Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Силы взаимодействия между полярными, неполярными молекулами и ионами

    Диссоциирующая сила растворителя определяется его диэлектрической постоянной, поскольку сила взаимодействия между двумя ионами тем меньше, чем больше диэлектрическая постоянная растворителя. Так, например, в воде, для которой s = 81, сила взаимодействия между ионами уменьшается в 81 раз по сравнению с силой, действующей между ними в пустоте, а в бензоле, для которого е = 2,23, только в 2,23 раза. Поэтому молекулы солей, кислот и оснований в воде распадаются на ионы, а в бензоле нет. Причем, чем больше полярность связи, тем больше полярных молекул растворителя ориентируется вокруг ионов этой связи, тем больше она ослабляется. Поэтому в полярном растворителе в молекулах электролитов рвутся прежде всего связи, степень полярности которых больше. Например, для двух связей К — ОиН — Ов молекулах К — О — Н более полярной является первая по этой связи и идет диссоциация молекул КОН в полярном растворителе, в частности в воде. В неполярном растворителе не могут рваться какие бы то ни было связи (т. е. не может быть диссоциации молекул на ионы), так как в этом случае отсутствует ориентация неполярных молекул растворителя вокруг полюсов связей. [c.265]


    Из сказанного выше вытекает, что в настоящее время еще невозможно сформулировать какую-либо зависимость между растворимостью белков и их составом или порядком распределения аминокислот в их молекуле. Растворимость вещества в растворителе почти всегда зависит от силы взаимодействия между молекулами растворителя и растворяемого вещества, а также от энергии кристаллической решетки твердой фазы, т. е. от сил, действующих между молекулами растворяемого вещества. Если интенсивность притяжения между молекулами растворяемого вещества и растворителя превышает взаимное притяжение молекул растворяемого вещества, то должно произойти растворение. Так как диаметр молекул глобулярного белка очень велик, то взаимодействовать друг с другом способны только те группы, которые расположены на поверхности молекулы. В связи с этим можно заключить, что растворимость белков будет зависеть главным образом от природы тех групп, которые образуют поверхность крупных частиц, а также частично от распределения ионных и неполярных групп между поверхностью и внутренней частью белковой молекулы [8, 26, 38, 40]. К сожалению, наши знания о таком расположении полярных и неполярных групп очень ограниченны. Некоторые сведения о распределении полярных групп можно получить, определяя прирост диэлектрической постоянной при растворении белков (см. гл. VII). [c.114]

    Прп переходе от реакций неполярных молекул к реакциям между ионами или полярными молекулами механизмы элементарных стадий резко меняются. Действительно, силы электростатического взаимодействия имеют другой порядок и в отношепии масштаба расстояний, п в отношении абсолютных значений, поскольку вандерваальсовы сплы уменьшаются с расстоянием по закону 1/Р, тогда как электростатические — по закону 1/Р. [c.33]

    Для того чтобы понять, почему эти соединения включаются в образование мембран, необходимо рассмотреть факторы, влияющие на растворимость. Степень распределения вещества в растворителе определяется соотношением сил взаимодействия вещество — вещество в твердом состоянии с силами взаимодействия растворитель — растворитель и вещество — растворитель в жидкой фазе. В полярных соединениях эти силы связывания кристаллической решетки достигают больших величин (например, электростатическое взаимодействие в ионных или цвиттер-ионных твердых веществах либо многочисленные водородные связи в сахарах). Мало вероятно, чтобы такие соединения легко распределились в неполярном растворителе, где взаимодействие вещество — растворитель будет очень слабым и создаваемый при этом небольшой запас энергии будет недостаточен, чтобы компенсировать энергию, необходимую для отрыва молекул из кристаллической решетки. Наоборот, высокополярные растворители, вероятно, будут растворять неполярные вещества, поскольку включение молекул неполярного вещества между молекулами полярного растворителя должно нарушать относительно сильное взаимодействие между молекулами растворителя без какой-либо значительной компенсации взаимодействием вещество — растворитель. Итак, для тех веществ, которые при растворении распределяются в виде изолированных молекул, существует хорошо известное качественное соотношение между растворимостью и относительной полярностью вещества и растворителя. [c.337]


    В теоретических расчетах, выполняемых в рамках модели чисто физической адсорбции, для улучшения сходимости результатов с опытом, учитывают кроме дисперсионного притяжения силу отталкивания зарядов, принимая ее обратно пропорциональной 12-й степени расстояния между центрами зарядов. Если взаимодействующие частицы имеют постоянные дипольные моменты (например, молекулы воды или ионные поверхности) или свободные электроны (металлические поверхности), то между ними возникают и классические электростатические силы. Точный теоретический расчет их величины невозможен, хотя на практике они вносят существенный вклад в силу взаимодействия, а иногда и определяют характер процесса адсорбции. Так, например, гораздо более широкое применение в производственных условиях активированных углей по сравнению с синтетическими полярными адсорбентами - силикагелями, цеолитами, объясняется тем, что угли ввиду неполярности поверхностных частиц одинаково взаимодействуют как с полярными, так и с неполярными молекулами газовой фазы. Молекулы воды, обладая постоянным дипольным моментом, взаимно притягивают друг друга в паровой фазе, [c.380]

    Как известно, в мицеллах, образованных ПАВ в углеводородных средах, полярные части дифильных молекул расположены в центре агрегатов, т. е. ориентация мицеллообразующих молекул обратна той, которая существует в воде. Так как диэлектрическая проницаемость обычных неводных растворителей мала и ионогенные ПАВ в неполярной среде не диссоциируют, то мицелла не несет на себе ионов, подобно тому как это имеет место в водном растворе. Притяжение, необходимое для образования агрегата, в этом случае является результатом сильного взаимодействия полярных групп или дипольного взаимодействия через водородные связи или, наконец, возникает вследствие образования специфических координационных связей, сопровождающегося некоторой изоляцией олеофильной части молекулы от растворителя. Главным фактором, приводящим к изолированию молекул в таких системах, является энтропия смешения. Силы, регулирующие образование мицелл в неводном растворе и в водной среде, совершенно отличны, что видно, например, из того, что в углеводородных растворителях длина углеводородной цепи не влияет так сильно на ККМ [62]. Так как взаимодействие между молекулами ПАВ, как правило, больше, чем взаимодействие молекул неполярных растворителей, то поверхностная активность ПАВ в углеводородных средах почти не проявляется. Только фторуглеродные и некоторые кремнийорганические соединения, у которых межмолекулярное взаимодействие выражено слабее, чем у углеводородов, обнаруживают в них поверхностную активность. [c.100]

    Было выработано представление о металлической связи , как о таком виде связи, когда положительные ионы металла удерживаются вместе в кристаллической решетке благодаря электростатическому взаимодействию с отрицательно заряженным электронным газом. Постепенно стала выясняться природа сил сцепления между нейтральными, полярными (молекулы воды, спиртов, органических кислот и пр.) и неполярными молекулами (молекулы водорода, кислорода, инертных газов и т. д.). Наконец, были подвергнуты исследованию отталкивательные силы, обусловливающие наличие определенного конечного объема у атомов и молекул. Таким образом, в настоящее время различают следущие разновидности межатомного и межмолекулярного взаимодействия  [c.54]

    Вследствие низкой диэлектрической проницаемости неполярных растворителей ионогенные ПАВ в них практически не диссоциируют, Когезионные силы между молекулами иАВ в мицеллах обусловлены, главным образом, диполь-дипольным взаимодействием между ионными парами и возможными водородными связями. Мицеллообразованию в неводных средах может способствовать наличие воды, связывающей полярные группы. Она оказывается внутри мицеллы. Избыточное количество воды, растворенной в среде, может привести к обращению структуры мицеллы. [c.345]

    Исследования структуры и физических свойств молекул привели к понятиям о различных видах связи между частицами. Электростатическое взаимодействие между положительно и отрицательно заряженными ионами представляет собой ионную связь. Ионная связь отличается от гомеополярной связи, которая является результатом взаимодействия валентных электронов атомов, участвующих в образовании связи. Под металлической связью стали понимать такую связь, когда положительные ионы металла удерживаются вместе в кристаллической решетке вследствие электростатического взаимодействия с отрицательно заряженным электронным газом. Была также выяснена природа сил сцепления между нейтральными, полярными и неполярными молекулами и подвергнуты исследованию силы отталкивания. Целый ряд физических факторов указывает на существование сил отталкивания между частицами. Эти силы противодействуют силам сцепления и обусловливают наличие устойчивых положений равновесия частиц в кристаллических и квази-кристаллических системах. [c.98]


    При нанесении капли раствора фосфолипидов на отверстие в перегородке наблюдается так называемое первичное почернение мембраны — ее толщина значительно превышает длину волны видимого света. Затем мембрана истончается и дает интерференционную картину, так как толщина ее становится соизмеримой с длиной волны видимого света. Терминальная стадия процесса образования бислоя— вторичное почернение — наблюдается в результате уменьшения толщины мембраны до 5—6 нм. Истончение пленки обусловлено выталкиванием воды из густого внутреннего слоя мембраны в электролит и перемещением фосфолипидных молекул к краям отверстия. В результате этих процессов на отверстии в гидрофобном материале формируется двойной фосфолипидный слой, причем полярные группы монослоев обращены в раствор, омывающий мембрану, а неполярные ориентированы внутрь структуры. Мембрана стабилизируется электростатическими взаимодействиями между ионами электролита и заряженными группами фосфолипидов, а также силами сцепления Лондона и Ван-дер-Ваальса, которые действуют между гидрофобными участками фосфолипидных молекул. [c.133]

    Природа растворителя является еще одним важнейшим внешним фактором, влияюш им на стабильность органических ионов. Многостороннее по своему характеру влияние растворителя в первом приближении можно схематически свести к двум аспектам. С одной стороны, полярный растворитель, т.е. жидкость с высокой диэлектрической проницаемостью, чисто физически снижает кулоновское взаимодействие зарядов, Этот эффект может быть довольно значительным например, переход от неполярного растворителя (гексана) к полярному (ацетонитрилу) уменьшает силы кулоновского взаимодействия б 21 раз. С другой стороны, молекула растворителя может стабилизировать ионы любого заряда за счет заряд-дипольных взаимодействий, образования водородных связей, комплексов разного типа, короче, за счет эффектов, обобщенно обозначаемых термином сольватация. Эти эффекты сольватации приводят к значительному экранированию заряда иона молекулами растворителя и частичной делокализации заряда, распределению его между ионом и сольватной оболочкой. [c.95]

    Гидрофобные взаимодействия, являющиеся по своей природе энтропийным эффектом, не приводят к возникновению каких-либо новых, дополнительных сил, и поэтому выражение "гидрофобные силы" лишено физического смысла. Такие взаимодействия возникают из-за водного окружения молекулы белка и из-за специфической структуры воды. Для полярных и неполярных групп белка гидрофобные взаимодействия играют ориентирующую роль следствием их является образование наиболее предпочтительных внутри- и межмолекулярных контактов между родственными по своей природе группами. Сами же контакты и их эффективности описываются обычными ван-дер-ва-альсовыми взаимодействиями, электростатикой и водородными связями с учетом влияния среды. Водное окружение может способствовать образованию ионных пар или солевых связей, так как при этом освобождается часть ориентированных молекул воды, окружавших заряженные группы, и, следовательно, увеличивается энтропия воды. Показано [4], что в ряде случаев выигрыш энтропии оказывается более значителен, чем ослабление энергии кулоновских взаимодействий зарядов в водном окружении. При добавлении неводных растворителей солевые связи в отличие от гидрофобных взаимодействий усиливаются. [c.242]

    Природа реагирующих веществ. Здесь большую роль играют как внутримолекулярные (химические), так и меж-молекулярные (ван-дер-ваальсовы) силы. Вещества с неполярными молекулами, как правило, реагируют между собой наименее быстро. Это является результатом прочности внутримолекулярных связей и сравнительной слабости межмо-лекулярных сил. С другой стороны, полярные вещества в водных растворах чрезвычайно быстро взаимодействуют между собой в виде ионов. При значительных силах взаимодействия между молекулами реагирующих веществ скорость реакции возрастает. Полярность молекул является важным фактором именно в этом отношении. [c.27]

    Дипольные моменты и полярность отдельных молекул не дают представления об истинных свойствах системы в жидком и газообразном состояниях. В качестве характеристики в этом случае пользуются величиной диэлектрической постоянной, представляюш ей собой отношение силы взаимодействия между двумя зарядами в вакууме к этой силе, при тех же условиях, в данной среде. E vTH вещество с полярными связями, но неполярными молекулами растворить в полярном растворителе, то под влиянием растворителя у молекул возникает наведенный дипольный момент, изменяющий их свойства. В некоторых случаях этот момент столь велик, что полярные связи превращаются в ионные, и вещество подвергается электролитической диссоциации. Так как молекулы полярных растворителей в той или иной степени ассоциированы, то для оценки их влияния в растворах пользуются диэлектрической постоянной. Чем выше диэлектрическая постоянная растворителя, тем сильнее его влияние на полярные связи в молекулах растворенных веществ, тем вероятнее их превращение в ионные. [c.94]

    Высокая напряженность электростатического поля вблизи иона (10 В/см) определяет сильную поляризацию дипольных молекул (увеличивающую ион-дипольное взаимодействие) и образование наведенного диполя в неполярных частицах. Например, известны комплексы того же Н" с одной, двумя, тремя и более молекулами Н,. Комплексы образуют и незаряженные, полярные частицы за счет сил диполь-диполь-ного взаимодействия. Максимальная энергия взаимодействия двух диполей, если они расположены на одной прямой, а разноименные заряды обращены друг к другу, приближенно определяется выражением где ЦдЦв— величины дипольных моментов, г — расстояние между молекулами. Подставляя среднее значение х 1 Дебай и г = 1 нм, получим =10 кДж моль , превышающую энергию теплового движения молекул 1,5 КТ = 3,8 кДж моль при 300 К. (Приведенное простое выражение для энергии диполь-дипольного взаимодействия справедливо, если расстояние между полярными молекулами заметно больше их радиусов.) [c.25]

    Энергии взаимодействия молекул растворителя с неполярным радикалом молекулы кислоты и иона, образованного из этой молекулы, близки между собой, а так как изменение силы кислот определяется величиной (21 Тоионов— ёТомолекул) ОТЛИЧИЯ В величине этой энергии для кислот не сказываются на изменении их относительной силы. Энергии взаимодействия растворителя с молекулами кислот разной природы определяются индивидуальными особенностями во взаимодействии полярной части молекул с дипольными молекулами растворителей. Влияние растворителя на изменение энергии ионов объясняется особенностями их структуры и отличием энергии их взаимодействия с дипольными молекулами растворителей. Например, различие в энергии взаимодействия ионов карбоновых кислот и фенолов объясняется тем, что карбоновые кислоты при ионизации изменяют свою структуру  [c.384]

    Дисперсионные силы универсальны. Они действуют как между всеми видами молекул (полярными и неполярными), так и между атомами и ионами. Часто налагаются на другие виды взаимодействия. Полная потенциальная энергия ван-дер-ваальсовых сил притяжения  [c.127]

    По новейшим взглядам проводить какую-либо резкую грань между химическими и физическими силами взаимодействия нет оснований. Известно, насколько разнообразны виды химической связи, начиная от весьма прочной ионной и ковалентной и кончая довольно слабой водородной связью. Точно так же многообразна и обычная физическая межмолекулярная связь, обусловленная не валентными, а вандерваальсовыми силами. В адсорбционных явлениях, в которых происходит взаимодействие разнородных частиц адсорбента и адсорбтива не только в виде целых молекул с разнообразными внутримолекулярными связями (ионными, полярными, полуполярными, неполярными), но и в виде атомов и ионов, очевидно возможно проявление всех видов химических и физических сил. [c.83]

    Принимая je l = 162) = 1,6-10" Кл .i = 6,0-10 3 Км е, = = 2,0 Ео = 8,85-10 Ф/м = 2-10 м г = 10 м, будем пметь, соответственно, Fj = —1,1-10 Дж, Vo = 4,5-10 Дж, Vs = —1,1-10 Дж. Таким образом, на расстоянии 10 мот центра попа его взаимодействие с другим ионом значительно превосходит кТ = 4,2-10 Дж взаимодействие с дипольной молтеку-лой имеет величину того же порядка, что и кТ, а взаимодействие с неполярной молекулой сравнительно мало. Энергия электростатического притяжения пары полярных молекул еще меньше, причем на малых расстояниях основное значение приобретают дисперсионные силы [6]. Расчет расстояний между частицами, при которых энергия электростатического взаимодействия иона будет равной кТ, дает, соответственно Гд = 2,7-10 м, г" = 1,0-10 м и = 1,4 X X 10 1 м. [c.131]

    В таких молекулах заряды локализованы и вступают с растворителем в ион-дипольное взаимодействие. В случае неполярного растворителя и полярного растворенного вещества (или наоборот) происходит поляризация растворителя под действием электрического поля растворенного вещества, между ними возникает притяжение. Такие взаимодействия (диполь — наведенный диполь) вносят вклад в ван-дер-ваальсовы силы, однако они малы и их значениями можно пренебречь. [c.166]

    Обратимые молекулярные взаимодействия в биологических системах обусловлены возникновением водородных связей, а также электростатических и вандерваальсовых взаимодействий. Сильнейшее влияние на эти взаимодействия оказывает вода благодаря таким своим свойствам, как полярность, когезионная сила и способность к образованию водородных связей в качестве и донора, и акцептора водорода. В присутствии воды ослабевают электростатические взаимодействия и водородные связи между другими молекулами и ионами. С другой стороны, в присутствии воды усиливается взаимодействие неполярных молекул. Так, при связывании субстрата с активным центром, лежащим в щели на ферменте, происходит исключение воды из [c.129]

    Другим внешним фактором, тг1кн е играющим сущест-вепную роль в стабилизации органических ионов, является природа растворителя. Многостороннее по своему характеру влияние растворителя можно схематически свести к двум аспектам. С одной стороны, полярный растворитель, т. е. жидкость с высокой диэлектрической постоянной, чисто физически снижает кулоновское взаимодействие зарядов. Этот эффект может быть значительным например, переход от неполярного растворителя (гексана) к полярному (ацетонитрилу) уменьшает кулоновские силы в 21 раз. С другой стороны, нековалентные взаимодействия молекул растворителя с ионами обоих знаков, такие, как заряд-динолг.ное взаимодействие, образование водородных связей, комплексов разного типа — все то, что обобщенно обо. шачают термином сольватация , приводят к значительному экранированию центров заряда молекулами растворителя и одновременно — к дальнейшей делокализации заряда, распределению его между ионом и сольватной оболочкой. [c.75]

    Связи, хотя и не такие устойчивые, как водородные, могут образовываться между любыми полярными молекулами и даже неполярными, в которых диполи возникают под действием внешних электрических полей. Это взаимодействие заключается в притяжении разноименно заряженных кондов молекул и в отталкивании концов диполей, одноименно зарял енных. Силы, за счет которых возникают такие взаимодействия, называются ван-дер-ваальсовыми, их природа — электростатическая. За счет действия ван-дер-ваальсовых сил образуются кристаллы с молекулярным типом кристаллической решетки. В узлах такой решетки находятся молекулы твердого тела. Например, молекулярные кристаллы образуют под, а также твердые азот, водород. Молекулярные кристаллы значительно менее прочны, чем ионные или кристаллы металлов. [c.57]


Смотреть страницы где упоминается термин Силы взаимодействия между полярными, неполярными молекулами и ионами: [c.89]    [c.132]    [c.89]    [c.299]    [c.154]    [c.68]    [c.54]    [c.21]   
Смотреть главы в:

Основы расчета вакуумной сублимационной аппаратуры -> Силы взаимодействия между полярными, неполярными молекулами и ионами




ПОИСК





Смотрите так же термины и статьи:

Взаимодействия ионные

Взаимодействия неполярные

Ионная сила

Ионная сила взаимодействия с ионом

Ионов взаимодействие

Ионы и молекулы, взаимодействие

Ионы сила между

Молекула взаимодействие

Молекула ионная

Молекулы неполярные

Полярность молекул

Полярные молекулы

Сила взаимодействия между



© 2024 chem21.info Реклама на сайте