Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атмосферная и коррозионная стойкость

    Тонкая обработка поверхности (тонкая шлифовка, полировка), как правило, повышает коррозионную стойкость металлов, облегчая образование более совершенных и однородных пассивных и других заш,итных пленок, а также повышает предел коррозионной усталости (см. с. 338). Это влияние сказывается главным образом в начальной стадии коррозии, пока не исчезает в результате коррозии металла его исходная поверхность, и имеет большое практическое значение в мягких условиях коррозии, например при атмосферной коррозии металлов. Ниже приведены данные В. О. Кренига о влиянии характера обработки поверхности углеродистой стали (0,8% С) на ее коррозионную стойкость во влажной атмосфере — время до начала коррозии, сут.  [c.326]


    Никель в чистом виде находит широкое применение в качестве защитного гальванического покрытия для изделий из железа и стали в целях повышения их коррозионной стойкости в атмосферных условиях. Основное применение никель находит в качестве легирующего элемента для изготовления различных марок высококачественных нержавеющих сталей. [c.255]

    Олово обладает недостаточно высокой механической прочностью. Нормальный электродный потенциал олова Sn 5A Sn- ++ 2е равен — 0,136 в. Пассивируется олово слабо. Коррозионная стойкость олова в атмосферных условиях, в дистиллированной, пресной и соленой воде очень высока. Этим объясняется широкое применение олова для защиты от коррозии в воде и в атмосферных условиях железа, потенциал которого более отрицателен, чем у олова. Однако так называемая белая (луженая) жесть во влажной загрязненной атмосфере быстро разрушается вследствие пористости защитного оловянного слоя. [c.265]

    Из специальных защитных приспособлений кроме клапанов и мембран применяют предохранительное устройство с разрывным болтом. При давлении в аппарате на 15—25%, превышающем рабочее, шейка болта разрывается, поршень выбрасывается из цилиндра, газ через освободившийся цилиндр выходит наружу, и давление в аппарате падает до атмосферного. Устройство обеспечивает надежную герметичность и коррозионную стойкость, позволяет создавать любое проходное сечение для стравливания газа. [c.102]

    Алюминий выгодно отличается от других конструкционных цветных металлов малой плотностью, высокой пластичностью, теплопроводностью и коррозионной стойкостью Б атмосферных условие ях. Механические свойства алюминия зависят от его химической чистоты. Наличие в техническом алюминии железа и кремния снижает его пластичность, но повышает прочность. [c.32]

    Фосфатные покрытия представляют собой плёнки фосфорнокислой соли железа и марганца. Так как фосфатные плёнки вследствие пористости обладают недостаточной коррозионной стойкостью, применение фосфатированных изделий допустимо только в атмосферных условиях. [c.46]

    Исследование влияния легирующих добавок на свойства цинкового покрытия, полученного из расплава, показало, что С(1 и 8п не влияют, а Си увеличивает толщину покрытия, при этом в присутствии Си и С(1 увеличивается устойчивость цинкового покрытия в атмосферных условиях. Алюминий, введенный в расплав до 0,25 %, вызьшает резкое снижение толщины покрытия и коррозионной стойкости, но увеличивает пластичность биметалла. При одновременном содержании меди и алюминия в цинковом покрытии медь при содержании более 0,02 % подавляет действие алюминия, и стойкость оцинкованной стали в атмосферных условиях повышается. Однако в присутствии алюминия в атмосфере с высокой влажностью возникают темные пятна, ухудшая внешний вид изделия. Добавка олова, кадмия, сурьмы, меди, введенных в расплав вместе с алюминием и свинцом, предотвращает возникновение тем- [c.54]


    Сталь без покрытия обладает низкой коррозионной стойкостью во всех исследуемых атмосферных условиях, и потеря массы во времени имеет тенденцию к увеличению (рис. 18, а). [c.58]

    К преимуществам такой конструкции относится низкая металлоемкость вследствие применения весьма высокопрочной проволоки и, соответственно, снижение толщины стенки. К недостаткам следует отнести сложность конструктивного оформления люков и штуцеров, недостаточную коррозионную стойкость намотанных слоев от атмосферной коррозии, если эта намотка не защищена каким-либо межслойным наполнителем, а также сложность намотки и переплетения между собой пучков проволоки. [c.801]

    Коррозионные измерения в различных средах при повышенных температурах и атмосферном давлении практикуются достаточно широко, но с точки зрения исследования коррозии металла котлов в условиях, приближенных к эксплуатационным, такие измерения не позволяют получить полную картину коррозионной стойкости материалов. Гораздо эффективнее и информативнее электрохимические исследования, проводимые в автоклавах. [c.145]

    Коррозионная стойкость металлов и покрытий может быть повышена применением металлов и покрытий, устойчивых против атмосферной коррозии металлических покрытий, которые являются ядами для микроорганизмов (цинк, свинец) или продукты окисления которых являются биоцидами (окислы меди и др.) снижением шероховатости и очисткой поверхности металлов от загрязнений всех видов использованием в растворах, предназначенных для нанесения металлических и конверсионных покрытий, биоцидных веществ (борная кислота и ее соли, полиамины и поли-имины, оксихинолин и его производные и т. п.) и удаление из растворов веществ, которые могут адсорбироваться на поверхности и в порах покрытия и служить питательной средой для микроорганизмов (декстрин, крахмал, столярный клей, сахара, аминокислоты, цианиды и т. п.). [c.89]

    Завершающей технологической операцией, влияющей на достояние поверхности труб, является очистка от продуктов высокотемпературной (окалина) и атмосферной (ржавчина) коррозии. При этом геометрия и физико-механическое состояние поверхностного слоя существенно зависят от режимов обработки, применяемой среды и инструмента. Так, при очистке трубопроводов скребками-резцами возможны высокая степень пластической деформации локальных участков на поверхности трубы, а также риски, подрезы и т. д. Эти концентраторы напряжений являются потенциальными очагами развития коррозионно-усталостных трещин. Очистка трубопроводов с применением проволочных щеток хотя и исключает повреждения поверхности труб в виде подрезов, но в зависимости от режимов обработки вследствие деформационного упрочнения может понижать коррозионную стойкость металла. [c.252]

    Стали с 1,5—2% легирующих элементов входят в группу низколегированных сталей, которые отличаются повышенной стойкостью к атмосферной коррозии. Результатом присадки легирующи.х элементов является образование продуктов коррозии, которые имеют хорошую адгезию, могут быть сплошными и поэтому лучше защищают сталь. Коррозионная стойкость легированных сталей может быть в 3 раза выше, чем углеродистых. При некоторых обстоятельствах, например в атмосфере повышенной агрессивности или в воде, оба вида стали ведут себя одинаково. [c.22]

    Бронзы. Наиболее широко применяют оловянистые бронзы, содержащие 8—14% олова, алюминиевые бронзы с содержанием до-14% алюминия, кремнистые с 2—3% кремния и 1—1,5% марганца. Они не искрят при трении или ударах. Детали из них можна получить методом литья. В условиях атмосферной коррозии бронзы характеризуются высокой стойкостью. Они проявляют коррозионную стойкость в неокисляющих растворах солей и кислот. [c.36]

    Цинк стоек к коррозии в нейтральных средах, поэтому он обеспечивает надежную защиту стали от атмосферной коррозии, в природных водах и нейтральных растворах. Коррозионная стойкость цинка связана с формированием на его поверхности малорастворимых продуктов. Уменьшение срока службы цинковых покрытий в сильно загрязненной промышленной атмосфере объясняется повышенной кислотностью конденсирующейся влаги. [c.38]

    Ускоренные лабораторные испытания проводятся для сравнения коррозионной стойкости металлов. Если необходимо повысить скорость коррозии, то усиление влияющих факторов не должно вносить качественных изменений в процесс коррозии. В жидкой среде ускорение процесса достигается повышением скорости движения среды или изменением концентрации компонентов, повышением температуры среды, насыщением ее воздухом, кислородом и т. д. При ускоренных испытаниях, воспроизводящих атмосферные условия, допускается повышать температуру до верхнего предела, существующего в природных условиях, увеличивать влажность путем повторной конденсации, повышать интенсивность ультрафиолетового излучения, ограничивая инфракрасное излучение, и т. д. [c.91]


    Косвенные лабораторные испытания проводят для определения возможной коррозионной стойкости металлов при изменении некоторых их физических или химических свойств, если известна связь между этими свойствами и коррозионной стойкостью металлов в природных или эксплуатационных условиях. Например, известны экспериментальные данные о корреляции между толщиной, пористостью и стойкостью электрохимических покрытий к атмосферным явлениям. Поэтому нецелесообразно проводить длительные коррозионные испытания. Имея данные по накопленным за длительное время испытаниям, достаточно определить толщину и пористость покрытий, и если покрытие не отвечает предъявляемым требованиям, можно считать его непригодным. К этой группе можно отнести и испытания, которые проводят в стандартных условиях, и по полученным результатам судить о реальных коррозионных процессах. Например для оценки склонности металла к межкристаллитной коррозии проводят испытания, которые невозможно воспроизвести в условиях эксплуатации. [c.91]

    Многие алюминиевые сплавы (особенно содержащие медь, цинк и магний) менее устойчивы к действию коррозии, чем чистый алюминий. Кроме того, они подвержены таким особым видам коррозии, как растрескивание под действием внутренних напряжений и межкристаллитная коррозия. Но поскольку эти сплавы часто являются катодными (имеют более положительный потенциал по отношению к чистому алюминию), то они могут получить защитное действие при нанесении покрытия из чистого металла. Комбинированное покрытие также обладает большей природной коррозионной стойкостью, чем покрытие из чистого алюминия, сохраняя большую механическую прочность основного сплава. Как плакировка, так и напыление покрытия этого типа обеспечивают долгий срок службы деталей из алюминиевых сплавов, подвергаемых атмосферным воздействиям или эксплуатируемых в питьевой воде. [c.109]

    Помимо испытательных стендов и метеорологических приборов, на атмосферной площадке имеется павильон, где проводили опыты для получения сравнительных данных о коррозионной стойкости различных материалов в помещении и под открытым небом. Для испытаний плоских образцов на площадке предусмотрены специальные металлические стенды, рамы которых обеспечивают расположение образцов под любым углом к горизонту, а также стенд с приподнятым навесом для определения засоленности воздуха. [c.60]

    Коррозионная стойкость металлов в конструкциях отличается от данных, полученных при испытании отдельных металлов. Это объясняется сложностью современных конструкций, наличием в них застойных зон, щелей и зазоров, внешних и внутренних напряжений и т. д. Поэтому наряду с испытанием отдельных металлов и покрытий требуется проводить испытания готовых узлов и приборов, а иногда и целых конструкций. Для проведения подобных экспериментов в Батумской лаборатории были установлены и оборудованы атмосферные стенды открытого, полузакрытого и закрытого типов, стенд повышенного тепла и влажности, навесы. На открытых стендах испытывали образцы материалов с защитными покрытиями и без покрытий, а также отдельные узлы и детали образцов изделий. В полузакрытых атмосферных стендах (жалюзийные павильоны) изучали поведение деталей и узлов при отсутствии воздействия на них солнечной радиации и атмосферных осадков. В закрытых стендах создавали условия, аналогичные условиям стационарных помещений, предназначенных для хранения изделий в собранном виде. [c.89]

    Рассмотренную картину причинной связи скорости атмосферной коррозии с метеорологическими параметрами следует воспринимать как мгновенный снимок, не фиксирующий динамику и амплитуды изменения всех метеорологических элементов во времени. В реальных условиях суточные и сезонные изменения влажности и температуры воздуха, количества и длительности осадков, химизма атмосферы неизбежно перераспределяют доли влияния каждого метеофактора на скорость коррозии и затрудняют установление общих законов, описывающих связь коррозионной стойкости металлов с климатом. [c.70]

    Обобщение результатов, полученных при коррозионных испытаниях различных металлических систем на станциях ИФХ АН СССР, стран — членов СЭВ в тропических и арктических районах, позволило разработать и статистически обосновать простые математические модели атмосферной коррозии [78, 79]. Используя эти модели, возможно не только районировать территорию СССР по коррозионной активности атмосферы, но и составлять таблицы справочных данных о коррозионной стойкости металлов в различных географических районах [80]. [c.83]

    В последние годы ускоренные испытания, имеющие своей целью прогнозирование коррозионной стойкости металлов или покрытий, получили дальнейшее развитие. В табл. 12 сопоставлены наблюдаемые и рассчитанные из результатов ускоренных испытаний скорости коррозии цинка, кадмия и алюминия в различных климатических зонах. В расчетах использовали вышеприведенные модели атмосферной коррозии. Полученный к настоящему времени экспериментальный материал [84, 85] свидетельствует о хорошей корреляции рассчитанных по результатам ускоренных испытаний и реально наблюдаемых величин коррозии. [c.88]

    Большинство технических конструкционных сплавов (на основе железа, меди, алюминия, магния), которые широко применяют в строительстве наземных сооружений, в авто- и авиастроении, на железнодорожном транспорте и в судостроении, характеризуются умеренной коррозионной стойкостью в атмосферных условиях и нередко нуждаются в дополнительной защите. [c.90]

    Атмосферная коррозионная стойкость алюминиевых сплавов с твердым анодным покрытием рассматривалась выше. По этому вопросу имеется еще очень мало данных, так как исследования, о которых сообщалось выше [16], еще не закончены. Однако предварительные данные показывают, что сплав 245 (неплакиро-ванный) несколько хуже большинства других сплавов. [c.234]

    Следует отметить успешное применение методов математического планирования эксперимента в исследованиях влияния отдельных компонентов сплавов или примесей и совместного влияния этих элементов на коррозионное поведение сплава. Эти методы используют также для выяснения допустимого содержания примесей (метод Бокса—Уильсона), для исследований состав многокомпонентной среды — коррозионная стойкость (метод симплексной решетки Шеффе), для построения математической модели атмосферной коррозии металлов (ИФХ АН СССР). [c.432]

    Известно, что присадка меди в значител1>ной степени повышает коррозионную стойкость углеродистых сталей даже при не-больнюм ее содержании. Положительное влияние добавки меди иа устойчивость стали к атмосферной коррозии проявляется более заметно, если в состав стали, кроме меди, ввести Сг, Л1 или Р. Хром и алюминий, как известно, повышают склонгюсть стали к анодному пассивированию. Положительное влияние фосфора, по-виднмому, может быть объяснено переходом этого элемента из металла в поверхностный слой влаги и образованием защит- [c.182]

    Легирование железоуглеродистых сплавов даже небольшим количеством хрома является достаточным для повышения их стойкости в атмосферных условиях. Никель в небольших количествах почти не влияет на коррозионную стойкость стали. Из низколегированных конструкционных сталей, по данным С. Г. Ве-денкниа, хромоникелемедистая сталь НЛ2 (0,7% Сг, 0,5% N1, 0,5% Си) является наиболее стойкой в атмосферных условиях. [c.183]

    Обработкой металлической иоверхности химическим или электрохимическим путем можно получить защитные иленки, обладающие сравнительно высокой коррозионной стойкостью в атмосферных условиях, в воде и в некоторых других слабоагрес-сивиых средах. К числу таких покрытий относятся оксидирование, фосфатирование, анодирование, химическое никелирование и др. В химическом маш1гностроенин эти виды защиты металлов применяются очень редко, главным образом для защиты от атмосферной коррозии, повышения износостойкости деталей, улучшения внешиего вида и т. и. [c.328]

    ТЬнкая обработка поверхности ( шлифовка, полировка ), иак правило, повышает коррозионную стойкость металлов, облегчая образование более совершенных защитных пленон. Это влияние сказывается главным образом в начальной стадии коррозии и имеет большое значение в мягких усповиях коррозии ( например, при атмосферной коррозии.) [c.40]

    Низколегированная низкоуглеродистая сталь хорошо сваривается, при сварке не образует холодных и горячих трещин, и свойства сварного соединения и участков, прилегающих к нему, близки к свойствам основного металла. Введение меди и никеля увеличивает коррозионную стойкость стали в атмосферных условиях (ЮХСНД, 15ХСНД), [c.184]

    Титан и его аналоги покрываются на воздухе чрезвычайно прочной защитной пленкой ЭОг. Поэтому при обычной температуре они коррозионноустойчивы в атмосферных условиях и химически устойчивы во многих агрессивных средах. Так, коррозионная стойкость титана превышает стойкость нержавеющей стали. В азотной кислоте Ti, Zr и Hf пассивируются. Цирконий и гафний (титан в меньшей степени) устойчивы в растворах щелочей. Концентрированная НС растворяет при нагревании только титан (образуется Ti la), цирконий и гафний [c.283]

    Титан и его аналоги покрываются на воздухе чрезвычайно прочной защитной пленкой ЭО2. Поэтому при обычной температуре они коррозионно-устойчивы в атмосферных условиях и химически устойчивы во многих агрессивных средах. Так, коррозионная стойкость титана превышает стойкость нержавеющей стали, В азотной кислоте Ti, Zr и Hf пассивируются. Цирконий и гафний (титан в меньшей степени) устойчивы в растворах щелочей. Концентрированная H I растворяет при нагревании только титан (образуется Ti b), цирконий и гафний в соляной кислоте не растворяются. Они растворяются лишь в тех кислотах, с которыми образуют в процессе взаимодействия анионные комплексы . Например, Zr и Hf можно растворить в плавиковой кислоте или в царской водке  [c.316]

    Легирование стали, предназначенной для эксплуатации в атмосферных условиях, небольшими 1обавками легирующих элементов повьншет ее коррозионную стойкость, в то время как низколегированная сталь, [c.11]

    Коррозионная стойкость стали в атмосферных условиях резко возрастает при введении даже незначительного количества легирующих элементов, поэтому применение низколегированных сталей в качестве строительных и конструкщюнных материалов, эксплуатируемых в атмосферных условиях, экономически выгодно долговечность сооружений может быть повышена в 2-3 раза без дополнительной защиты в условиях промышленной, городской и сельской атмосферы. Защитное действие легирующих элементов в атмосферостойких низколегированных сталях основано на том, что легирующие элементы либо их соединения тормозят обычные фазовые превращения в ржавчине (см. рис. 1), и поэтому слой ржавчины на атмосферостойкой стали уплотняется. Считается также, что наряду с усилением защитных свойств слоя продуктов коррозии основной причиной положительного влияния меди является возникновение анодной пассивности стали за счет усиления эффективности катодной реакщш. Действие меди как эффективного катода подтверждается тем, что ее положительное влияние наблюдается уже в начальных стадиях коррозии, когда на поверхности стали еще не образовался слой видимых продуктов коррозии. [c.12]

    Высокой коррозионной стойкостью в атмосферных условиях обладают алюминиевые сплавы. Несмотря на то, что коррозия алюминиевых сплавов, как правило, развивается с образованием питтингов, постоянная смена участков активащ1и и репассиващш на поверхности металла приводит к почти равномерной коррозии. Однако необходимо учесть влияние структурных составляющих, которые могут облегчить возникновение межкристаллитной, расслаивающей коррозии и коррозионного растрескивания. Анодные включения преимущественно растворяются, и если они расположены в виде цепочки по границам зерен, то коррозия [c.12]

    Способ противокоррозионной защиты стальных конструкций и оборудования зависит от требуемого срока службы и агрессивности атмосфер. Во всех случаях сталь обнаруживает наименьшую коррозионную стойкость, и скорость коррозии стали при средней агрессивности атмосфер составляет 25-35 мкм/год, а при жестких условиях превышает 100 мкм. Большинство стальных конструкций в атмосферных условиях необходимо защитить покрытиями, наносимыми на углеродистую или низколегированную сталь, что дает возможность обеспечить более долговременную защиту. Наиболее широко используют металлические покрытия на основе алюминия и цинка, значительно повышающие срчк службы металлических конструкций в атмосферных условиях. [c.51]

    Образцы устанавливали на открытых стендах и вьщерживали в атмосферных условиях в течение 3 лет. Коррозионную стойкость определяли по потере массы и визуальной оценкой состояния поверхности образцов после испытания. Одновременно оценивали коэффициент торможе-, ния коррозии алюминиевого покрытия. [c.58]

    Коррозионная стойкость в атмосферных условиях и других средах в 1,5 раза выше по сравнению с углеродистой сталью марки ВСтЗ. Применение низколегированной стали вместо углеродистой обыкновенного качества позволяет уменьшить массу конструкции на 20%. Химический состав некоторых марок низколегированной стали представлены в табл. 14, [c.27]

    Атмосферная коррозия развивается в условиях не прерывного изменения во времени и пространстве физико-химических параметров коррозионной среды. Многообразие факторов, влияющих на скорость коррозионно-электрохимических реакций в реальной атмосфере, является особенностью этого вида коррозии металлов. Установлению количественных связей между основными параметрами атмосферы и коррозионной стойкостью металлов посвящена значительная часть исследований последних лет [67—69].  [c.69]


Смотреть страницы где упоминается термин Атмосферная и коррозионная стойкость: [c.382]    [c.179]    [c.331]    [c.60]    [c.206]    [c.345]    [c.49]    [c.56]    [c.61]    [c.19]   
Смотреть главы в:

Технология лаков и красок -> Атмосферная и коррозионная стойкость




ПОИСК





Смотрите так же термины и статьи:

Коррозионная стойкость

Коррозионная стойкость различных металлов и сплавов в атмосферных условиях



© 2025 chem21.info Реклама на сайте