Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние растворителя силы взаимодействия

    Смещение инфракрасных полос под влиянием растворителя и взаимодействия молекул. I. Относительные силы первичных и вторичных азотсодержащих оснований. [c.280]

    К наиболее сильным взаимодействиям между частицами в растворе относятся взаимодействия между ионами, между ионами и диполями, а также между диполями. Поэтому при взаимодействии полярных или заряженных частиц наблюдается наиболее резкое влияние растворителя на скорость реакции. Значение константы скорости реакции между ионами зависит от ионной силы раствора (первичный солевой эффект). С увеличением ионной силы раствора [c.350]


    По влиянию на кислотно-основные свойства растворенного вещества растворители подразделяют на нивелирующие и дифференцирующие. В нивелирующих растворителях сила некоторых кислот, оснований и других электролитов становится примерно одинаковой, а в дифференцирующих — разной. Уравнивание силы электролитов в нивелирующих растворителях имеет не всеобщий характер нельзя считать, например, что в нивелирующих растворителях все кислоты становятся сильными или все слабыми. Многие минеральные кислоты — хлорная, хлороводородная, бромоводородная, азотная и др. в водном растворе Диссоциированы нацело с образованием Н3О+ как продукта взаимодействия кислоты с водой. Вода оказывает нивелирующее действие на силу сильных кислот. [c.35]

    Большое значение для рассмотрения вопроса о влиянии растворителей на силу электролитов имеют сведения о взаимодействии кислот и оснований с различными растворителями. Уже давно было установлено взаимодействие сильных минеральных кислот С водой. На образование гидратов серной кислоты указал еще Менделеев. [c.249]

    Следовательно, при диссоциации оснований происходит передача протона от растворителя к веш еству, являющемуся основанием, а не наоборот. Это не мешает рассматривать уже образованные продукты взаимодействия оснований с растворителем в качестве катионных кислот в единой шкале силы кислот. Этот прием имеет и принципиальное и практическое значение он ун е давно используется в аналитической химии независимо от теории кислот и оснований. Универсальная схема диссоциации кислот и количественная теория влияния растворителя на диссоциацию катионных кислот, вытекающая из данной схемы, может быть применена лишь для таких случаев диссоциации, когда действительно диссоциирует заряженная кислота, т. е. вещество, отдающее протон и несущее на себе положительный заряд например, если диссоциирует вещество такого типа  [c.298]

    Большое различие во влиянии растворителей на энергию ионов и молекул по сравнению с их влиянием на силу кислот в целом объясняется взаимодействием растворителей с неполярным радикалом кислот, входящих как в состав молекул, так и ионов. [c.337]

    Из рисунка видно также различное влияние растворителя на еноль-ную и кетонную формы кетоенолов. Так как анионы енольных и кетонных форм идентичны, дифференцирующее действие растворителей на их силу обязано различию в энергии взаимодействия их молекул с различными растворителями. Это различие составляет 0,8—1,0 единиц р/ , т. е. сила кислот изменяется в 5—10 раз. [c.340]


    Из этих уравнений следует, что изменение соотношения в силе катионных кислот под влиянием растворителей можно ожидать в связи с различием в энергии взаимодействия недиссоциированных молекул основания [c.352]

    Таким образом, если между реагентами и другими компонентами системы имеет место термодинамическое взаимодействие (индивидуальные части этого взаимодействия, как правило, остаются неизвестными), то присутствие этих не участвующих в стехиометрическом уравнении веществ может более или менее сильно повлиять на значения равновесных концентраций. Разумеется, такое положение будет справедливым, если термодинамическое взаимодействие между участниками реакции и другими компонентами системы (сольватация, взаимная поляризация и т. д.) будет наблюдаться стационарно, а не только в момент образования активированного комплекса реакции. Другими словами, влияние постороннего вещества на константу равновесия Кс будет существовать тогда, когда оно образует с реагентами неидеальный раствор (твердый, жидкий, газообразный), или весьма тонкую смесь типа эвтектики. В этом случае силы взаимодействия между молекулами или атомами разных веществ дают иное термодинамическое состояние системы по сравнению с состоянием в отсутствие таких сил. Таким образом, постороннее вещество (катализатор, растворитель) вызывает добавочное поле, которое вносит соответствующее изменение в состояние системы. [c.169]

    В растворах различных веществ в жидких неводных растворителях и сжиженных газах помимо ионов, предсказываемых теорией электролитической диссоциации, имеются разнообразные ионы и молекулы, вызывающие аномалии в поведении истинных растворов, которые не могут быть объяснены ни гипотезой С. Аррениуса, ни современными теориями Дебая — Хюккеля и Л. Онзагера, поскольку предметом их не является изучение влияния растворителей на свойства электролитов. Следует отметить, что теория Бренстеда и другие теории, предметом которых было исследование влияния растворителей на силу кислот и оснований, также не объясняют аномалий в поведении электролитов в неводных растворах. Как показывают исследования, указанные аномалии обусловливаются взаимодействием растворенного вещества с растворителем. [c.391]

    Причины, обусловливающие дифференцирующее действие растворителей, Дифференцирующее действие растворителей на электролиты обусловливается взаимодействием их, сопровождающимся образованием продуктов присоединения с различной прочностью. При этом природа И физико-химические свойства растворителей оказывают многообразное влияние на силу электролитов, которая изменяется в растворах дифференцирующих растворителей в разной степени, а также зависит от природы растворенного вещества. [c.406]

    Важной характеристикой сольватации является энергия взаимодействия ионов с молекулами растворителя, составляющими в растворе непосредственное окружение ионов, и с более отдаленными молекулами. Соответственно этому различают ближнюю и дальнюю сольватацию. С ближней связаны кинетические и термодинамические свойства растворов. Дальняя сольватация проявляется главным образом в поляризации молекул растворителя под влиянием кулоновских сил, действующих между ионами. Состояние ионов в растворах и молекулярный механизм протекающих в них процессов связаны с ближней сольватацией. [c.271]

    Природа растворителя является еще одним важнейшим внешним фактором, влияюш им на стабильность органических ионов. Многостороннее по своему характеру влияние растворителя в первом приближении можно схематически свести к двум аспектам. С одной стороны, полярный растворитель, т.е. жидкость с высокой диэлектрической проницаемостью, чисто физически снижает кулоновское взаимодействие зарядов, Этот эффект может быть довольно значительным например, переход от неполярного растворителя (гексана) к полярному (ацетонитрилу) уменьшает силы кулоновского взаимодействия б 21 раз. С другой стороны, молекула растворителя может стабилизировать ионы любого заряда за счет заряд-дипольных взаимодействий, образования водородных связей, комплексов разного типа, короче, за счет эффектов, обобщенно обозначаемых термином сольватация. Эти эффекты сольватации приводят к значительному экранированию заряда иона молекулами растворителя и частичной делокализации заряда, распределению его между ионом и сольватной оболочкой. [c.95]

    Кинетика и механизм термического распада пероксидов, осуществляемого как по гомолитическому механизму с разрывом одной связи или с синхронным разрывом двух связей, так и по нерадикальному механизму в растворе, зависят и от структуры пероксида, и от характера сил взаимодействия молекул пероксида с молекулами растворителя. Это влияние особенно существенно для гидропероксидов, легко образующих водородные связи. [c.229]


    Учет характера кислотно-основных взаимодействий помогает вывести четкие закономерности влияния растворителей на силу кислот и оснований. [c.58]

    Соотносительное влияние энергии химического взаимодействия растворенного вещества с растворителем и ДП последнего на силу электролитов иллюстрируют данные по константам диссоциации рЛ дисс оснований (аминов). Оба кислотных растворителя — и муравьиная, и уксусная кислоты — нивелируют силу аминов, так как степень их взаимодействия с растворителем весьма высока. Но в то же время в растворителе с высокой ДП, в муравьиной кислоте амины почти в десять тысяч раз более сильные электролиты, чем в уксусной кислоте. [c.60]

    Процесс соответствующих взаимодействий, имитирующих те, которые доминируют в биохимических процессах и относящихся к нековалентным, получил название "молекулярное узнавание". Молекулярное узнавание можно определить как процесс, включающий в себя как связывание, так и выбор молекулы - "гостя" данной молекулой -"хозяином". Просто связывание молекул не является молекулярным узнаванием. Согласно Лену [4], "узнавание - это связывание с целью". Данное поведение характерно для многих биохимических процессов, таких как ферментативные реакции, связывание "рецептор-субстрат", сборка белковых молекул, иммунное взаимодействие антиген-антитело, транспорт через мембрану и т.д. Одним из критериев молекулярного узнавания является то, что константа ассоциации между "хозяином" и "гостем" является значительно более высокой по сравнению с константами образования комплексов между другими молекулами, присутствующими в системе. В связи с этим особое значение приобретает исследование энергетики межмолекулярных взаимодействий биомолекул. Энергетические параметры позволяют судить о силе взаимодействия, наличии или отсутствии ассоциации между молекулами, а также выявить и описать влияние растворителя на процесс молекулярного узнавания. [c.185]

    Перераспределение нейтральных молекул в растворах происходит под влиянием дисперсионных сил подложки и (или) под влиянием структурных сил, меняющих растворяющую способность граничных слоев растворителя. Последний эффект пока трудно поддается расчету. Для неполярных растворителей можно ограничиться учетом только дисперсионных сил, что делает возможным проведение количественных расчетов [1—3]. Перекрытие диффузных адсорбционных слоев с измененной концентрацией раствора приводит к появлению дополнительных сил притяжения или отталкивания между ограничивающими прослойку поверхностями сверх сил их молекулярного взаимодействия. Эти дополнительные] силы было предложено назвать адсорбционной составляющей расклинивающего давления [1—3]. [c.115]

    Можно также учесть влияние на силы дисперсионного взаимодействия молекулы растворенного вещества адсорбционных монослоев на поверхностях прослойки. В этом случае учитывается наличие на подложках 2 и 3 тонкого слоя толщиной б, диэлектрическая функция бд ( 1) которого принимается либо такой же, как у макроскопической фазы растворенного вещества — при положительной адсорбции, либо такой же, как у растворителя — при отрицательной адсорбции. [c.120]

    В силу сложного характера межмолекулярных взаимодействий растворенного вещества с растворителем количественное описание влияния растворителей на равновесие возможно только в наиболее простых и благоприятных случаях (см., например, работу [71]). Поэтому в последующих разделах будут рассмотрены в основном качественные характеристики таких эффектов с использованием в качестве примеров кислотно-основ- ого, таутомерного и других равновесных превращений. [c.127]

    Интуитивно можно предполагать, что кислотность и основность органических соединений в газовой фазе и в растворе должны быть различными. В то время как в газовой фазе кислотность и основность — это собственные свойства индивидуальных молекул, в жидкой фазе они определяются всей фазой в целом в силу взаимодействий между молекулами растворителя и растворенного вещества. В растворе кислотность и основность отражают как влияние растворителя, так и присущую растворенному веществу способность присоединять и отдавать протоны. По этой причине изучению взаимного влияния свойств растворенного вещества и эффектов растворителя должно предшествовать определение кислотности и основности в отсутствие растворителя. До последнего времени, однако, соответствующие исследования были не слишком плодотворными из-за отсутствия методов определения кислотности и основности в газовой фазе. [c.133]

    В то время как амины и аминокислоты, несущие положительный заряд, более прочно удерживаются при более высоких значениях pH, для отрицательно заряженных сорбатов справедливо обратное. Систематические исследования, проведенные на серии N-бензоил-о, L-аминокислот, позволили глубже понять механизм взаимодействия сорбата с белком. Влияние изменения свойств подвижной фазы на величины к VI а демонстрирует рис. 7.10. Во-первых, удерживание в значительной степени возрастает с усилением гидрофобного характера аминокислоты (Ser > А1а> Phe). Во-вторых, увеличение суммарного отрицательного заряда белка с увеличением pH вызывает уменьшение к для всех шести соединений (вследствие ионного взаимодействия). Далее, влияние концентрации буфера можно объяснить усилением адсорбции вследствие ионных взаимодействий при низкой ионной силе. Небольшое, но вполне заметное возрастание к для наиболее сильно удерживаемых сорбатов при высоких концентрациях буфера вероятнее всего является результатом усиления гидрофобных взаимодействий. Поскольку ионные (кулоновские) и гидрофобные взаимодействия по-разному подвержены влиянию ионной силы, то оба эффекта приводят к возникновению минимума в адсорбции сорбата (к ) в определенной точке. И наконец, совершенно очевидно влияние органического растворителя-модификатора он всегда приводит к понижению удерживания сорбата и тем сильнее, чем более гидрофобен сорбат. Влияние pH и ионной силы на удерживание незаряженных соединений невелико, но выражено вполне отчетливо. Оно связано исключительно с изменениями в связывающем центре ХНФ. Добавление пропанола-1 вызывает уменьшение удерживания по сравнению с наблюдаемым у заряженных сорбатов, что свидетельствует о преимущественном вкладе в удерживание гидрофобных взаимодействий. Это подтверждает также наблюдаемое очень большое влияние на удерживание длины цепи алканола-1. Высшие спирты являются значительно более эффективными конкурентами за связывающий центр, а потому вызывают более быстрое элюирование сорбата. Возможность регулирования удерживания путем изменения подвижной фазы, которую демонстрирует схема 7.6, говорит о том, что эту особенность данных хроматографических систем можно использовать в целях оптимизации разделения. [c.135]

    На дисперсионное взаимодействие приходится главная часть сил притяжения многих полярных молекул. Так, вычисленная энергия когезии метилэтилкетона при 40 °С состоит на 8 % из энергии ориентационного, на 14 % - индукционного и на 78 % - дисперсионного взаимодействия. Следовательно, на растворение любых компонентов нефтяного сырья в растворителях любой природы преобладающее влияние оказывает дисперсионное взаимодействие. [c.262]

    При адсорбции из растворов молекулы адсорбата находятся одновремнно под влиянием адсорбционного поля поверхности адсорбентсК(при этом нарушается равномерное распределение растворенного вещества в объеме жидкой фазы) и молекул растворителя (силы взаимодействия с которыми противоположны силам адсорбции). В результате на границе раздела фаз (в адсорбционном слое) молекулы растворенного вещества приобретают определенную ориентацию. [c.82]

    Естественно, что при таком рассмотрении влияния растворителя электростатическое взаимодействие между ионами будет функцией от того, насколько раздв1инуты ионы в кристаллической решетке. Чем сильнее раздвинуты ионы, тем меньше силы взаимодействия между ними. Чем ионы ближе, тем элек-тростатическо е взаимодействие больше. [c.159]

    Индукционное взаимодействие. Установлено, что раствори — тели, обладающие значительным дипольным моментом, способны индуцировать дипольный момент у молекул асимметричной и сла— боасимметричной структуры. Следовательно, индуцированию подвержены как полярные, так и некоторые неполярные углеводороды масляного сырья. Поляризации подвержены в большей степени полициклические ароматические углеводороды, у которых ароматические кольца слабо экранированы нафтеновыми циклами и короткими алкильными цепями (то есть голоядерные). Под влиянием элв стростатического поля растворителя в таких молекулах масляной фракции возникает дeфopмai ия внешнего электронного слоя, что приводит к неравномерному распределению зарядов на отдельных участках молекул. В результате неполярная молекула временно превращается в индуцированный диполь. Молекулы с индуцированным дипольным моментом подвергаются далее ориентационному взаимодействию и переходят и раствор полярного растворителя. Индукционные силы взаимодействия зависят от силы электростатического поля полярной молекулы, то есть от значения дипольного момента и химической природы неполярных молекул, а именно от способности их поляризоваться. Индуцированный дипольный момент пропорционален напряженности поля Е, то есть =аЕ, где а характеризует степень поляризуемости индуцированной молеку — лы. [c.215]

    Еще более сложное, но не более строгое приближение было сделано Мельвин-Хьюзом [65], который при подсчете энергии ион-дипольйого взаимодействия учел эффект поляризации и силы отталкивания. Чтобы получить величину взаимодействия диполь — растворитель, была использ ована [66] модель Онзагера для диполя, окруженного оболочкой из молекул растворителя. Авторы воспользовались уравнением Пуассона для того, чтобы оценить влияние ионной оболочки на диполь. Полученные в этом случае ч )ормулы слишком сложны и вряд ли могут быть успешно применены для обработки экспериментальных результатов. Влияние ионной силы в реакциях между ионом и диполем может сказываться не только на специфических взаимодействиях. Для положительных ион-дипольных взаимодействий (0 > 90°) ориентация диполя приведет к тому, что поле иона будет уменьшать поля диполя. В результате следует ожидать, что ионная атмосфера оболочка), окружающая как свободный диполь, так и комплекс, образующийся при взаимодействии иона с диполем, будет гораздо сильнее стабилизировать свободный диполь. Это будет приводить к уменьшению скорости с увеличением ионной силы. В случае отрицательного взаимодействия увеличение ионной силы раствора вызывает увеличение скорости реакции. К сожалению, экспериментальных результатов, которые могли бы подтвердить эти выводы, до сих пор нет. Основная трудность здесь заключается в том, что до сих пор не было сделано ни одной попытки сравнить действие ионов и ионных пар в качестве реагентов [68]. Сложность модели сама по себе достаточно велика, и, по всей видимости, любое из соотношений, которое может быть выведено, сможет получить лишь качественное подтверждение. [c.459]

    Растворимость углеводородов в полярных растворителях зависит от способности их молекул поляризоваться, что связано со структурными особенностями молеку л углеводородов. Вследствие малой поляризуемости молекул твердых углеводородов индуцированные дипольные моменты этих соединений евелики, поэтому растворение твердых углеводородов в полярных растворителях происходит в основном под действи м дисперсионных сил. Растворимость остальных компонентов масляных фракций является результатом индукционного и ориентационного взаимодействий, причем действие полярных сил настолько велико, что даже при низких температурах эти компоненты остаются в растворенном состоянии. При понижении температуры влияние дисперсионных сил постепенно ослабевает, в то время как влияние полярных сил усиливается в результате при достаточно низких температурах твердые углеводороды выделяются из раствора и благодаря наличию длинных парафиновых цепей сближаются с образованием кристаллов. [c.156]

    Другим внешним фактором, тг1кн е играющим сущест-вепную роль в стабилизации органических ионов, является природа растворителя. Многостороннее по своему характеру влияние растворителя можно схематически свести к двум аспектам. С одной стороны, полярный растворитель, т. е. жидкость с высокой диэлектрической постоянной, чисто физически снижает кулоновское взаимодействие зарядов. Этот эффект может быть значительным например, переход от неполярного растворителя (гексана) к полярному (ацетонитрилу) уменьшает кулоновские силы в 21 раз. С другой стороны, нековалентные взаимодействия молекул растворителя с ионами обоих знаков, такие, как заряд-динолг.ное взаимодействие, образование водородных связей, комплексов разного типа — все то, что обобщенно обо. шачают термином сольватация , приводят к значительному экранированию центров заряда молекулами растворителя и одновременно — к дальнейшей делокализации заряда, распределению его между ионом и сольватной оболочкой. [c.75]

    Таким образом, кислоты в растворах взаимодействуют с растворителем, это взаимодействие обязано водородной связи. Проведенное исследование показало, что смещение ассоциированной полосы ОВ-группы ряда карбоновых кислот различной силы под влиянием ацетона и диоксана примерно одинаково и не зависит от силы кислоты. В то же время установлено, что величина смещенпя частоты ОВ-грунпы многих кислот под влиянием растворителя тем больше, чем сильнее его основность. Это согласуется с тем обстоятельством, что изменение силы ряда кислот одной природы под влиянием данного растворителя в первом приближении постоянно (см. гл. VI). [c.256]

    Как следует из теоретических и экспериментальных исследований автора по влиянию растворителей на силу кислот и из теоретических работ Соколова, вторая стадия процесса возможна только в достаточно полярной среде благодаря сольватации ионов и не возможна в вакууме, где более вероятной является диссоциация продукта присоединения не на ионы, а на молекулы. Систематические исследования взаимодействия кислот с основаниями в инертных растворителях выполнены Барроу с сотрудниками. На основании изучения инфракрасных спектров они показали, что уксусная кислота и ее галоидзамещенныс образуют с алифатическими аминами и пиридином два ряда продуктов присоединения неионизированные продукты присоединения, образованные за- счет водородной связи между кислотой и основанием, и ионизированные продукты присоединения, в которых водород уже передан основанию и образовал ионы. Последние вследствие низкой диэлектрической проницаемости растворителя не существуют самостоятельно, а включены в ионные нары. Мея ду катионом, полученным в результате передачи протона основанию, и анионом также,возникает водородная связь [c.293]

    Взаимная компенсация lg7o ионов и молекул при подсчетах влияния растворителей на силу кислот и на относительную их силу (для кислот с одинаковыми носителями протонов) говорит о том, что энергии и взаимодействия растворителей с радикалом, входящим в состав аниона и молекулы одной и той же кислоты, близки между собой. [c.337]

    Дифференцирующее действие растворителей на силу оснований В уравнении ( 11,60) величина 21g одинакова для всех кислот и зависит только от выбранной пары растворителей величина lg 7омн+ также идентична для всех кислот следовательно, различие во влиянии растворителя на силу катионных кислот (дифференцирующее действие) может проявиться в связи с различием в энергии взаимодействия ионов ВН" и молекул В с растворителем. [c.352]

    При переходе от воды к неводному растворителю величина электростатического взаимодействия ионов с растворителем уменьшается, а энергия ионов увеличивается. Наоборот, энергия сольватации молекул НА и В с переходом от воды к неводному растворителю увеличивается, а энергия (изобарный потенциал) молекул уменьшается а так как различие в константах определяется разностью 21g7o jj—2 lg7oмoлeкvл> величина А onst, значительно больше, чем это следует из теории Бренстеда. Нужно, однако, иметь в виду, что в действительности влияние растворителей на силу оснований не так уже сильно отличается от влияния на незаряженные кислоты, [c.355]

    Следовательно, 2 С сол зависит от различия в радиусах ионов в растворе и от расстояния наибольшего сближения их в ионите и, наконец, от различия в числах сольватации. С падением диэлектрической проницаемости С/сол будет возрастать. Если соотношбния в числах сольватации и в радиусах в среде и в ионите не изменяются, константа не будет зависеть от энергии ион-дипольного взаимодействия. Кроме того, АС/сол зависит от величины дипольного момента молекул растворителя. Чем дипольный момент молекул растворителя больше, а диэлектрическая проницаемость меньше, тем больше изменение константы. Следует ожидать большего влияния растворителей, дифференцирующих силу солей, на увеличениё селективности ионного обмена. Так как концентрация ионов в единице объема в ионите больше, чем в растворе, влияние растворителя на состояние ионов в ионите будет больше, чем в растворе. [c.366]

    Эбулиоскопический и криоскоп ический мето-д ы. Определение молекулярного веса этими методами основано на соответственном повышении температуры кипения и понижении температуры замерзания растворителя при растворении в нем 1каких-либо веществ. Величина температурной депрессии (АО определяется отношением числа частиц растворенного вещества к числу частиц раствора. Если количество растворенного вещества настолько мало, что отдельные его молекулы практически не испытывают сил взаимодействия, то каждая молекулы ведет себя в растворе как самостоятельная единица. Поэтому, если молекулы растворенного вещества не ассоциируются под влиянием сил взаимодействия, то между концентрацией его в растворе и величиной температурной депрессии соблюдается прямая пропорциональность и отношение-будет постоянным. [c.151]

    Кинетака и механизм термического распада пероксидов, осуществляемого как по гомолитическому механизму с разрывом одной связи или с синхронным разрывом двух связей, так и по нерадикальному механизму в растворе, зависят от физических и химических свойств растворителя, от характера сил взаимодействия молекул пероксида с молекулами растворителя. Это влияние особенно существенно для гидропероксидов, легко образующих водородные связи. Общие вопросы кинетики и механизма реакций в жидкой фазе рассматривались в монографиях [1—3]. В первую очередь это изменение характера движения и столкновения реагирующих частиц в жидкой среде и влияние прямого взаимодействия реагирующих частиц с молекулами растворителя. В результате взаимодействия реагирующие частицы и переходное состояние окружаются структурированной оболочкой из молекул растворителя и изменяют свою реакционную способность из-за изменения электронной структуры. [c.201]

    На реакции нуклеофильного замещения, подобно любой по.1, р-ной реакции, оказывает влияние растворитель, хотя степень эмдо злпяния может изменяться от реакции к реакции. Вообще гоы и, в процессе химической реакции образование нонов возможно ко в том случае, если оии сольватируются. Для грубой оЦ м ки сольватациониых свойств растворителя можио использовать - к диэлектрическую проницаемость. Однако последняя — макрг I пическая величина, тогда как специфическое взаимодействие М1 к-ду растворителем и растворенным веществом происходит в с- -ре действия сил межмолекулярного притяжения и отталкивания. [c.242]

    Ион 205X1 отличается от других катионов чрезвычайно высокой чувствительностью к химической природе среды. Индуцированное растворителями смещение химических сдвигов для-этого катиона превышает 2600 млн [238, 239]. Для сравнения можно указать, что максимальные индуцированные растворителями смещения химических сдвигов составляют всего лишь. 6 млн- в случае Ь [244], 20 млн в случае На [245, 396] а 130 МЛН в случае Сб [246]. Поразительное влияние растворителей на химический сдвиг делает этот ион чрезвычайно полезным при изучении обычной и избирательной сольватации [247] (см. разд. 2.4). Огромные индуцированные растворителем смещения химических сдвигов обнаружены также в спектрах ЯМР солей Со и его комплексов [395]. Показано, что такие большие смещения химических сдвигов не удается объяснить каким-либо одним макроскопическим свойством растворителя. Часто обнаруживается корреляция между химическим сдвигом катиона и донорным числом Гутмана растворителя, являющимся мерой его льюисовой основности (см., табл. 2.3 в разд 2.2.6) [245, 246]. Индуцированные растворителем смещения химических сдвигов можно рассматривать как меру силы электростатических и ковалентных взаимодействий между катионом и растворителем, выполняющим функции, льюисова основания. [c.467]

    Таким образом, элюирующая сила подвижной фазы — это ее свойство вступать в такие межмолекулярные взаимодействия с компонентами системы, которые способствуют десорбции разделяемых соединений, более быстрому перемещению хроматографических зон. Конкретные физико-химические механизмы влияния растворителя на сорбционное равновесие различны в различных режимах ВЭЖХ и рассмотрены в следующих разделах. [c.41]


Смотреть страницы где упоминается термин Влияние растворителя силы взаимодействия: [c.64]    [c.66]    [c.365]    [c.339]    [c.76]    [c.199]    [c.235]    [c.250]    [c.236]    [c.430]   
Влияние растворителя на скорость и механизм химических реакций (1968) -- [ c.162 , c.187 , c.188 , c.195 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие ион растворитель



© 2025 chem21.info Реклама на сайте