях дисперсионной фазой является вода, а в воде силы межмолекулярного притяжения больше, чем в углеводородных жидкостях, поэтому капли органических жидкостей, находящиеся в воде, друг к другу не притягиваются. [c.77]

    С повышением поверхностной концентрации начинают проявляться силы межмолекулярного взаимодействия. Здесь возможны различные случаи, причем некоторые из них существенно отличаются от проявлений взаимодействия в объемных (трехмерных) фазах. Простейший из этих случаев имеет место, когда силы межмолекулярного притяжения очень резко спадают с расстоянием. Тогда при данной степени уплотнения монослоя образуются две двумерные фазы — одна с плотной упаковкой, а другая в виде двумерного газа . Любое дальнейшее уплотнение приводит к увеличению площади, занятой конденсированной двумерной фазой, за счет площади, занимаемой двумерным газом . При этом поверхностное давление остается постоянным, так же как сохраняется постоянной концентрация газа при его конденсации. При большой площади 1/Г зависимость л (1/Г) и здесь является гиперболической, но при том значении площади, с которого начинается конденсация , она переходит в горизонтальную прямую, соответствующую гетерогенному монослою. [c.128]

    Твердый полимер как среда, где протекают разнообразные радикальные реакции, имеет ряд специфических особенностей, из которых наиболее важные следующие 1) сегменты макромолекул вследствие их большей протяженности связаны друг с другом достаточно прочно силами межмолекулярного притяжения, поэтому каждая частица в полимере (молекула, радикал, сегмент макромолекулы) находится в более прочной и медленнее релаксирующей клетке, чем в жидкости 2) в отличие от жидкости, где молекулы диффундируют достаточно быстро (скорость молекулярной диффузии имеет порядок величины 1 см/сут), макромолекулы в твердом полимере практически не диффундируют происходит только диффузия сегментов макромолекул, ограниченная некоторым микрообъемом 3) полимер неоднороден, в нем есть кристаллическая и аморфная фазы аморфная фаза, видимо, также неоднородна — она имеет более плотные и более рыхлые области. [c.289]

    Особенность структур, образующихся в результате действия сил межмолекулярного притяжения,— их способность восстанавливаться после разрушения. Это явление называется тиксотропией. В тех случаях, когда взаимодействие частиц возможно лишь при определенном их пространственном расположении, восстановление структуры после ее механического разрушения происходит через значительные промежутки времени. Поэтому кривые, полученные в условиях возрастания скорости или напряжения сдвига, и кривые, полученные при снижении скорости сдвига, могут не совпадать. [c.132]

    Ф Ф г расположены стереорегуляр- но, то выступы одной макромолекулы могут входить во впадины соседней, как это схематично показано на рис. 11. В этом случае достигается максимальное взаимное сближение всех атомов как главной цепи, так и боковых групп и прочная связь между отдельными атомами. Благодаря этому в сумме создается большая сила межмолекулярного притяжения, что обусловливает очень высокую температуру плавления, а также повышенную жесткость стереорегулярных полимеров в сравнении с аморфными полимерами того же химического строения. Так, стереорегулярный полистирол плавится при 220—225° С, тогда как обычный аморфный полистирол начинает размягчаться (перестает быть твердым, стеклообразным) при 80—85° С. [c.24]

    Если различия в интенсивности сил межмолекулярного притяжения для взаимодействий разного типа (1—1, 2—2 и —2) влияют прежде всего на энтальпию раствора, мало затрагивая, в случае центральных сил, энтропию, то различия в размерах молекул 1 и 2 сказываются как раз на избыточной энтропии. Влияние этих различий на энтропию системы отражается моделью атермического раствора, для которого Я = 0, С = = (см. разд. У.2.3). [c.252]


    Как видно из схемы, образование пластинчатой мицеллы в водных растворах сопровождается, благодаря силам межмолекулярного притяжения, ассоциацией молекул мыла, полярные ионогенные группы которых ориентированы в водную среду, а углеводородные цепи друг к другу. Добавляемый углеводород поглощается мицеллой, размещаясь между углеводородными звеньями. Это увеличивает размеры мицеллы. [c.159]

    Образование жидкокристаллического состояния смектического типа обязано слабым силам межмолекулярного притяжения, наличию в середине молекул бензольных колец и двойных внутримолекулярных связей. Амплитуда колебаний атомов, соединенных двойными или сопряженными связями, меньше, чем атомов, соединенных простой связью. А так как в жидкокристаллических веществах атомы, [c.253]

    В ряду элементов УПА-группы наблюдается более или менее закономерное изменение физических и физико-химических характеристик атомов, молекул и ионов. От фтора к иоду возрастают температуры плавления и кипения, энтальпия этих процессов, а также плотность (см. выше). С увеличением числа электронных слоев увеличиваются размеры атомов и молекул, следовательно, усиливаются дисперсионные силы межмолекулярного притяжения, что ведет к росту указанных характеристик. Прочность молекул от хлора к иоду уменьшается в соответствии с ростом межъядерных расстоя- [c.365]

    Экспериментальные исследования показали, что реальные газы не подчиняются законам идеальных газов. Максимальные отклонения от идеального поведения наблюдаются при высоких давлениях и при низких температурах. При этих условиях объем системы становится относительно малым и собственный объем молекул составляет заметную часть общего объема. Кроме того, когда молекулы находятся на близких расстояниях друг от друга, экспериментально измеренное давление оказывается значительно меньше расчетного идеального значения это происходит в результате увеличения сил межмолекулярного притяжения. Характер и степень отклонений в поведении различных газов от идеального различны (рис. 8). Для идеальных газов произведение давления на объем рУ при постоянной температуре остается постоянным. Поэтому на графике зависимость рУ от р при постоянной температуре изображается прямой линией, идущей параллельно оси абсцисс (р). Поведение водорода, кислорода и диоксида углерода отклоняется от поведения идеального газа, причем характер отклонения для этих трех газов различен. Как и следовало ожидать, особенно сильные отклонения происходят при высоких давлениях. В точности такой же по виду график получается, если в качестве ординаты взять не просто рУ, а отношение рУ/(пЯТ) — так называемый коэффициент сжимаемости. Различие состоит лишь в следующем если на рис. 8 все кривые пересекаются при значении 22,4 л-атм, то на графике коэффициента сжимаемости (рис. 9) кривые пересекаются при значении ординаты, равном единице, так как для идеального газа рУ/ пНТ)= 1,0. [c.21]

    Разберем теперь самый общий случай поведения молекул в адсорбционном слое, учитывая существование между ними как сил отталкивания (проявление собственного размера молекул), та и сил межмолекулярного притяжения. Поскольку энергия межмолекулярного притяжения углеводородных цепей растет с увеличением их длины, очевидно, что наиболее сильные эффекты межмолекулярного взаимо- [c.67]

    Отрицательный знак расклинивающего давления свидетельствует о стремлении фаз к сближению под действием сил межмолекулярного притяжения. [c.246]

    Разберем самый общий случай поведения молекул в адсорбционном слое, учитывая существование между ними как сил отталкивания (проявления собственного размера молекул), так и сил межмолекулярного притяжения. Поскольку энергия межмолекулярного притяжения углеводородных цепей растет с увеличением их [c.81]

    Если два атома отличаются по присущей им способности притягивать электроны, т. е. по электроотрицательности, то электронная пара, при помощи которой между ними создается химическая связь, смещается в сторону атома с большей электроотрицательностью и на нем возникает отрицательный заряд, а на другом атоме-положительный заряд. Такие связи и молекулы, в которых они имеются, называются полярными. Полярные молекулы не только притягиваются лруг к другу, но и могут притягивать к себе положительные или отрицательные ионы. Температуры кипения и плавления веществ с полярными молекулами выше, чем можно ожидать, судя только по величине вандерваальсовых сил притяжения, поскольку полярность молекул обусловливает появление дополнительных сил межмолекулярного притяжения. [c.52]

    Структура жидких углеводородов определяется энергетическими возможностями их молекул, причем существует три варианта жидкого состояния длинноцепных углеводородов i[8] полная свобода вращения молекул жидкости при температуре, близкой к температуре кипения состояние, при котором возможно движение отдельных звеньев цепи псевдокристаллическое состояние при приближении к температуре кристаллизации. Переход углеводородов из жидкого состояния в твердое (кристаллизация) и из твердого в жидкое (плавление) определяется характером сил межмолекулярного взаимодействия. Длинноцепные углеводороды, к ко-которым относятся нормальные (начиная с ie) и слаборазветв-ленные парафиновые, нафтеновые и ароматические углеводороды с длинными алкильными цепями, являются неполярными или слабополярными веществами, поэтому взаимодействие между их молекулами происходит в основном за счет аддитивных дисперсионных сил. Длинноцепные углеводороды характеризуются неравномерным распределением сил межмолекулярного взаимодействия. У таких углеводородов наиболее сильно развиты дисперсионные силы, направленные перпендикулярно оси цепи нормальнога строения, что обусловливает их возможность к сближению при понижении температуры, когда тепловое движение молекул умень-щается. При переходе из жидкого состояния в твердое и наоборот площадь поперечного сечения алкильных цепей изменяется. Увеличение площади поперечного сечения молекул при плавлении обусловлено их вращением вокруг связей углерод — углерод, в результате чего молекула может занимать больший объем [8]. Когда эффективное поперёчное сечение молекул превышает допустимое силами межмолекулярного, притяжения, вещество плавится. При одном и том же числе атомов углерода в молекуле наиболее высокой температурой плавления обладают парафины нормального строения, имеющие возможность дисперсионного взаимодействия между всеми атомами углерода соседних молекул. Наличие в-молекуле разветвлений или циклов понижает возможность их ориентировки, так как межмолекулярные силы взаимодействия в этом случае проявляются в основном в цепях нормального строения,, что приводит к резкому снижению температуры плавления. [c.119]

    НО более слабыми силами межмолекулярного притяжения (ван-дер-ваальсовыми силами, 27). [c.127]

    Теплота испарения, точнее — общая теплота испарения жидкости, слагается из двух составляющих 1) энергии, затрачиваемой на преодоление сил межмолекулярного притяжения в жидкости (включая и ассоциацию), называемой внутренней теплотой мспа-рения, и 2) энергии, расходуемой на преодоление внешнего давления при выделении пара, называемой внешней теплотой (пли работой) испарения и равной pAv. Внешняя теплота всегда бывает значительно меньше внутренней. В дальнейшем мы будем рассматривать только общую теплоту испарения, называя ее для краткости теплотой испарения. [c.173]

    Коалесценция представляет собой слияние мелких капель дисперсной фазы в эмульсиях с образованием крупных капель (рис. III.6). В результате коалесценции эмульсия разрушается, в ней образуются две гомогенные непрерывные фазы, находяп1иеся одна над другой. Коалесценции предшествует коагуляция капель в результате их сближения под действием сил межмолекулярного притяжения, превышающих электростатические силы отталкива-ипя. [c.77]

    Введение в состав звеньев макромолекул различных функциональных или полярных групп вызывает поляризацию этих звеньев и придает им свойства диполя. Величины дипольного момента каждого звена макромолекулы зависят от степени поляризации, вызванной присутствием полярных групп, от количества полярных групп и их взаимного сочетания. В тех случаях, когда межмолекулярные расстояния сравнимы с расстояниями между зарядами, между молекулами, имеющими структуру диполей, возникают дополнительные связи, вызванные притяжением противо-. положиых полюсов соседних молекул, т. е. дипольные силы межмолекулярного притяжения. Взаимной ориентации молекулярных диполей противодействует тепловое движение молекул, поэтому величина дипольных сил в значительной степени зависит от температуры. Макромолекулы, состоящие из полярных звеньев, представляют собой совокупность диполей, создаваемых каждым звеном. Взаимодействие таких макромолекул в полимере вызывает взаимную ориентацию звеньев соседних цепей и притяжение их друг к другу. Чем больше дипольные моменты отдельных [c.28]

    Первой и важнейшей задачей было доказать, что на относительно больших расстояниях между фазами, на много порядков превышающих размеры молекул, существуют измеримые эффекты (например, П), вызываемые силами межмолекулярного притяжения, несмотря на то, что эти силы очень быстро спадают с расстоянием. Теоретическую оценку порядка величины П можно получить следующим путем [1 ]. Если разделить фазу на две полубесконеч-ные части и обратимо удалить их на большое расстояние, то при этом требуется совершить работу против сил притяжения. Будучи отнесена к 1 см- зазора, эта работа, очевидно, равна, согласно [c.179]

    Физико-химическое дробление осадков (пептизация). Пептиза-цией называют дробление рыхлых осадков, в которых имеются отдельные частицы дисперсной фазы, разделенные прослойками дисперсионной среды. Их непосредственному соприкосновению мешают либо двойные электрические слои, либо сольватные оболочки на поверхности частиц. Они обеспечивают отталкивание частиц на близких расстояниях, тогда как на более далеких преобладают силы межмолекулярного притяжения, не дающие частицам разойтись за счет теплового движения. [c.79]

    Следует иметь в виду, что адсорбционные слои, даже при отсутствии взаимодействия с растворителем при Д О, представляют собой стерический барьер, препятствующий сближению частиц на достаточно малые расстояния, при которых существенную роль начинают играть силы межмолекулярного притяжения. Конечно, эффективная стерическая стабилизация осуществляется лишь тогда, когда адсорбционные слои насыщены, а образующие их молекулы не способны десорбироваться при соударениях частиц. Для таких стерически стабилизованных систем невозможна коагуляция с непосредственным контактом частиц, а возможна лишь дальняя агрегация. [c.412]

    Основным объектом изучения в химии координационных соединений являются ионы и молекулы, состоящие из центральной частицы и координированных вокруг нее лигандов (аддендов). Строго говоря, понятие комплексные соединения шире, чем понятие координационные соединения . Оно включает в себя также молекулярные комплексы, в которых невозможно указать центр координации, а также соединения включения. Тем не менее, координационные соединения часто называют просто комплексами, и мы тоже будем следовать этой традиции. Как правило, центральной частицей ( ядром координации) является катион металла или оксокатион типа 1)022+, д лигандами могут быть ионы либо молекулы неорганической, органической или элементоргани-ческой природы. Друг с другом лиганды либо не связаны и взаимно отталкиваются, либо соединены силами межмолекулярного притяжения типа водородной связи. Совокупность непосредственно связанных с ядром лигандов называют внутренней координационной сферой. [c.11]

    В жидких кристаллах, называемых нематическими, дальняя упорядоченность чисто ориентационная. Она характеризуется тем, что существует преимущественное направление ориентации осей молекул, но центры масс расположены беспорядочно рис. IV. 18,а). Возможность образования такой структуры Определяется геометрическими характеристиками молекул, асимметрией их формы. Показано, что дальняя ориентационная упорядоченность возникает (в некотором интервале значений плотности) во флюиде из твердых стержней без притяжения, но на структуру реальных нематиков влияют, безусловно, и силы межмолекулярного притяжения. В жидких кристаллах, называемых смектическими, имеется одномерная или двумер- [c.200]

    Мыла и детергенты (хлористый октадециламмоний, дюпонол, аэросол и др.) обладают высокой поверхностной активностью Они представляют собой длинные углеводородные цепи с ионогенными группами на одном из концов. В зависимости от зарядов ионогеиных групп различают анионные (—СОО-,—ОЗОз и др.) или катионные (—ЫПя) детергенты. Благодаря силам межмолекулярного притяжения в водных растворах происходит объединение углеводородных цепей в ассоциации молекул с образованием сферических и пластинчатых мицелл, имеющих молекулярный вес 12 ООО—22 ООО. [c.169]

    Если частииы обладают достаточной энергией для преодоления давления расклинивания, то на расстоянии, равном диаметру частиц, т. е. примерно 10 —10 см, начинают преобладать силы межмолекулярного притяжения, и частицы объединяются. [c.180]

    Химия координационных соединений является частью неорганической химии, охватывающей как чисто неорганические соединения, так и соединения, содержащие лиганды органической природы. Лиганды, как правило, не связаны друг с другом и между ними действуют силы отталкивания. Между лигандами могут возникать силы межмолекулярного притяжения типа водородной связи. С центральным атомом лиганды могут быть связаны дву центровыми а-, тг- и 8-связями и многоцентровыми связями. При двуцентровых связях ядро— лиганд можно указать атомы лиганда, через которые связь осуществляется. Обычно эти атомы называют донорными. [c.4]

    Чем тоньше пленка, тем больше в рассматриваемой схеме выигрыш энергии при соединении макрообъемов и тем выше расклинивающее давление (отрицательное) в пленке (см. вцражение (IX—6)) силы межмолекулярного притяжения способствуют самопроизвольному утоньшению свободной пленки. Это связано с тем, что утоньшение пленки сопровождается переносом из нее вещества в макрофазу, где дальние молекулярлые взаимодействия будут скомпенсированы более полно, чем в пленке. [c.247]

    В основе макроскопической теории молекулярного взаимодействия конденсированных фаз лежит представление о существующих в них флуктуациях электромагнитного поля, которые выходят за пределы фаз и, взаимодействуя в зазоре между кнми, создают силы межмолекулярного притяжения. Квантовый характер подобных флуктуаций приводит к тому, что основной вклад во взаимодействия создают так называемые нулевые колебания, не зависящие от температуры лишь при очень высоких температурах следует учитывать температурную природу флуктуаций. Частотная характеристика флуктуаций электромагнитного поля может быть найдена из оптических свойств конденсированной фазы — из зависимости от частоты ы коэффициентов истинного (не связанного с рассеянием света см. 1 гл. VI) поглощения света в контактирующих фазах. [c.249]

    Уточнения проведенной простейшей оценки поверхностной энергии могут осуществляться различными путями в зависимости от пророды конденсированной фазы и характера межмолекулярных взаимодействий в вей. Так, межмолекулярное расстояние Ъ можно определить, сопоставляя силы межмолекулярного притяжения и так называемого борновского отталкивания молекул на малых расстояниях, возникающего вследствие перекрытия электронных оболочек сближающихся молекул. Равновесное расстояние (рис. 1-8) отвечает минимуму потенциала взаимодействия молекул, который може1г быть описан соотношением вида [c.28]


Смотреть страницы где упоминается термин Силы межмолекулярного притяжения: [c.127]    [c.75]    [c.65]    [c.552]    [c.241]    [c.34]    [c.23]    [c.118]    [c.25]    [c.300]   
Общая химия Издание 4 (1965) -- [ c.81 ]

Механизмы быстрых процессов в жидкостях (1980) -- [ c.9 , c.12 ]




ПОИСК





Смотрите так же термины и статьи:

Межмолекулярные

Межмолекулярные силы



© 2025 chem21.info Реклама на сайте