Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород молекулярный, обратимое

    Меркаптаны, реагируя с гидроксидом натрия, превращаются в меркаптиды, причем реакция эта обратима вследствие гидролиза меркаптидов, который можно уменьшить повышением концентрации раствора щелочи и снижением температуры очистки. Нужно учитывать и то обстоятельство, что с увеличением молекулярной массы меркаптанов их растворимость в растворе щелочи понижается, т. е. степень извлечения уменьшается. Например, степень извлечения м-бутилмеркаптана на 35 % меньше, чем этилмеркаптана. В присутствии кислорода воздуха меркаптаны окисляются до дисульфидов при [c.114]


    Окислительно-восстановительные реакции и потенциалы в почвах. Почва представляет собой сложную естественную окислительно-восстановительную систему. Поэтому окислительно-восстановительные реакции играют важную роль в процессах почвообразования. Кроме того, нормальный рост и развитие растений возможны при определенном окислительно-восстановительном состоянии почвы. Окислительно-восстановительные реакции, протекающие в почве, чаще всего являются необратимыми. Обратимые реакции свойственны только некоторым почвенным окислительно-восстановительным системам, например окисление и восстановление железа (Ре +Ре +), марганца (Мп + Мп + ), азота (Ы + га Ы +). Важнейшим окислительным агентом в почвенных системах является молекулярный кислород почвенного воздуха и почвенного раствора. Поэтому направление и протекание окислительно-восстановительных процессов в почве [c.259]

    Железо функционирует как основной переносчик электронов в биологических реакциях окисления — восстановления [231]. Ионы железа, и Fe +, и Fe +, присутствуют в человеческом организме и, действуя как переносчики электронов, постоянно переходят из одного состояния окисления в другое. Это можно проиллюстрировать на примере цитохромов . Ионы железа также служат для транспорта и хранения молекулярного кислорода — функция, необходимая для жизнедеятельности всех позвоночных животных. В этой системе работает только Ре(П) [Fe(111)-гемоглобин не участвует в переносе кислорода]. Чтобы удовлетворить потребности метаболических процессов в кислороде, большинство животных имеет жидкость, циркулирующую по телу эта жидкость и переносит кислород, поглощая его из внешнего источника, в митохондрии тканей. Здесь он необходим для дыхательной цепи, чтобы обеспечивать окислительное фосфорилирование и производство АТР. Одиако растворимость кислорода в воде слишком низка для поддержания дыхания у живых существ. Поэтому в состав крови обычно входят белки, которые обратимо связывают кислород. Эти белковые молекулы способствуют проникновению кислорода в мышцы (ткани), а также могут служить хранилищем кислорода. [c.359]

    Белок, сохраняющий свои характерные специфические свойства, называется нативным белком гемоглобин в том виде, в каком он находится в эритроцитах или в тщательно приготовленном растворе гемоглобина, в котором он все еще продолжает сохранять свое свойство обратимо соединяться с кислородом, называется нативным гемоглобином. Многие белки очень легко теряют присущие им специфические свойства. Тогда говорят, что они денатурированы. Гемоглобин можно денатурировать просто нагреванием его раствора до 65 °С. В результате такого нагревания он коагулирует, образуя нерастворимый коагулят кирпично-красного цвета. Большинство других белков также денатурируется при нагревании приблизительно до такой же температуры. Яичный белок, например, представляет собой раствор, состоящий главным образом из белка овальбумина с молекулярной массой 43000. Овальбумин — растворимый белок. При нагревании его раствора примерно до 65 °С и выдерживании в течение некоторого времени при этой температуре овальбумин денатурируется, давая нерастворимый белый коагулят. Это явление наблюдается при варке яиц. [c.394]


    Итак, можно сделать вывод, что в системе кислород — серебро при сравнительно низких температурах кислород может обратимо сорбироваться на серебре, образуя супероксид серебра. Взаимодействие кислорода с серебром не всегда ограничивается поверхностью, поскольку кислород может проникать и в глубь металла. Кислород на поверхности серебра сохраняет высокую подвиж-ность, а поверхностные катионы самого серебра могут мигрировать и способствовать тем самым уменьшению поверхностной энергии. Кислород при адсорбции на серебре из многочисленных возможных форм сохраняет форму молекулярного иона Ог, образуя с серебром поверхностное соединение (супероксид серебра) в соответствии с перекисной теорией окисления Баха — Энглера. [c.279]

    Медьсодержащий протеин — гемоцианин — обратимо поглощает молекулярный кислород. Структура его не выяснена, молекулярная масса его субъединицы 25000—75000, молекулярная масса всего металлопротеина приближается к четырем миллионам. Изменение pH раствора резко сказывается на способности поглощать О2. [c.570]

    Выше мы видели, что молекулярный кислород может присоединяться к некоторым комплексам без разрыва связи кислород— кислород. Кислород также обратимо реагирует с кобальтовыми комплексами оснований Шиффа (разд. 24.33 ) и гемоглобином (разд. 31.2). [c.625]

    Дыхательная цепь. Последовательность обратимых окислительно-восстановительных реакций, приводящая к восстановлению молекулярного кислорода. Электроны для восстановления поступают из цикла лимонной кислоты. Эпергия, которая освобождается при функционировании дыхательной цепи, идет на синтез АТФ. Дыхательная цепь будет рассмотрена подробно в гл. 23. [c.194]

    Отравление катализатора крекинга весьма специфично. Если для подавляющего большинства катализаторов сернистые соединения, окись углерода, кислород и другие вещества являются ядами, то присутствие их почти не влияет на процесс крекинга. Но зато некоторые азотсодержащие соединения резко снижают активность катализатора, вызывая обратимое отравление его. Необратимо отравляютка-тализатор соединения щелочных металлов. Длительное воздействие паров воды при высокой температуре также приводит к необратимой потере активности катализатора в основном за счет уменьшения удельной поверхности его. Все технологические схемы крекинга предусматривают тщательную очистку исходного сырья от щелочных металлов. Замечено, что степень отравления различными азотсодержащими соединениями симбатна их основным свойствам. Повышение молекулярного веса азотсодержащего соединения увеличивает отравляющую способность его. Степень отравления понижается с повышением температуры. Так, присутствие 1% хинолина снижает скорость крекинга нри 575° С на 30%, а нри 500° С уже на 80%. При этом полная потеря активности катализатора наступает при содержании хинолина, покрывающего лишь 2% всей поверхности катализатора. [c.238]

    Некоторые ионы и. комплексы переходных металлов (Си, Ре, Мп, V и Со) часто выступают в качестве обратимых переносчиков молекулярного кислорода, т. е. служат катализаторами окисления. При этом молекулярный кислород и ионы металла соединяются в комплексы, строение которых пока точно не выяснено. Наиболее вероятно образование комплексов следующего типа  [c.478]

    Цитохромы Ь, с и а — переносчики электронов. В окисленной форме они отнимают электрон у атома водорода, содержащегося в дегидроформе флавнновой дегидрогеназы, в результате чего образуется ион водорода, а цитохром превращается в восстановленную форму. Способность цитохромов к переносу электронов обусловлена присутствие.м в них железа, которое может обратимо изменять свою валентность (Ре +-Ье Ре +). Цитохромы последовательно передают электрон от одного к другому, и последний из них окисляется цитохромоксидазой. Она передает электрон цитохрома непосредственно молекулярному кислороду, который ионизируется и реагирует с поном водорода, образуя воду (2Н+-Ь0 = = Н,0). [c.117]

    Большое значение имеет комплексообразование железа с биолигандами [2, с. 165—184]. Особенно важен гемоглобин — железосодержащая белковая молекула, выполняющая в крови животных и человека функции переносчика кислорода. Гемоглобин содержит белок глобин и четыре гема , представляющих собой порфириновый комплекс железа (II), где атом железа образует связь с четырьмя атомами азота порфиринового кольца и одну связь с атомом азота гистидина— аминокислоты, входящей в состав б1елка глобина. Шестое место в координационной сфере железа (II) может быть занято молекулярным кислородом О2, а также лигандами типа СО, СЫ и др. Если гемоглобин вступил во взаимодействие, например, с СО, он теряет способность обратимо присоединять О2. В таком случае организм погибает от гипоксии. Этим объясняется высокая токсичность СО, СК - и подобных им лигандов. [c.134]


    Гемоглобин (НЬ) и миоглобин (МЬ) — не ферменты. Их функция состоит в обратимом, связывании молекулярного кислорода Ог. Миоглобин служит депо кислорода, запасая его для последующего потребления. Поэтому большие количества МЬ содержатся в организмах китообразных, проводящих длительное время под водой. Гемоглобин — функциональный белок эритроцитов, служащий для переноса кислорода от легких ко всем органам и тканям и участвующий в обратном транспорте углекис-лоты. [c.206]

    Уравнение (1) выражает экспериментально установленный и согласующийся с перекисной теорией факт, что серебро, обратимо реагируя с газообразным молекулярным кислородом, образует супероксид серебра. [c.291]

    Железо образует многочисленные комплексные соединения. Среди комплексов железа(Н) особо интересен гемоглобин - макро-циклический комплекс, благодаря которому происходит усваивание и перенос молекулярного кислорода кровью животных и человека. Ключом сложного процесса обратимого взаимодействия гемоглобина с кислородом является присоединение молекулы кислорода к исходному высокоспиновому комплексу, в котором атом железа связан с пятью атомами азота, в результате чего железо оказывается в октаэдрическом окружении, а комплекс становится низкоспиновым. [c.359]

    Особенно большое значение имело бы создание таких катализаторов для ускорения анодного процесса выделения и катодного процесса восстановления молекулярного кислорода, которые обеспечили бы проведение кислородной реакции в условиях, близких к обратимым. Среди других важных анодных реакций — реакции выделения хлора, окисления ЗОз, реакции окислительного неорганического и органического синтеза среди наиболее важных катодных процессов — реакции выделения водорода, гидрирования органических соединений, восстановления СО и СОг. [c.15]

    Контакт топ п1в с кислородом может быть нерегулируемый (при хранении и транспортировании) и регулируемый (например, при сжигании в двигателях). При контакте топлива с кислородом воздуха в общем случае возможны три варианта взаимодействия. Первый характеризуется отсутствием изменс-пнй молекулярной структуры компонентов, участвующих во взаимодействии, и обратимым изменением массы топлива. Описанная ситуация возникает прп барботировании воздуха через топливо или случайном попадании его при хранении н транспортировании. Пузырьки воздуха коллоидно-дисперсных размеров, имеющих вокруг себя толстые абсорбционно-сольватные слои, находятся в топливе. Энергия взаимоде11ствия между молекулами в адсорбционно-сольватном слое значительно превышает энергию взаимодействия адсорбцнонно-сольватного слоя с кислородом воздуха. Так как обмен между адсорбционносольватным слоем и дисперсионной средой происходит без изменения структуры молекул, то топливо обладает бесконечной химической стабильностью. [c.214]

    Наконец, следует напомнить, что железо, связанное с порфи-рииом (гем), находится в ферросостоянии. Процесс связывания кислорода гемоглобином обратим, причем молекула кислорода и атом л<елеза находятся в стехиометрическом соотношении 1 1 и не происходит окисления Ре(П) до Ре(П1). Исследованию такого обратимого связывания молекулярного кислорода с Ре(П) в геме уделено очень большое внимание. Способность гема обратимо связывать кислород, проявляется при его включении в большую белковую структуру. Одиако если гем извлечь из белка и поместить в раствор при комнатной температуре, молекулярный кислород необратимо окисляет железо до феррисостояния Ре(П1). [c.361]

    Синтезированная недавно модель кобальтзамещенного гемоглобина приведена на схеме 6.1 [245]. Длинная боковая цепь обеспечивает координацию пиридинового кольца с центральным атомом кобальта. Комплекс Со(П) и этого так называемого петлеобразного порфирина обратимо реагирует с молекулярны.м кислородом при низких температурах (от —30 до — G0° ), но боковая цепь лишь в незначительной степени увеличивает сродство кислорода к таким модельным соединениям по сравнению с жслсзопорфириновыми системами. [c.371]

    Потенциодинамический метод имеет определенное преимущество в информативности перед методом кривых заряжения, как и любой метод определения производной искомой функции перед интегральным методом. Это особенно проявляется при изучении образования адсорбированных атомов — адатомов, возникающих из ионов раствора при их адсорбции на поверхности электродов до того, как оказывается термодинамически возможным образование соответствующей фазы ( дофазовое выделение вещества). Фактически рассмотренную выше адсорбцию водорода и кислорода на платине можно трактовать как процесс образования адатомов, так как слой Яадд возникает из ионов HjO+ значительно раньше (на 0,35—0,4 В), чем начинается выделение молекулярного водорода, а адсорбированные атомы кислорода образуются за счет разряда молекул воды или ионов ОН при потенциалах, лежащих отрицательнее обратимого кислородного на 0,5—0,6 В. Образование адатомных слоев (или субмонослоев) до достижения равновесных потенциалов соответствующих систем описано в настоящее время при адсорбции большого числа катионов (Си +, Ag+, РЬ +, Bi +, Sn +, Hg2+, Т1+ и др.) и анионов (1 , S и др.) на электродах из Pt, Rh, Pd, Au и других материалов. Причина этого явления состоит в том, что энергия связи между металлом-субстратом и атомом-адсорбатом оказывается во многих случаях значительно больше, чем энергия связи между атомами в фазе адсорбата. [c.202]

    П. Получение обратимых оксред-электродов, анализ их действия в рамках выполнимости уравнений (IX. 46) и (IX. 48), как уже неоднократно отмечалось, предполагает достижение равновесного состояния в растворе и на электроде. Но для многих реакций взаимодействие между компонентами разных оксред-систем происходит медленно и в приемлемые промежутки времени равновесия не достигаются. Характерным и очень важным примером являются реакции с молекулярным кислородом. Если произвести расчеты равновесных концентраций в соответствии со стандартными потенциалами систем так, как это сделано в разд. IX. 5, то окажется, что ни Вг-, ни 1 , ни Ре + и гидрохинон не могут присутствовать в контакте с кислородом воздуха. [c.547]

    На самом деле из-за кинетического торможения реакций окисления молекулярным кислородом растворы, содержащие названные ионы, остаются стабильными на воздухе и даже используются в аналитической практике. На платиновом электроде без специальной защиты растворов достигаются равновесные потенциалы в системах Вга Вг-, 12 1-, Ре + Ре +, хинон-ги-дрохинон. Эти потенциалы характеризуют частные равновесия оксред-компонентов каждой из систем с электродом, но не отражают в термодинамическом отношении окислительно-восстановительное состояние раствора. Малая скорость электродного процесса для кислородного электрода на платине, которая является препятствием достижения обратимости этого электрода, в случае других оксред-систем является положительным фактором, необходимым условием функционирования соответствующих электродов. [c.547]

    Железо входит в состав гемоглобина крови, а точнее в красные пигменты крови, обратимо связывающие молекулярный кислород. У взрослого человека в крови содержится около 2,6 г железа. В процессе жизнедеятельности в организме происходит постоянный распад и синтез гемоглобина. Для восстановления железа, потерянного с распадом гемоглобина, человеку необходимо суточное поступление в организм около 25 мг. Недостаток железа в организме приводит к заболеванию — анемии. Однако избыток железа в организме тоже вреден. С ним связан сидероз глаз и легких — заболевание, вызываемое отложением соединений железа в тканях этих орга-нов Недостаток в организме меди вызывает деструкцию кровеносных сосудов. Кроме того, считают, что его дефицит служит причиной раковых заболеваний. В некоторых случаях поражение раком легких у людей пожилого возраста врачи связывают с возрастным снижением меди в организме. Однако избыток меди приводит к нарушению психики и параличу некоторых органов (болезнь Вильсона). Для человека вред причиняют лишь большие количества соединений меди. В малых дозах они используются в медицине как вяжущее и бактерио-стазное (задерживающее рост и размножение бактерий) средство. Так, например, сульфат меди (И) Си304 используют при лечении конъюнктивитов в виде глазных капель (0,25 %-ный раствор), а также для прижиганий при трахоме в виде глазных карандашей (сплав сульфата меди (И), нитрата калия, квасцов и камфоры). При ожогах кожи фосфором производят ее обильное смачивание 5 %-ньш раствором сульфата меди(П). [c.170]

    Синтезированные комплексы меди (I) с лигандами Ь279 — Ь284 оказались обратимыми переносчиками молекулярного кислорода и были использованы в качестве моделей природных медьсодержащих соединений, выполняющих подобную функцию в организмах. Наиболее перспективными методами синтеза тиаазамакроциклических соединений следует считать предложенные в работах [373, 374, 380— 385], позволяющие в значительной степени варьировать структуру макрокольца [c.144]

    Химический аналог активного центра гемоглобина [727]. в центре схемы находится протогем IX. Одна пропионовая боковая цепь (вверху справа) образует пептидную связь с аналогом периферического His гемоглобина, который связан с полиэтиленгликолем (ПЭГ) через остаток Gly. Другая пропионовая группа (внизу справа) связана через разделительную цепь с имидазолом, который представляет аналог приближенного His. Хнмическни переносчик Оа качественно сходен с гемоглобином по характеру обратимого связывания молекулярного кислорода и по некоторым [c.252]

    Термопластификация представляет собой процесс термической деструкции сапропелитовых и липтобиолитовых углей в особых условиях, при которых разрываются макромолекулы, главным образом, по эфирным связям кислорода и присоединяют по этим местам водород. В результате образуются вещества, с молекулярной массой более низкой, чем в исходных углнх, которые приобретают способность плавиться при сравнительно более низких температурах (180-190°С), Процесс осуществляют в атмосфере водородного газа под давлением 4 МПа и температуре 385-390°С в течение 20-40 мин. Термопластический продукт может применяться в качестве связующего при производстве пластмасс, так как от приобрел свойство многократно и обратимо [c.247]

    Получение [1]. Этот каштанового цвета хелат получают из N,N -Л11салниилальэтиденд.па иша и хлорида кобальта (1J), В твердом состоянии и в ра личных растворителях С. обратимо связывает кислород (Юг 2Со) [2]. Ван Дорт и Гюрсеи [3J использовали С. для гомогенного катализа при окислении фенолов молекулярным кислородом. При окислений в метаноле фенолы со свободным пара-иоложение.м образуют главным образом п-хииоиы (выход от 15 до oO/u). В хлороформе Б основном получаются сложные продукты радикальных превращений. [c.377]

    В то же время получены экспериментальные доказательства использования эритробактерами энергии света установлено обратимое фотоокисление бактериохлорофилла а реакционного центра, показано светозависимое включение СО2 и повышение уровня АТФ в клетке установлена способность мембранных препаратов к фотофосфорилированию. Однако фотосинтетический аппарат, имеющийся в клетках Егу1кгоЬас1вг, не может обеспечить их рост. Облигатная зависимость от молекулярного кислорода связана с тем, что для эритробактеров основным источником энергии служит 02-зависимое дыхание. Фотосинтетическая активность может иметь значение для поддержания жизнеспособности клеток в отсутствие в среде субстратов, обеспечивающих рост. [c.302]

    В дополнение к вынужденному принесению в жертву части источников углерода высокие концентрации О2 вызывают в клетке обратимые изменения структуры нитрогеназы, делающие чувствительные к молекулярному кислороду участки менее доступными для него. Высказываются разные предположения относительно того, как осуществляется конформационная защита. Возможно, при этом происходит изменение взаимного расположения двух нитрогеназных белков. Не исключено участие в защите такого типа клеточной мембраны. Определенная стабилизация нитрогеназы в условиях высокой концентрации О2 происходит при добавлении к ферментному комплексу двухвалентных катионов. Наконец, обнаружены специальные защитные белки, образующие комплексы с нитрогеназными белками и приводящие к повыщению их стабильности в присутствии О2. Никаких других функций, кроме защитной, у этих белков пока не найдено. [c.342]

    Образование обратимо распадающегося молекулярного комплекса ДФПГ с кислородом представляет собой лишь первую стадию. Далее идет окисление, приводящее к гибели радикалов, причем в бензоле — медленно, с образованием фенола в количествах, больших, чем число фенильных групп распавшихся радикалов, а в гек-сане —гораздо быстрее. Комплексы ДФПГ с 0-2 катализируют окисление растворителя, что сопровождается гибелью радикалов [58]. [c.126]


Смотреть страницы где упоминается термин Кислород молекулярный, обратимое: [c.347]    [c.347]    [c.371]    [c.214]    [c.384]    [c.383]    [c.254]    [c.252]    [c.289]    [c.252]    [c.87]    [c.18]    [c.278]    [c.188]    [c.47]   
Методы и достижения бионеорганической химии (1978) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Кислород молекулярный

Молекулярный вес обратимость



© 2025 chem21.info Реклама на сайте