Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Распределение зарядов и дипольные моменты

    Химическое строение. Различие в химических свойствах используемых для получения мембран полимерных материалов может быть сведено к разнице в полярности молекул и их размеров. Полярность, которая с физической точки зрения характеризует неравномерность распределения электронных облаков, на химическом уровне количественно описывается такими показателями, как плотность заряда, дипольный момент и способность к образованию водородной связи. Хотя ионы и можно классифицировать как крайний случай полярных частиц, наиболее часто на практике их рассматривают отдельно. [c.65]


    Расчеты показывают, что, вообще говоря, значения Qa близки к числу валентных электронов va атома А. Так как заряд атомного остатка компенсируется зарядом валентных электронов, то при Qa>va около атома А концентрируется отрицательный заряд, при Яа< а —положительный. Таким образом, вычислив все Qa, можно установить распределение зарядов в молекуле. По этому распределению оценивают дипольный момент молекулы, химические сдвиги в спектрах ЯМР, некоторые характеристики реакционной способности молекулы и др. [c.51]

    В основном все химические различия между перспективными полимерными материалами можно свести к различиям химических групп в полярности и (или) в стерических эффектах. Полярность, которая определяется неравномерностью в распределении электронов, количественно описывается терминами полярной группы — такими как плотность заряда, дипольный момент (табл. 4.2), а способность к образованию водородных связей еще и такими объемными электрическими свойствами, как диэлектрическая постоянная и ионообменная емкость, и поверх- [c.119]

    Несимметричное распределение зарядов, а следовательно, и частично ионный характер атомной связи должны проявляться в величине дипольного момента соответствующего соединения. Чистая ковалентная связь между одинаковыми атомами с присущей ей строгой симметрией распределения зарядов не должна иметь дипольного момента из-за совпадения центров тяжести положительных и отрицательных зарядов. Дипольный момент чистой ионной связи должен был бы быть равным произведению заряда на расстояние (е г) между обоими ионами. Можно было бы попытаться выразить частично ионный характер в виде отношения найденного дипольного момента к вычисленному на основании известной величины расстояния между ядрами. Эта грубо приближенная оценка должна была [c.29]

    Двухатомная молекула с неравномерным распределением заряда обладает электрическим дипольным моментом ц, равным [c.544]

    В общем случае следует отличать полярность молекулы в целом от полярности отдельных содержащихся в пей связей. Для двухатомных молекул эти два понятия совпадают. Анализируя имеющийся опытный материал, можно установить, что двухатомные молекулы, состоящие из одинаковых атомов в соответствии с вполне симметричным положением связывающей их электронной пары, не обладают полярностью, и для них [х = 0. Двухатомные молекулы, состоящие из неодинаковых атомов, в большинстве случаев являются в той илн иной степени полярными. В общем, чем больше различие в электроотрицательности элементов и чем, следовательно, более асимметричным является распределение электронной пары, связывающей данные атомы, тем больше будет и полярность связи. Наибольшей величины, при прочих равных условиях, она должна достигать при чисто ионной связи. Впрочем, строго говоря, между асимметрией в распределении электронной пары и дипольным моментом однозначной зависимости может и не быть, так как асимметрия эта определяет собой только величину заряда атомов в данной молекуле, а дипольный момент зависит еще и от расстояния между ними. [c.78]


    При деформации вязкопластичных диэлектрических материалов, содержащих дипольные молекулы, может наблюдаться мозаичное распределение зарядов. Оно объясняется тем, что макромолекулы, которые обычно содержат много полярных групп, обладающих дипольными моментами, не могут перемещаться как единый диполь. Дипольные моменты полярных групп могут ориентироваться вдоль их осей, и, таким образом, представленная схема может иметь смысл. [c.133]

    Эти свойства жидкой воды связаны с необычайностью ее структуры, которая и заключается в наличии водородной связи, образующейся в молекулах воды вследствие существования неподелен-ных электронных пар. Электронные пары расположены на двух орбиталях, лежащих в плоскости, перпендикулярной к плоскости НОН (рис. 1.5). За счет неподеленных пар электронов в каждой молекуле воды могут возникнуть две водородные связи. Еще две связи могут обеспечить два водородных атома. Таким образом, только одна молекула воды в состоянии образовать четыре водородных связи. Благодаря этому результирующее распределение зарядов в молекуле воды напоминает тетраэдр, два угла которого заряжены положительно, а два — отрицательно. Результирующий центр положительных зарядов находится посредине между протонами. Он отделен от результирующего центра отрицательных зарядов, расположенного вблизи атома кислорода с противоположной Т5Т протона стороны. Вследствие этого молекула воды оказывается электрическим диполем с дипольным моментом, равным Кл-м (отсюда и высокая диэлектрическая проницаемость воды, и связанная с ней способность растворять ионные вещества). [c.23]

    В результате чего на атоме В возникает избыточный положительный заряд молекула полярна и обладает дипольным моментом. Аналогично можно рассмотреть другие случаи распределения зарядов  [c.52]

    Мгновенные и индуцированные диполи. Молекула представляет собой динамическую систему, в которой происходит постоянное движение электронов и колебание ядер. Поэтому распределение зарядов в ней не может быть строго постоянным. Например, молекулу С1а относят к неполярным значение ее дипольного момента равно нулю. Однако в каждый данный момент происходит временное смещение за- [c.82]

    Под действием внешнего электрического поля в диэлектриках (к которым относятся и многие полимеры) нарушается статистически равновесное распределение заряженных частиц, появляется отличный от нуля результирующий электрический момент, возникает поляризация. Электрическим или дипольным моментом системы зарядов называют вектор 1 = 2 г1г (где qi — заряд г-й частицы 1г — плечо -го диполя). Вектор дипольного момента каждого элементарного диполя направлен от отрицательного заряда к положительному. [c.173]

    При распределении заряда происходит образование большого дипольного момента молекулы (1,84 дебая). Этот важный параметр, а также угол и длина свя зи показаны на рис. 3. [c.9]

    На рис. 4.32 показаны распределение эффективных зарядов и направления дипольных моментов связей в молекуле диоксида углерода. Видно, что они компенсируют друг друга, [c.140]

    Полярность некоторых молекул не может быть передана в рамках модели полярности связей. Например, в молекулах СО и ВР распределение эффективных зарядов такое же, как и ожидается исходя из электроотрицательностей атомов. Однако дипольные моменты направлены не от более электроотрицательного атома к менее электроотрицательному (к углероду и бору, соответственно), а наоборот. Это связано с тем, что при оценке дипольных моментов молекулы следует учитывать не только явное перетекание заряда от одного атома к другому, но и перераспределение его около данного атома, В частности, необходимо учитывать и дипольные моменты электронных пар. Например, в молекуле СО сказывается собственный дипольный момент неподеленной электронной пары углерода (рис, 4,34), [c.140]

    Рассмотрим вначале границу раствора с воздухом. Поскольку силы, действующие на первый слой молекул растворителя, со стороны воздуха и со стороны раствора существенно различны, то распределение частиц растворителя вблизи поверхности отличается от их хаотического распределения в объеме. На поверхности раствора возникает некоторая предпочтительная ориентация молекул растворителя, а если эти молекулы полярны (т. е. обладают дипольным моментом), то их ориентация может привести к пространственному разделению зарядов и возникновению соответствующей разности потенциалов. Другой причиной электрической разности потенциалов на свободной поверхности раствора может быть различное расстояние анионов и катионов, находящихся в поверхностном слое раствора, до границы раздела фаз. [c.20]

    В действительности квадрупольный момент является тензором, а электрический момент диполя — вектором. Их взаимодействие с цеолитом надо рассчитывать с учетом соответствующих компонент и локального градиента напряженности электростатического поля в полости цеолита или представить общий квадрупольный (дипольный) момент как систему зарядов, распределенных на атомах или связях молекулы, и включить их взаимодействие с ионами решетки цеолита в атом-ионную потенциальную функцию. Последний путь является, вероятно, более правильным, однако он связан с трудностью решения задачи о распределении зарядов по атомам молекулы, которое, в свою очередь, может зависеть от напряженности поля в полости цеолита. Сделанные для СО2 расчеты на основе квантово-химических определений зарядов на атомах дали удовлетворительные результаты. [c.219]


    Дисперсионное взаимодействие (эффект Лондона). Существуют молекулы, для которых электростатическое взаимодействие исключается благодаря сферически симметричному распределению заряда. У таких молекул.нет не только дипольного, но и квадрупольного, октупольного и других электрических моментов. Таковы одноатомные молекулы [c.258]

    Уравнения типа (8) - (10) открывают возможность вычисления распределения зарядов, дипольных моментов и аяектроста-тических энергий насыщенных соединений. [c.419]

    Метод М. м. позволяет получать информацию для полного описания геометрии разл. конформеров в осн. состоянии и в седловых точках на пов-сти потенц. энергии (ППЭ), а также геом. строения в кристалле. Определяют также теплоты образования, энергии напряжения, энергии отдельных конформеров и высоты барьеров для конформац. превращений, частоты колебаний, распределения электрич. заряда, дипольные моменты, хим. сдвиги в спектрах ЯМР, скорости хнм. р-ций и др. Диапазон применения М.м. велик от простых молекул до полисахаридов и белков. В сочетании с др. методами, в частности газовой электронографией и рентгеновским структурным анализом, надежность и точность определения геом. характеристик повышается. [c.114]

    В маслах и смазках поверхностно-активными элементами, образующими граничный слой, являются полярные молекулы с отчетливо выраженной ассимметричной структурой. Полярными группами в молекуле являются ОН СООН Г 1Нг, N02 или атомы О, 8, N. С1 и др. Поверхностная активность молекулы зависит от величины ее дипольного момента, характеризующего асимметрию распределения положительных и отрицательных электрических зарядов в молекуле и относительных размеров полярных групп и неполярной части молекулы. [c.133]

    Индукционное взаимодействие. Установлено, что раствори — тели, обладающие значительным дипольным моментом, способны индуцировать дипольный момент у молекул асимметричной и сла— боасимметричной структуры. Следовательно, индуцированию подвержены как полярные, так и некоторые неполярные углеводороды масляного сырья. Поляризации подвержены в большей степени полициклические ароматические углеводороды, у которых ароматические кольца слабо экранированы нафтеновыми циклами и короткими алкильными цепями (то есть голоядерные). Под влиянием элв стростатического поля растворителя в таких молекулах масляной фракции возникает дeфopмai ия внешнего электронного слоя, что приводит к неравномерному распределению зарядов на отдельных участках молекул. В результате неполярная молекула временно превращается в индуцированный диполь. Молекулы с индуцированным дипольным моментом подвергаются далее ориентационному взаимодействию и переходят и раствор полярного растворителя. Индукционные силы взаимодействия зависят от силы электростатического поля полярной молекулы, то есть от значения дипольного момента и химической природы неполярных молекул, а именно от способности их поляризоваться. Индуцированный дипольный момент пропорционален напряженности поля Е, то есть =аЕ, где а характеризует степень поляризуемости индуцированной молеку — лы. [c.215]

    Если распределение зарядов в системе не идеально сферическое, то даже при отсутствии дипольного момента оно обладает так называемым электрическим квадрупольным моментом. Квадрупольные моменты поддаются экспериментальному измерению, однако здесь незачем останавливаться на этом подробнее. Такие исследования обнаружили, что многие ядра сферичны, а большая часть несферичных ядер имеет продолговатую форму, подобную мячу для игры в регби, причем отношение большего диаметра к меньшему никогда не превышает 1,2. [c.407]

    Молекулы и связи, обладаюи ие несимметричным распределением электрических зарядов, называются полярными. Полярные молекулы обладают дипольным моментом, отличным от нуля. [c.79]

    Для всех гетеронуклеарных молекул можно отметить характерную особенность электронная плотность в них распределена несимметрично относительно обоих ядер. При таком распределении электронной плотности химическую связь называют полярной или точнее полярной ковалентной связью, а молекулы полярными. Среди молекул гидридов у НР особенно заметно несимметричное распределение заряда (рис. 31). Не только несвязывающие молекулярные орбитали 1а , 2а и 1л,1 практически целиком сосредоточены вокруг ядра фтора, но и на связывающей молекулярной о-орбитали электронная плотность благодаря большому различию в эффективных зарядах ядер водорода (1) и фтора (5.20) смещена в сторону последнего. Вследствие этого электрические центры тяжести положительных зарядов ядер и отрицательных зарядов электронов не совпадают, и в молекуле возникает постоянный электрический диполь — система двух равных по величине и противоположных по знаку зарядов +<7 и —д, разде-. ленных расстоянием I, называемым длиной диполя (рис. 32). Взаимодействие молекулы с электрическим полем будет зависеть от величины вектора а — электрического дипольного момента молекулы [c.84]

    Порядок приближения, в котором определяется тот или иной тип дальнодействующих сил, не связан с их важностью или величиной вклада. Так, например, определяемые во втором приближении силы могут быть более существенными по сравнению с силами, которые находятся в первом приближении. Во всяком случае, поскольку вносимое искажение достаточно мало, дальнодействующие силы могут быть скорректированы за счет учета свойств изолированных атомов или молекул. Таким образом, если распределение заряда не является сферически симметричным, то нейтральная молекула характеризуется статическим распределением заряда с ненулевыми мультипольными моментами (дипольным, квадрупольным, октапольным и т. д.). Тогда одна из составляющих дальнодействующих сил между двумя молекулами будет складываться из электростатического взаимодействия между соответствующими ненулевыми моментами. Другими словами, эта часть дальнодействующих сил определяется последовательным учетом диполь-дипольного, диполь-квад-рупольного, квадруполь-квадрупольного и т. д. взаимодействий. При таком типе взаимодействия заряженных оболочек возникают и другие, так называемые индуцированные силы, которые являются силами второго порядка. Например, дипольный момент одной молекулы будет искажать распределение заряда другой молекулы, силовое поле которой может быть описано с по- [c.194]

    Асимметричное распределение зарядов между отдельными частями молекулы обусловливает наличие постоянных дипольных моментов, которые существуют и в отсутствие внешнего поля. Наложение электрического поля вызывает образование вращательного момента у молекул, которые стремятся повернуться в направлении поля. В электрическом поле молекулы располагаются таким образом, что положительно заряженный полюс одной из них примыкает к отрицательному полюсу средней молекулы, и так до тех пор, пока молекулы не достигнут электрода той своей частью, котораяТ1ёсёт противоположный ему заряд. Это и есть ориентационная поляризация. [c.43]

    Дисперсионные силы. Несмотря на симметричное распределение зарядов в иеполяриых молекулах электроны неполярной молекулы А в любой момент могут образовать такую конфипурацию, в результате которой молекула приобретает мгновенный дипольный момент. Этот дипольный момент поляризует другую неполярную молекулу В, что приводит к взаимному притяжению молекул А и В. В результате непрерывного возникновения кратковременных диполей и их согласованной ориентации действие дисперсионных сил постоянно возобновляется. Дисперсионное взаимодействие не зависит от температуры и проявляется при любой температуре и при взаимодействии не только неполярных, но и полярных молекул, т. е. является наиболее универсальным по сравнению с другими силами межмолекулярного взаимодействия. [c.71]

    Согласно методу МО, переход к ионным связям сопряжен с тем, что в зависимости от коэффициентов С и сг вероятность нахожде ия электронов у одного из ядер оказывается выше, чем у другог . Вследствие этого в молекулах электрический заряд распределен неравномерно, и в них появляется так называемый дипольный момент (произведение расстояния между центрами зарядов на заряд х = е/). При измерении дипольного момента всегда надо иметь в виду, что существует различие между постоянным и индуцированным (наведенным) дипольным моментом. [c.99]

    Первый член ( монопольный ) в этом выражении представляет энергию взаимодействия кулоновского точечного заряда ядра 2е с окружающими зарядами, т. е. не зависит от ориентации ядра. Можно отметить, что он не представляет интереса также и при сравнении энергии основного и возбужденного состояний ядра (гл. V), так как 1е и и (0) для них не различаются. Второй член ( дипольный ) в выражении (1У.З) также исчезает, так как р(г)=р(—г), т. е. центры массы и распределения плотности заряда ядра совпадают, ядро не обладает электрическим дипольным моментом, и интегралы типа /лгф(г)с1и равны нулю. По тем же причинам инвариантности по отнощению к изменению знака координат исчезают все члены с нечетными степенями х . Таким образом, интерес представляет лищь третий, квадрупольный, член [c.92]

    Многоатомные молекулы также могут быть неполярными — при симметричном распределении зарядов или полярными — при асимметричном распределении зарядов. В последнем случае дипольный момент молекулы будет отличаться от нуля. Каждой связи в многоатомной молекуле можно приписать определенный дипольный момент, характе >изующий ее полярность при этом следует принимать во внимание не только Bejm4HHy дипольного момента, но и его направление, т. е. рассматривать дипольный момент каждой связи как вектор. Тогда суммарный дипольный момент молекулы в целом можно считать равным векторной сумме дипольных моментов отдельных связей. [c.139]

    Молекулы взаимодействуют друг с другом. Для объяснения межмолекулярных взаимодействий были созданы химическая и физическая теории, предполагающие только химическую или только физическую природу межмолекулярных сил. Среди физических рассматривались ван-дер-ваальсовы силы, которые возникают в связи с ориентационным взаимодействием полярных молекул, обладающих постоянным моментом диполя, индукционным взаимодействием молекул, способных поляризоваться под действием соседних молекул, и дисперсионным взаимодействием мгновенных атомных диполей, имеющих постоянно меняющийся дипольный момент за счет несимметричного распределения зарядов колеблющихся ядер и двигающихся электронов. [c.25]

    Поведение вещества в электрическом поле позволяет установить распределение зарядов в молекуле с помощью метода дипольных моментов. Электрохимическими методами можно определить потенциалы ионизации и редоксопотен-циалы молекул. [c.22]

    Перечислим еще несколько факторов, оказывающих влияние на распределение заряда в молекуле. Во-первы.х, определенный вклад вносят неподеленные пары электронов на гибридных орбиталях. Как нетрудно видеть из рис. 14, средняя координата электрона, находящегося на гибридной орбитали, не совпадает с координатой атомного остова. Следовательно, тахая пара электронов создает дипольный момент, направленный в сторону атома. Этот момент диполя суммируется с дипольными моментами связей. В качестве примера рассмотрим молекулы NHз и ЫРз (рис. 32). Сравнение электроотрнцательностей атомов Н (2,1), N (М) и Р (4,0) показывает что связи М—Н и М-Р должны обладать близкими дипольными моментами. Однако в случае аммиака ЫНз дипольные моменты направлены в сторону атомов Н и должны суммироваться [c.90]

    Наиболее интересен пример с оксидом углерода. Разность электроотрицательностей кислорода и углерода А (ЭО) = I. Между тем дипольный момент молекулы очень мал ц(СО) = 0,37-Кл-м (0,112 Д). Более того, как установлено радиоспектроскопическими методами, отрицательный полюс диполя в молекуле СО находится на более электроположительном атоме углерода, а не на кислороде, как следует из концепции электроотрицательности. Объяснение этому дает рассмотрение диаграммы молекулярных орбиталей СО (см. 33). Дипольный момент, создаваемый несимметричным распределением заряда на связывающих 4ст1я-орбиталях, компенсируется дипольным моментом неподеленной пары на 5ст-гибридной орбитали. Последняя сосредоточена вблизи ядра углерода и направлена в сторону, противоположную ядру кислорода. Благодаря этому результирующий диполь очень мал, и его отрицательный полюс неожиданно оказывается на атоме углерода. [c.138]

    Электрические дипольные моменты. Для вычисления дипольного момента надо, согласно Малликену [8], рассчитать заряды на атомах из распределения связывающей электронной плотности в молекуле. Тогда Однако не всегда получаютсяхорошие результаты, так как часто надо еще учесть нарушение локальной симметрии в результате гибридизации молекулярных несвязывающих орбиталей Для ионных молекул (Li l, LiF и др.)> обладающих большими дипольными моментами, погрешность в расчет тах дшюльньтх моментов в хартри-фоковском пределе невелика (- О.З—0,7 10 ° Кл-м), но для ковалентных,таких, как.СО, SiO, она может достигать и 1,5 10 ° Кл-м, т. е.- сравнима с величиной дипольного момента. [c.159]


Смотреть страницы где упоминается термин Распределение зарядов и дипольные моменты: [c.571]    [c.571]    [c.72]    [c.216]    [c.126]    [c.195]    [c.236]    [c.82]    [c.96]    [c.128]    [c.40]    [c.132]    [c.265]   
Смотреть главы в:

Теория молекулярных орбиталей в органической химии -> Распределение зарядов и дипольные моменты




ПОИСК





Смотрите так же термины и статьи:

Дипольный момент

Заряд распределение



© 2025 chem21.info Реклама на сайте