Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Заряд-дипольные взаимодействия

    На границе воздух — раствор из-за определенной ориентации диполей растворителя возникает некоторый скачок потенциала % — так называемый поверхностный потенциал. Поэтому энергетический эффект, сопровождающий перенос заряженной частицы через границу воздух — раствор (из точки 2 в точку 3 на рис. 5), отражает не только ион — дипольное взаимодействие, но и электрическую работу, которая для моля ионов с зарядом 2,60 равна Л A2 eoX=2 f) Изменение свободной энергии, обусловленное только взаимодействием ионов с диполями растворителя и отнесенное к молю ионов, называется химической энергией сольватации ДО з " . Таким образом, между реальной и химической энергиями сольватации существует [c.25]


    Межмолекулярная связь возникает между полярными молекулами вследствие электростатического взаимодействия между частями двух молекул, несущих различные по знаку заряды (дипольное взаимодействие). [c.31]

    Связь с ионами образуется большей частью с помощью донорно-акцепторной связи или в результате ионо-дипольного взаимодействия, причем образованию связи благоприятствует малый размер катиона, большой заряд его, например А1 , и связанная с этим большая его поляризующая способность. При большом размере аниона с увеличением общего размера катиона (вместе со связываемыми им молекулами воды) возрастает координационное число и при этом увеличивается устойчивость такой структуры. [c.141]

    Природа растворителя является еще одним важнейшим внешним фактором, влияюш им на стабильность органических ионов. Многостороннее по своему характеру влияние растворителя в первом приближении можно схематически свести к двум аспектам. С одной стороны, полярный растворитель, т.е. жидкость с высокой диэлектрической проницаемостью, чисто физически снижает кулоновское взаимодействие зарядов, Этот эффект может быть довольно значительным например, переход от неполярного растворителя (гексана) к полярному (ацетонитрилу) уменьшает силы кулоновского взаимодействия б 21 раз. С другой стороны, молекула растворителя может стабилизировать ионы любого заряда за счет заряд-дипольных взаимодействий, образования водородных связей, комплексов разного типа, короче, за счет эффектов, обобщенно обозначаемых термином сольватация. Эти эффекты сольватации приводят к значительному экранированию заряда иона молекулами растворителя и частичной делокализации заряда, распределению его между ионом и сольватной оболочкой. [c.95]

    Связь между полярными молекулами возникает вследствие электростатического взаимодействия между их частями, несущими различные по знаку заряды (дипольное взаимодействие). Дипольное взаимо- [c.24]

    Водородная связь. Заряд-дипольные взаимодействия 189 [c.189]

    Индукционный эффект связан с процессами поляризации молекул диполями окружающей среды. При этом в неполярной молекуле центры тяжести положительных и отрицательных зарядов перестают совпадать. Возникает наведенный, или индуцированный, диполь. Подобное явление может наблюдаться и для полярных частиц. Тогда индукционный эффект накладывается на диполь-дипольное взаимодействие, в результате чего увеличивается взаимное притяжение. Индукционное взаимодействие возрастает с ростом электрического момента диполя и поляризуемости, быстро уменьшается пр>и увеличении расстояния. В то же время Е инд от температуры не зависит, так как наведение диполей происходит при любом пространственном расположении молекул.Более или менее ощутимое влияние индукционного взаимодействия наблюдается для частиц, обладающих сравнительно большой поляризуемостью. [c.99]


    Понятно, что подвижность влаги в водонасыщенных торфяных системах в первую очередь определяется их структурой, а также электрокинетическими явлениями на границе раздела фаз. Ионогенные функциональные группы торфа, главным образом карбоксильные, диссоциируют в полярной дисперсионной среде (воде) с отщеплением катиона, вследствие чего частицы торфа приобретают отрицательный заряд [221]. Заряд частиц формируется из дискретных элементарных зарядов как вне, так и внутри надмолекулярных ассоциатов торфа [214, 222]. Диффузия полярных молекул внутрь частиц торфа вызывает увеличение диэлектрической проницаемости всего ассоциата, степени диссоциации функциональных групп [223]. В свою очередь, рост плотности заряда структурных единиц торфа интенсифицирует связь воды с торфом по механизму ион-дипольного взаимодействия между ионизованными функциональными группами торфа и молекулами воды. В результате содержание связанной воды в материале увеличивается. Особенно четко это проявляется при повышении pH торфяных систем (см. табл. 4.1) [224]. [c.69]

    При рещении этого вопроса были сделаны допущения 1) поле считать однородным 2) действующее поле равно среднему макроскопическому 3) все частицы одинаковы и несут равный по величине заряд 4) концентрация частиц мала, т. е. дипольные взаимодействия между частицами несущественны, поэтому можно считать, что поле, действующее на данную частицу со стороны остальных частиц, также однородно 5) при контакте с электродом заряды частиц не нейтрализуются 6) величина внешнего поля выбрана с учетом применимости закона Ома. [c.20]

    В неполярной среде ион отличается значительным дальнодействием по сравнению с полярными жидкостями в отличие от водных растворов, где ион полностью нейтрализуется полярными молекулами, в неполярной среде происходит лишь частичная компенсация его заряда вследствие малого содержания дипольных молекул и, по-вндимому, из-за сложного строения дифильных молекул. Носители тока в неполярных средах могут иметь переменную величину подвижность таких ассоциатов меньше, чем у исходного иона. Возможно, при электрической проводимости большую роль играют именно такие системы с центральным ионом. Электростатическое диполь-дипольное взаимодействие молекул невелико и, по-видимому, не имеет большого значения при образовании молекулярных димеров, где главное место отводится водородным связям. [c.27]

    Мы уже указывали, что способность иона металла координировать вокруг себя лиганды, например молекулы воды, можно объяснить возникающим при этом льюисовым кислотно-основным взаимодействием (см. разд. 15.10). При таком подходе основание, т. е. лиганд, можно рассматривать как донор пары электронов. Эти электроны принимает вакантная гибридная орбиталь иона металла, играющего роль акцептора (рис. 23.21). Однако можно предположить, что притяжение между ионом металла и окружающими лигандами обусловлено главным образом электростатическими силами притяжения между положительным зарядом на ионе металла и отрицательными зарядами на лигандах. При наличии ионных лигандов, например I или S N, электростатическое взаимодействие осуществляется между положительным зарядом на металлическом центре и отрицательным зарядом на каждом лиганде. Если же лигандами являются нейтральные молекулы, например HjO или NH3, отрицательные концы этих полярных молекул, где находятся неподеленные электронные пары, оказываются направленными в сторону металлического центра. В этом случае притяжение обусловливается силами ион-дипольного взаимодействия (см. разд. 11.5). Но в любом случае результат одинаков лиганды сильно связываются с металличе- [c.390]

    Небольшие различия в энергии сольватации изоэлектронных ионов в различных растворителях являются результатом различий в энергии вторичной сольватации. Этот процесс представляет йон-дипольное взаимодействие, и его энергия зависит от заряда и размеров иона, дипольного момента молекул растворителя и его диэлектрической проницаемости. [c.179]

    К этой форме адсорбции примыкает поглощение водяных паров на поверхности многих ионных кристаллов, когда молекулы воды взаимодействуют с этими ионами с образованием донорно-акцепторных или водородных связей или притягиваются ионом в результате ионно-дипольного взаимодействия. В таких случаях поляризующее действие ионов, в особенности при их малом размере и относительно высоком заряде, может значительно усилить способность адсорбированных молекул воды к образованию водородных связей с другими молекулами, которые образуют, так сказать, второй слой адсорбированных молекул. Этот эффект в более слабой степени, по-видимому, может распространяться и на последующие слои .  [c.24]


    Хотя уже получено большое число кристаллосольватов солей с двуокисью серы [66], пока нет данных по геометрической структуре этих соединений. Однако спектральные данные указывают на то, что связь в них подобна связи с переносом заряда. Так, например, иодиды щелочных и щелочноземельных металлов и аммония изменяют инфракрасный спектр SO2 в ацетонитриле до такой степени, что он практически перестает зависеть от природы катиона, как обычно бывает при образовании комплексов с переносом заряда [67]. Неизменность спектра SO2 при действии КВг и КС1 объясняется, по-видимому, тем, что их константы ассоциации слишком низки, чтобы можно было наблюдать инфракрасные спектры поглощения комплексов. Спектроскопические данные в пользу образования комплексов SO2 с бром- и хлор-ионами все же были получены в лаборатории автора настоящего обзора [68]. В разбавленных (—IO моль1л) растворах SO2 в воде, содержащих буфер с концентрацией 1 моль л Н+ для подавления ионизации SO2, все галоген-ионы (хлор, бром и иод) увеличивают макс SO2, которая обычно находится при 276 ммк, и дают батохромные сдвиги, изменяющиеся в ряду I > Вг > 1 , причем в случае иод-иона полоса поглощения захватывает даже и часть видимой области. Инфракрасные и раман-спектры свидетельствуют о том, что водные растворы SO2 в основном состоят из SO2, например (802)/(Н250з) >30 [69—71]. Кроме того, имеется даже большее изменение спектра в области коротких длин волн, максимум которого лежит ниже 200 ммк. Эти спектральные изменения не зависят от природы катиона. Учитывая природу комплексов SO2 с иод-ионами [67], можно предположить, что все ионы галогенов образуют с SO2 комплексы с переносом заряда. Образование таких комплексов дает наилучшее в настоящее время объяснение ионизирующей силе SO2 . Если допустить, что нитробензол сольватирует хлористый алкил и ионы, образующиеся из него, только электростатически и если признать на основе диполь-дипольных и заряд-дипольных взаимодействий, что нитробензол ( 1 = 4,24, D = 34,5) является лучшим ионизирующим растворителем, чем SO2 ( х = 1,62, D = 15,4), то из поведения триарилхлорметанов в этих растворителях следует, что комплексообразование хлор-иона с SO2 уменьшает свободную энергию ионизации более чем на 10 ккалЫоль. [c.80]

    Связь молекул воды с ионами металла усили- Рис. 1.6. Мо-вается за счет ион-дипольного взаимодействия, причем образованию связи благоприятствует ма-лый размер катиона, его большой заряд и связанная с этим его большая поляризующая способность. На рис. 1.6 показана модель гидратированного иона магния Мд + бНаО. Ион магния окружен шестью молекулами воды, расположенными в вершинах правильного октаэдра (две молекулы воды не показаны на рисунке одна из них расположена перед ионом Mg +, другая— за ним). [c.21]

    Образование ряда сольватов обусловливается ионно-дипольным притяжением частиц растворенного вещества и растворителя. Например, при растворении кристалла с ионной решеткой получается раствор с ионной степенью дисперсии (см. Электролитическая диссоциация ). Ионы обладают положительным или отрицательным зарядом и взаимодействуют с дипольными молекулами полярных растворителей, как то вода, аммиак, спирт и др. [c.158]

    Такое диполь-дипольное взаимодействие для 5-электрона равно нулю (заряд электрона распределен равномерно вокруг ядра), но для р-электрона дело обстоит иначе в определенных направлениях волновая функция имеет большее значение, чем в других, и соответственно электрон подвергается и более сильному воздействию поля ядра. Если спин ядра равен У, то чпсло его ориентаций в магнитном поле равно (2/+1), поэтому возможны (2/+1) различных по величине взаимодействий электрона и ядра. Они отличаются по энергии и соответственно этому возникает и расщепление линий спектра на (2/ + 1) значений, обнаруживаемое в спектрах ЭПР. [c.82]

    Катионы шелочных и щелочноземельных металлов координируют (связывают) молекулы воды в гидраты преимущественно посредством электростатического ион-дипольного взаимодействия. Последнее зависит от заряда и радиуса катиона, его массы и магнитного момента, дипольного момента воды, поляризации иона и воды и от кинетических параметров (импульс, момент количества движения и др.). Между катионами переходных металлов и молекулами воды возникает, благодаря наличию вакантных атомных орбиталей у катионов и неподеленных пар электронов молекулы воды, донорно-акцепторная связь. Часто электростатический и донорно-акцепторный вид связи в гидрате катиона проявляется совместно. [c.414]

    Рассмотрим электростатическое взаимодействие катиона металла с ионными или полярными лигандами. Лиганды, ориентированные в результате ион-ионного или ион-дипольного взаимодействия отрицательными концами к иону металла, в первом приближении будут рассматриваться как бесструктурные отрицательные заряды, образующие так называемое кристаллическое поле . При этом к- или /-орбитали металла оказываются неравноценными относительно поля и их энергия становится неодинаковой -или /-подуровень расщепляется. Характер расщепления зависит от симметрии поля. [c.18]

    Индукционный эффект связан с процессами поляризации молекул диполями окружающей среды. При этом в неполярной молекуле центры тяжести положительных и отрицательных зарядов перестают совпадать, так как электронное облако и ядро атома смещаются в противоположные стороны. Образуется наведенный или индуцированный диполь. Подобное явление может наблюдаться и для полярных частиц. Тогда индукционный эффект накладывается на диполь-дипольное взаимодействие, в результате чего увеличивается взаимное притяжение. Для двух одинаковых полярных молекул энергия индукционного взаимодействия может быть рассчитана по формуле (Дебай, 1920) [c.134]

    Соотношение (8.24) применимо только к солям, в которых ионы являются электрически симметричными и для которых первичные стабилизирующие силы в ионных парах возникают в результате взаимодействия зарядов. Если любой из ионов в соли электрически несимметричен, то при образовании ионной пары возникает дополнительная стабилизирующая сила, связанная с заряд-дипольным взаимодействием. Такая дополнительная стабилизирующая сила возникает при образовании ионных пар пикратов электрически симметричных катионов, часто используемых в работах по электропроводности. Аккасина и другие [28, 29] заменили логарифмическую форму выражения (8.24) соотношением [c.282]

    Влияния заместителей, объясняющиеся постоянной полярностью или поляризуемостью групп, носят название индуктивных эффектов, и, возможно, их лучше всего понять в рамках диполь-дипольных и. заряд-дипольных взаимодействий. Примеры этого можно найти в данных табл. 8.3. Так, лишь очень слабые диполи свойственны метнл-углеродным связям, и константы для уксусной и пропионовой кислот очень близки друг к другу, так же как близки друг к другу константы для бензойной и двух толуиловых кислот. Напротив, сильный диполь цианогруппы ориентирован положительным зарядом в сторону карбоксильной группы и в результате этого кислоты, содержащие этот заместитель, обладают значительно более высокими константами [c.173]

    Проводились дополнительные исследования стереоселективности реакции восстановления 4-тпрет-бутилциклогексанона и 3,3,5-триметилциклогексанона под действием изопропилатов лития и натрия [91]. В течение 1969 г. опубликовано пять статей [92—96], посвященных рассмотрению стереохимии реакций присоединения металлоорганических реагентов к карбонильной группе производных замещенных циклогексанона. В этих исследованиях имеются придгеры, которые следует обсуждать вместе с данными, приведенными в табл. 3-11 и 3-12. Данные, приведенные в этих статьях [92—96], объясняются с точки зрения представлений, развитых на стр. 154—158. Кирк [83] объясни.л отношение аксиальной атаки к экваториальной при реакции 4-хлорциклогексанона с точки зрения конформационного равновесия, а не в результате заряд-дипольных взаимодействий. [c.158]

    Сольватация — взаимодействие абсорбента и растворяемого вещества с образованием ассоциированных групп частиц. Способность к сольватации объясняется дипольным характером строения молекул. Ярко выражен дипольный характер молекул воды иа атомах водорода имеются эффективные положительные заряды, а на атоме кислорода — эффективный отрицательный заряд. При сольватации заряженные частицы или полярные молекулы растворяемого вещества как бы обволакиваются (окружаются) молекулами поглотителя, соориентированными в соответствии с их зарядами. Сольватация — дипольное взаимодействие молекул абсорбента и абсорбируемого вещества. [c.70]

    Открытие полярной структуры молекул ( 24) п[ ивело к установлению возможности взаимного притяжения полярных молекул вследствие электростатического взаимодействия между частями двух молекул, несущими различные по знаку заряды, Н. А. Шилов и Кеезом впервые предложили объяснение молекулярных сил на основе дипольного взаимодействия. [c.87]

    Большая часть сигналов ЭПР в тяжелых нефтяных остатках и асфальтовых пеках обусловлена наличием комплексов с переносом заряда, присутствующих в остатках вакуумной перегонки нефти и частично исчезающих после карбонизации при 430°С в теченив 5 ч [166]. Возрастание концентрации свободных радикалов в процессе карбонизации авторы связывают с уменьшением соотношения ШС, а наблюдаемое для некоторых остатков уменьшение концентрации радикалов - разложением КПЗ и рекомбинацией неспаренных электронов в ловушках поликонденсированных ароматических колец. Вклад диполь-дипольного взаимодействия между спинами электронов и ядрами водорода незначителен [166]. [c.68]

    Комплексообразователь и лиганды рассматриваются как заряженные неде-формируемые шары определенных размеров. Их взаимодействие учитывается по закону Кулона. Таким образом, химическая связь считается ионной. Если лиганды являются нейтральными молекулами, то в этой модели следует учитывать ион-дипольное взаимодействие центрального нона с полярной молекулой лиганда. Результаты этих расчетов удовлетворительно передают зависимость координационного числа от заряда центрального иона. В некоторых случаях правильно передается геометрия комплексов при координационном числе, равном двум, комплексы должны быть линейными при равном трем лиганды располагаются по вершинам равностороннего тpeyгoJп.никa и т. д. С увеличением заряда центрального иона прочность комплексных соединений увеличивается, увеличение его радиуса вызывает уменьшение прочности комплекса, но приводит к увеличению координационного числа. С увеличением размеров и заряда лигандов координационное число и устойчивость комплекса уменьшаются. [c.356]

    Рассмотрим работу внесения заряженной частицы г из вакуума внутрь оставшейся незаряженно ( сферы, лишенной также пространственно разделенных зарядов на поверхности (рис. У1.1,в). При умножении на постоянную Авогадро эта работа дает, т. е. химический потенциал частицы I в фазе а. Если,, например, фаза а представляет собой бесконечно разбавленный раствор, а частица / является ионом, то величина х/ обусловлена энергией ион-дипольного взаимодействия и равна химической энергии сольватации. Химическая энергия взаимодействия заряженной частицы с фазой также обусловлена электрическими по своей природе силами, но только более сложными, нежели кулоновское взаимодействие заряда с заданным полем. [c.113]

    Два рассмотренных типа взаимодействия предполагают наличие постоянного момента диполя хотя бы у одной из взаимодействующих частиц. На самом же деле диполь-дипольные взаимодействия осуществляются между любыми частицами, в том числе и не обладающими постоянным моментом диполя. Это качественно можно понять, если вспомнить, что каждый атом лищен момента диполя лищь в среднем, поскольку средняя координата электрона на атомной орбитали совпадает с координатой ядра. В каждый же отдельный момент времени заряд электронов и заряд ядра разделены, т. е. атом обладает некоторым мгновенным, или, как принято говорить, виртуальным, диполем. Взаимодействие виртуальных диполе подч Ияется тем же законам, что и шдействие постоянных и наведенных диполей, и приводит к взаимодействию, энергия которого отрицательна и на достаточно больших расстояниях обратно пропорциональна шестой степени расстояния между частицами. Взаимодействие, обусловленное виртуальными диполями, называется дисперсионным взаимодействием. По энергии дисперсионное взаимодействие, как правило, превосходит как ориентационное, так и значительно более слабое индукционное взаимодействие. [c.113]

    Из (49.20) видно, что основная компонента энергии, энергия электростатическая —(e ifs ) спадает пропорционально только второй степени расстояния, т. е. значительна даже на больших расстояниях. Для системы однозарядный ион — молекула воды на расстоянии 3 10 м она больше 40 кДж/моль без учета поляризуемости. Поэтому ион-дипольное взаимодействие играет большую роль в растворах электролитов в полярных растворителях воде, спиртах, аммиаке и т. п. Особенно велико оно для ионов с заметной поляризуемостью (Ag , ТГ) и высоким зарядом (Са , и др.). Во всех этих растворах образуются довольно стабильные продукты взаимодействия иона с несколькими молекулами растворителя — сольваты (гидраты в водных растворах). Они особенно существенны для катионов, поскольку малый радиус катиона, согласно (49.20), способствует стабильности сольвата (гидрата). Анионы, как более крупные частицы, менее сольватирораны. [c.265]

    ОТ >гла 9 получают информацию о геометрии радикала и кристалла. Аниго-тропную сверхтонкую структуру нельзя наблюдать только у 5-электронов, так как они характеризуются шаровой симметрией распределения заряда. Наблюдаемые спектры поликристаллических образцов возникают вследствие наложения спектров всех беспорядочно ориентированных кристаллов и характеризуются значительным уширением линий. Диполь-дипольное взаимодействие свободных радикалов в растворе обусловливается молекулярным движением. Если вязкость раствора препятствует статистическому движению молекул, то линии сверхтонкой структуры уширяются, так как диполь-дипольное взаимодействие осуществляется частично. Изотропное или ферми-контактное взаимодействие можно объяснить только на основании квантовой механики. Предполагается, что вероятность пребывания электрона вблизи ядра ф(0) отлична от нуля, что и является причиной возникновения сверхтонкой структуры. Это может иметь место только для электронов, расположенных на 5- или сг-орбиталях. Тогда константа сверхтонкого взаимодействия а для этого изотропного взаимодействия равна (а единицах энергии) [c.268]

    Степень адсорбции ионов электролитов частицами различных минералов неодинакова. Минералы, в которых между структурными элементами решеток действуют преимущественно близкодействующие ковалентные связи (кварц, глинистые минералы) с небольшой долей ионной составляющей (определяется степенью замещения кремния алюминием в полимерных каркасах, слоях) и с малой плотностью ее, характеризуются меньшей степенью воздействия на ионы электролитов. Наоборот, решетки, в которых связь между ее элементами преимущественно ионная (дальнодействующая) и плотность распределения зарядов по поверхности высокая (Са +СОз -, Мд +СОз - и др.), будут сильнее воздействовать на заряженные частицы электролитов. Таким образом, избирательная способность к ионам солей у известняков (а также у полевых шпатов, гематита) выше, чем у кварца и глинистых минералов. Кроме того, поскольку катионы обычно состоят из одной частички, имеющей малый размер и большую подвижность, а анионы чаще всего являются радикалами (СОз -, 5042") более крупных размеров и меньшей подвижности, на поверхности твердых тел быстрее адсорбируются катионы, чем анионы. Какая-то часть катионов Ыа+, К+, Са +, Mg2+ избирательно адсорбируется (в порядке Мд>Са>ЫаЖ) под действием поверхностной энергии Гиббса в первую очередь на поверхности зерен известняка, полевого шпата, затем кварца, сообщая этим зернам положительный заряд. Под непосредственным воздействием этих ионов на поверхности частиц упорядочиваются молекулы ПАВ и воды, создавая вместе с ионами адсорбционную оболочку вокруг зерен. Наличие положительных зарядов на таких адсорбционных комплексах (известняк —катионы — ПАВ — вода) приводит к тому, что вокруг них ориентируются отрицательно заряженные глинистые частицы и ионы 8042-, НСО3-, тоже предварительно адсорбировавшие на себе молекулы ПАВ и воды. Какая-то часть ионов Ыа+, К+, Mg +, Са2+ и 5042-, НСО3- остается в гидратированном виде в жидкой фазе. Таким образом, в суспензии действуют силы электростатического притяжения и отталкивания крупных адсорбционных комплексов (известняк —катионы —ПАВ — вода), мелких катионов и анионов, дипольные взаимодействия между униполярными комплексами, водородная связь между молекулами воды. Свободная же вода, разделяющая все частицы друг от друга, обеспечивает текучесть суспензии. [c.286]

    Жесткая, малодеформируемая электронная оболочка типа инертного газа как для Ве +, так и для всех остальных катионов обсуждаемой группы обусловливает преобладающе ионный тип связи №+ — лиганд, поскольку ионы М2+ не имеют пустых ячеек, необходимых для предоставления лиганду с целью образовать донорно-акцепторную связь, и, кроме того, не имеют электронных пар, подходящих для образования л-дативной связи. Таким образом, комплексные соединения элементов этой группы должны быть построены за счет ион-ионного или ион-дипольного взаимодействия. Априори можно сказать, что самым сильным комплексообразователем в ряду Ве—Ба будет ион Ве + благодаря его маленькому размеру и большой плотности заряда. Самые неустойчивые комплексы должны быть у Ва. [c.42]

    Присутствие дипольных моментов в молекулах приводит к усилению их электростатического взаимодействия как между собой, так и с молекулами других веществ или поверхностями твердых тел, атомы которых тоже имеют несимметричное расположе1й1е электрических зарядов. Такое взаимодействие, ведущее, например, к поглощению молекул жидкостей или газов поверхностью твердых тел, называется адсорбцией. Так, вода и ее пары поглощаются на поверхности угля или руды. Явление адсорбции играет больщую роль в ряде технически важных процессов (флотация, измельчение и разрушение горных пород и др.). [c.157]

    Электростатический вклад в потенциальную энергию представляет собой энергию электростатического взаимодействия молекул с недеформироваиными электронными оболочками. Это взаимодействие может быть описано в рамках классической электростатистики. Оно возникает, если обе взаимодействующие молекулы обладают постоянными электрическими моментами (дипольным, квадрупольным, октупольным). Взаимодействие на больших расстояниях определяется дипольными моментами (диполь-дипольные взаимодействия) . При уменьшении расстояния между молекулами возрастает роль диполь-квадрупольных, квадруполь-квадрупольных и т. д. взаимодействий. Электростатическое взаимодействие на близких расстояниях следует рассчитывать непосредственно по закону Кулона, исходя из распределения зарядов (электронной плотности). [c.118]

    Таким образом, поглощение или испускание ИК-излучения колеблющейся молекулой, имеющей дипольный момент, можно легко пояснить в простой описательной форме, как это сделано в предыдущем параграфе. Гораздо сложнее описать подобным способом электронные переходы. В классическом смысле электронное возбуждение не соответствует увеличению энергии в осциллирующей системе во всяком случае, и высоко-, и низколежащее электронное состояние может не иметь постоянного дипольного момента (т. е. во всех состояниях электронное облако симметрично расположено вокруг ядер, так что нет разделения зарядов). Однако и в этой ситуации основные принципы взаимодействия с излучением еще применимы, и нам лишь нужно знать, происходит ли дипольное взаимодействие во время перехода между двумя состояниями. Существует единственный строгий метод решения этой проблемы уравнение Шрёдингера, упомянутое в начале раздела, может быть использовано для вычисления скорости перехода системы из одного стационарного состояния в другое под влиянием возмущающей силы. Если скорость возмущения системы, вызванного взаимодействием диполя с электрическим вектором излучения, не равна нулю, то существует дипольный момент перехода. Скорость перехода между состояниями, умноженная на число частиц в низшем состоянии, составляет, естественно, предельную скорость поглощения фотонов, так что в принципе решение уравнения Шрёдингера должно приводить к расчету интенсивности перехода. Однако точные решения этого урав- [c.31]

    Резонансные частоты отличаются для разных ориентаций РЦ. Более того, в зависимости от ориентации РП изменяется знак диполь-дипольного взаимодействия, поэтому в зависимости от ориентации РЦ электронная спиновая поляризация может давать спектр ЭПР типа АЕАЕ или ЕАЕА. В ансамбле РП возможны такие ситуации, когда в одну и ту же часть спектра попадают линии типа А или Е от РЦ в разной ориентации, тогда вклады этих РЦ в суммарный спектр ЭПР в данной области частот могут полностью или частично компенсировать друг друга. Этими обстоятельствами объясняется наблюдаемая в эксперименте форма спектра ЭПР разделенных зарядов в РЦ фотосинтеза. [c.114]


Смотреть страницы где упоминается термин Заряд-дипольные взаимодействия: [c.141]    [c.102]    [c.30]    [c.96]    [c.159]    [c.134]    [c.197]    [c.116]   
Органический синтез (2001) -- [ c.95 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие дипольное



© 2024 chem21.info Реклама на сайте