Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции биосинтетические

    Наиболее чувствительный тип регуляции синтеза аминокислот-это аллостерическое ингибирование первой реакции биосинтетического пути конечным продуктом данной последовательности реакций (разд. 9.18 и 13.11). Первая реакция биосинтетического пути обычно необратима и катализируется аллостерическим ферментом. На рис. 22-8 аллостерическая регуляция показана на примере синтеза изолейцина из треонина, о котором мы уже говорили ранее (разд. 9.18). Конечный продукт-изолейцин-действует как отрицательный модулятор первой реакции этого пути. Такого рода аллостерическая, или нековалентная, модуляция синтеза аминокислот обеспечивает у бактерий быстрый ответ на изменение ситуации. [c.660]


    Каково происхождение факторов устойчивости к антибиотикам Почему в природе так широко распространены гены, обеспечивающие инактивацию столь необычных молекул, как антибиотики Возможно, это объясняется тем, что гены устойчивости к антибиотикам в обычной ситуации выполняют какие-то нормальные биосинтетические функции, но наличие в среде антибиотиков приводит к отбору мутантов, гены которых способны обеспечивать их инактивацию. Тем не менее до конца не ясно, почему факторы, обеспечивающие устойчивость к лекарственным препаратам, появляются так часто именно в популяции, обработанной антибиотиком. Частичным решением проблемы устойчивости послужило создание полусинтетических модификаций антибиотиков, встречающихся в природе. Поскольку К-факторы переносят гены, ответственные за синтез ферментов, изменяющих специфические участки антибиотика, иногда удается химически изменить эти участки таким образом, чтобы они больше не участвовали в ферментативной реакции, индуцируемой К-фактором. [c.258]

    Биосинтетические реакции углеводов [c.46]

    Среди всех классов природных соединений класс алкалоидов — один из наиболее многочисленных, а по структурному разнообразию они, бесспорно, являются лидерами в живом мире. Отсюда, наверное, и вытекает тот факт, что пути биосинтеза этих соединений весьма разнообразны, они не имеют единого предшественника, ключевого соединения, основного типа реакций. Но все-таки, кое-какой порядок здесь есть и можно выделить важнейшие реакции, характерные для биосинтеза алкалоидов и классы стартовых соединений, вовлекаемых в эти превращения. Следует сразу же отметить, что алкалоиды далее всех других природных классов отстоят на биосинтетическом пути от начальных биосинтетических реакций, от начальных биосинтетических [c.253]

    В таком виде этот витамин-кофер-мент катализирует реакции карбокси-лирования органических кислот в нескольких биосинтетических схемах. [c.280]

    Относительно биосинтетического происхождения полиэфиров пока можно констатировать только то, что они образуются реакциями циклизации высоко оксигенированных метаболитов поликетидной и изопреноидной структуры. Так, сквален может быть полностью гидроксилирован по всем своим двойным связям, образуя молекулу многоатомного спирта, внутри которой [c.335]

    Наряду с синтетическими и биосинтетическими методами для приготовления меченых соединений применяют также обменные реакции между неактивным веществом и радиоизотопом, обычно находящимся в простом химическом соединении. Обмен неактивных атомов происходит при условиях, увеличивающих подвижность этих атомов. В обычных условиях радиоизотоп, вступающий в молекулу, оказывается стабильно связанным. [c.684]


    Биохимические реакции первого типа (реакции замещения) включают все те гидролитические реакции, в процессе которых биополимеры расщепляются до мономеров, а также большинство реакций, приводящих к конденсации этих мономеров с образованием полимеров. Многие реакции присоединения обеспечивают введение атомов кислорода, азота и серы в биохимические соединения, а реакции элиминирования часто служат движущей силой биосинтетических путей. Сложные ферментативные процессы во многих случаях представляют собой сочетания нескольких стадий, включающих замещение, присоединение или отщепление. Реакции, включающие образование или расщепление связей С—С, существенны для биосинтеза и расщепления различных углеродных скелетов, существующих в биомолекулах, в то время как реакции изомеризации связывают между собой другие типы реакций при формировании метаболических путей. [c.91]

    Роль АТР в функционировании биосинтетических реакций рассматривалась в гл. 7 (разд. Е) при этом внимание было сосредоточено целиком на полифосфатной группе, которая подвергается расщеплению. [c.188]

    Проблему обратимости катаболических реакций природа решила путем сопряжения биосинтетических реакций с реакцией расщепления АТР, о чем уже шла речь при обсуждении вопроса о сопряжении гидролиза АТР С одной из биосинтетических последовательностей (гл. 7, разд. Е). Наряду с этим для осуществления реакций биосинтеза живые клетки используют также и другие способы утилизации свободной энергии, выделяемой при гидролизе АТР. Смысл многих, на первый взгляд непонятных стадий метаболизма может стать понятным, если иметь в виду, что они предназначены для процессов сопряжения расщепления АТР с биосинтезом. Ниже рассмотрено несколько наиболее важных механизмов сопряжения этого типа. [c.459]

    Следует, однако, учитывать при этом также и законы кинетики. Последовательность биосинтетических реакций протекала бы, вероятно. [c.462]

    Как указывалось выще, потеря карбоксильных групп в виде СО2 (декарбоксилирование) характерна для многих биосинтетических реакций. Обращаясь опять к рис. 11-3, с интересом можно отметить, что для мно(г их промежуточных продуктов биосинтеза, таких, как пируват, кетоглутарат или оксалоацетат, характерна более высокая степень окис- [c.473]

    Примерами биосинтетических реакций могут служить реакции превращения алкалоидов, в которых фенольные кольца соединяются орто-орто-, орто-пара- или пара-пара-положениями по механизму одноэлектронного окисления металлнезависимыми фер-ментами. Окислительное соединение фенолов в течение долгого времени признавали важнейшим биосинтетическим процессом, характерным не толькр для алкалоидов, но в некоторых случаях [c.324]

    Какие из биосинтетических операций можно воспроизвести в условиях лаборатории органической химии Первые исследования, направленные на осуществление неферментативной реакции, подобной биогенетической полиеновой циклизации, больших надежд не подавали. Однако Ван Тамелен [207] обнаружил, что если предварительно получить 0-кольцо, то изоэуфенольную систему можно получить с хорошим выходом при обработке эпоксидного предшественника кислотой Льюиса. [c.335]

    Коэнзим А занимает центральное место в качестве посредника во всех биосинтетических реакциях, идущих с участием двууглеродных единиц. В метаболиз1ме углеводов он участвует следующим образом. Гексозы расщепляются до пировиноградной кислоты той же последовательностью реакций, что и при спиртовом брожении, но в мышечных тканях пировиноградная кислота частично обратимо восстанавливается до молочной кислоты, а частично окисляется по следующему суммарному уравнению  [c.729]

    Особые, в какой-то мере, специфические свойства проявляют оксикислоты, являющиеся интермедиатами различных биосинтетических реакций при ферментативном катализе in vivo. [c.22]

    Этот цвиттерионный фрагмент — фрагмент, обладающий высокой гид-рофильностью — характерен для фосфолипидов и соответственно липидных мембран. В некоторых биосинтетических реакциях, в частности, при биосинтезе некоторых аминокислот, в качестве известен эфедрин, используемый в медицинской практике в качестве сосудосуживающего и бронхорасширяющего средства, его применяют при лечении аллергических заболеваний, а также как стимулятор центральной нервной системы и при отравлении некоторыми [c.29]

    Другой интересный кофермент N-гликозидной структуры — кофермент А (СоА, oA-SH), который участвует в биохимических реакциях переноса ацильного фрагмента п vivo и образует при биосинтезе большинства классов природных соединений интермедиат 0-S- O- H3. N-гликозидом является и ко-фермент S-аденозилмети-онин, осуществляющий перенос мети-леной группы в биосинтетических реакциях (схема 3.6.22). [c.67]

    Нетрудно увидеть, анализируя материал предыдущего параграфа, что углеродные цепочки размера Сз-С с карбоксильной группой образуются в ходе фотосинтеза (пировиноградная и ща-велевоукесусная кислоты). Кроме того, из пировиноградной кислоты реакцией окислительного декарбоксилирования получается уксусная кислота, столь необходимая для биосинтеза а-аминокислот и широко используемая Природой в других биосинтетических схемах. [c.78]


    Пальмитиновая кислота является первым самостоятельным продуктом биосинтеза жирных кислот. В последующем она может удлиняться до насыщенных кислот С,д и т.д. по тому же механизму ацильной сборки", либо включаться в последующие биосинтетические превращения. Из последующих (после сборки алкильной цепи) реакций насыщенных жирных кислот необходимо выделить образование ненасыщенных жирных кислот — олеиновой кислоты из стеариновой, как [c.133]

    Одно из характерных биосинтетических преобразований хоризмовой кислоты приводит через стадию синтеза антраниловой кислоты к аминокислоте триптофану. Хоризмовая кислота, в зависимости от типа катализирующего реакцию фермента, аминиру-ется глутамином либо в орто-положение [c.215]

    Приведенные схемы отражают принципиальные биосинтетические реакции хоризмовой кислоты. Учитывая специфичность воздействия ферментов на каждой стадии этого биосинтетического пути, следует представлять все эти [c.217]

    В последующих биосинтетических реакциях п-аминобензойная кислота широко используется микроорганизмами как фактор роста, для синтеза меланиновых пигментов грибами (например, Agari us Ызротз).  [c.217]

    Гидроксикоричные кислоты, выполняя какую-то собственную биологическую роль в природных источниках (в растениях) служат исходными веществами для биосинтеза ароматических кислородных гетероциклических соединений — кумаринов, флавоноидов, антоцианов. Схема образования кумаринов—наиболее простая в этом ряду биосинтетических превращений, начинается с реакции гидроксилирования, скорее всего, радикального по типу входящей частицы — п-кумаровой кислоты. На втором этапе происходит внутримолекулярная этерификация (лактонизация), результатом которой является кумари-новый цикл. В дальнейшем может происходить повторное гидроксилирование бензольного кольца с образованием конечного продукта — эскулетина. [c.218]

    Как мы увидели выше, шикимовая кислота — достаточно универсальный ключевой интермедиат, так как наряду с фенолами и фенолокислотами она образует и целую серию протеиногенных аминокислот. Но в то же время шикимовая кислота не столь универсальна, чтобы единолично решить задачу синтеза всех фенольных производных. Биосинтез флавоноидов представляет собой случай комплексного биосинтетического пути наряду с шикиматны-ми реакциями здесь используются и поликетидные. Активированные коэнзимом А коричные кислоты способны вступать во взаимодействие с типичными интермедиатами поликетидного биосинтеза, такими как малонил-З-СоА, образуя смешанные поликетиды, которые после восстановления и внутримолекулярной конденсации превращаются в гидроксилированные халконы, способные к последующему формированию у-пиронового цикла. Ступеней на этом пути немало, но все они достаточно логичны и реализуемы в рамках ферментативной химии (схема 8.4.12). [c.221]

    Настоящая биосинтетическая схема (8.4.12) интересна новым способом образования ароматического бензольного цикла из поликетидного фрагмента поликетидная цепочка, характеризуемая чередованием карбонильных и метиленовых групп (последняя активирована в силу соседства с двумя С=0 функциями) под влиянием фермента может приобретать конформацию, где карбонильная функция и активированное метилированное звено сближены в пространстве и при незначительном по силе кислотно-основном катализе образуют С=С связь реакцией конденсации. Образующийся при этом цик-логексен-3,5-дионовый цикл самопроизвольно изомеризуется в соответствующий фенол. [c.222]

    Современные биосинтетические исследования дали обширную информацию о путях биосинтеза алкалоидов многие алкалоиды были успешно синтезированы аеалогично тому, как это обычно происходит в природе. В качестве примера участия реакции Манниха в биосинтезе можно привести, биосинтез лупиновых алкалоидов. На схеме 2.5 иаобра жен биосинтез этой алкалоидной системы из аминокислоты лизина. [c.49]

    Практическое применение нашли обменные реакции для синтеза органических соединений, меченных изотопами водорода, 5 и радиогалогенами. Преимущества этого способа проявляются ярче всего при синтезе меченых веществ, получение которых синтетическими или биосинтетическими методами затруднено или невозможно. Выходы получаются высокие, чистота веществ в случае классических обменных реакций обычно выше, чем в химических синтезах, хотя при обменных реакциях нельзя забывать о возможности изомеризации или перегруппировок. Если в молекуле имеется несколько атомов обмениваемого элемента, то специфически меченные соединения можно получить только в ограниченном числе случаев. Обычно получают неспецифически меченные соединения, что, однако, во многих случаях не является недостатком. Большое внимание необходимо уделять стабильности связи радиоизотопа в молекуле меченого вещества в условиях применения. Определенный недостаток этого метода состоит в том, что атомы, замененные в мягких условиях, в условиях применения также легко будут потеряны при жестких условиях замены могут происходить различные побочные реакции или распад молекулы, предназначенной для получения меченого-соединения. [c.684]

    Изучение фотографических изображений клетки, полученных прн помощи микроскопа в разные моменты времени, позволили увидеть, что плазматическая мембрана, так же как и митохондрии и другие органеллы, постоянно находится в движении. Митохондрии скручиваются и поворачиваются, а поверхность мембраны постоянно совершает волнообразные движения. Пузырьки освобождают свое содержимое в окружающую среду, выводя его из клеток, а перенос веществ внутрь клетки осуществляется за счет процесса эндоцитоза (гл. 1, разд. Б.4). При помощи химических методов было показано также, что составляющие мембраны вещества транспортируются из эндоплаз1матического ретикулума в пузырьки аппарата Гольджи, в экскреторные гранулы и в плазматическую мембрану. Важным этапом биосинтетических процессов, протекающих в клетке, является присоединение углеводных (гликозильных) остатков к молекулам белка с образованием гликопротеидов и гликолипидов. Ферменты, катализирующие эти реакции, — гликозилтрансферазы (гл. 12)-—обнаружены в эндоплазматическом ретикулуме и в пузырьках а1ппарата Гольджи. Эти ферменты катализируют присоединение углеводных единиц (по одной в каждом акте реакции) к определенным местам молекул белков, липидов и других соединений, экскретируемых из клеток. Другие ферменты катализируют присоединение сульфатных и ацетильных групп к углеводным фрагментам молекул глико Протеидов. [c.356]

    РИС. 7-1. Краткая схема некоторых метаболических путей. Жирными линиями показаны некоторые из наиболее важных катаболических путей, штриховыми линиями — биосинтетические пути. Указано несколько пунктов синтеза и использовании АТР, а также несколько реакций, в которых образуются или используются восстановленные формы переносчиков водорода (NADH, NADPH и FADHj). [c.86]

    В биосинтетических реакциях ацильные группы часто переносятся от амидов или сложных эфиров к различным акцепторам. Например, конечной стадией в образовании пептидных связей в процессе синтеза белка на рибосомах является перенос пептидильной группы, присоединенной при помощи эфирной связи к молекуле тРНК, к аминогруппе активированной аминокислоты (гл. 11, разд. Д,1). [c.116]

    Последнее соединение превращается в префенат в результате двух ферментативных стадий (стадия б). Префенат затем еще раз вступает в реакцию сопряженного отщепления (стадия в), сопровождающуюся потерей молекулы воды и СО2 и приводящую к образованию фенилпиру-вата — непосредственного биосинтетического предшественника фенилаланина. На примере этих реакций можно наглядно продемонстрировать, как реакции отщепления могут быть использованы для образования ароматических групп. Действительно, именно с помощью таких реакций происходит обычно синтез ароматических групп в природе. [c.152]

    Многие реакции присоединения и элиминирования строго обратимы. Это обычно наблюдается для реакции присоединения воды к двойной связи независимо от того, осуществляется ли она в присутствии фермента (фумаразы) или путем неферментативной гидратации альдегидов и кетонов. Однако в биосинтетических последовательностях реакции часто оказываются практически необратимыми в связи с тем, что в результате реакции происходит отщепление фосфата или пирофосфата, а в клетке концентрация обоих этих ионов мала, и, следовательно, обратная реакция обычно не идет. При элиминировании с декарбоксилиро- [c.153]

    Дегидрогеназы а-кетокислот продуцируют производные СоА, кото рые могут вступать в биосинтетические реакции. С другой стороны, ацилпроизводные СоА могут расщепляться с образованием АТР. Пиру-ват-формиат-лиазная система также составляет часть системы, генерирующей АТР у анаэробных организмов [например, в смещанном кис-ютном брожении у энтеробактерий, в том числе у Е. соН (гл. 9, разд. Е, 2)]. Эти две реакции представляют пару важных процессов, обеспечивающих фосфорилирование на субстратном уровне. По этой причине на рис. 8-19 они выделены. Их следует сравнить с двумя ранее рассмотренными примерами фосфорилирования на субстратном уровне (рис. 8-4 и 8-3). [c.275]

    Аналогичным примером использования АТР может служить его участие в фотосинтетическом восстановлении двуокиси углерода, в процессе которого АТР фосфорилирует рибулоэо-5-монофосфат до рибуло-зодифосфата, после чего фосфатные группы удаляются в результате дей- ствия фосфатазы на фруктозодифосфат и седогептулозодифосфат (разд. Г, 2). Фосфатазы, участвующие в биосинтетических реакциях, характеризуются обычно высокой степенью субстратной специфичности, чем существенно отличаются ог неспецифических фосфатаз, относящихся к ферментам, участвующим в процессах переваривания пищи (гл. 7, разд. Д, 1). [c.464]

    Заметим, что, поскольку NADPH непрерывно используется, в биосинтетических реакциях, превращаясь при этом в NADP" , цикл, приведенный в уравнении (11-13), должен функционировать непрерывно. Также как, и в случае реакций (11-9), истинное равновесие в этом цикле не достигается, однако стадии бив практически равновесны. Эти равновесные состояния в сочетании с соответствующим равновесием, достигаемым в реакциях (11-9) для системы с NAD, поддерживают правильный окислительно-восстановительный потенциал обоих пирядиннуклео-тидных коферментов в цитоплазме. [c.471]

    Важная роль карбонильных групп в механизмах реакций конденсации указывает на то, что формирование ак линейных, так и разветвленных углеродных цепей (происходит при взаимодействиях соединений, средняя степень окисленности атомов углерода в которых аналогична степени их окисленности в углеводах (ил1и в формальдегиде НаСО). Разнообразие химических реакций, в которых могут принимать участие соединения, находящиеся в этом состоянии окисления, максимально, и это Обстоятельство позволяет понять, почему углеводы и близкие -к ним соединения составляют больщинство биосинтетических предщественни-ков и почему средняя степень окисленности углерода в больщинстве соединений, входящих в состав живых организмов, близка к степени окисленности атомов углерода в углеводах [14] [c.473]

    Возможность восстановления оксипирувата до фосфоенолпирувата (рис. 11-5) зависит от наличия АТР эта реакция, точно так же, как и в случае гликолиза (рис. 9-7), может быть осуществлена путем восстановления до 3-фосфоглицерата с последующей изомеризацией до 2-фосфоглицерата и элиминированием, приводящим к образованию РЕР. Превращение малата в ацетат и глиоксилат через малил-СоА (гл. 7, разд. К, 2,3) приводит к образованию ацетата в качестве продукта реакции и сопровождается регенерацией глиоксилата. Так же как и в других метаболических циклах, различные промежуточные продукты, например РЕР, могут извлекаться и поступать в другие биосинтетические циклы. Однако при этом важно иметь независимый путь получения регенерирующегося субстрата. Таким путем является его образование из ацетата (показанным на рис. 11-5), в котором используется циклический процесс, рассмотренный в предыдущем разделе. [c.479]

    Мы видели, что ацетил-СоА может быть использован для синтеза жирных кислот с длинной цепью и что это достигается карбоксилированием до малонил-СоА. Малонильную группу мы можем рассматривать как -карбоксилированную ацетильную группу. В процессе синтеза Жирных кислот происходит отщепление карбоксильной группы, и в жирную кислоту в конечном счете включается только ацетильная группа. Аналогично пируват можно рассматривать как а-карбоксилированный ацетальдегид, а оксалоацетат — как а- и р-дикарбоксилированный ацетальдегид. В процессе биосинтетических реакций эти трех- и четырехуглеродные соединения очень часто подвергаются декарбоксилированию. Таким образом, оба эти типа соединений можно рассматривать как активированные ацетальдегидные единицы . Фосфофенолпируват представляет собой а-карбоксилированную фосфофенольную форму ацетальдегида перед включением двухуглеродной единицы в конечный продукт он подвергается декарбоксилированию и дефосфорилированию. [c.487]

    РИС. 11-11. Сопряженные друг с другом пути гликолиза, глюконеогенеза и окисления жирных кислот, а также синтезов с указанием некоторых способов регуляции (—") — реакции гликолиза и окисления, протекающие через цикл трикарбоновых кислот. Сплошные жирные стрелки указывают путь углерода от гликогена (верхний правый угол) к СОг. ( ->)—биосинтетические пути. Прерывистые жирные стрелки означают глюко-неогенезный путь от пирувата через оксалоацетат и малат. [c.512]


Смотреть страницы где упоминается термин Реакции биосинтетические: [c.17]    [c.205]    [c.26]    [c.260]    [c.277]    [c.347]    [c.174]    [c.475]    [c.482]    [c.487]   
Общая органическая химия Т.11 (1986) -- [ c.395 ]




ПОИСК





Смотрите так же термины и статьи:

Биосинтетические реакции углеводов

Хлоропласты осуществляют и другие биосинтетические реакции



© 2025 chem21.info Реклама на сайте