Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексные соединения с переходными металлами и их соединениями

    Перейдем к рассмотрению гомогенного катализа комплексными соединениями переходных металлов. При таком катализе в присутствии комплексных катализаторов (чаще всего катионов переходных металлов) осуществляют реакции восстановления и окисления, гидрирования и гидратации, полимеризации и изомеризации. Примером может служить метод промышленного окисления этилена до ацетальдегида в водной среде в присутствии палладиевого катализатора [c.183]


    Окраска комплексных соединений переходных металлов объясняет известный фокус с письмом невидимыми чернилами, приготовленными из СоС12. Если написать что-либо на бумаге бледно-розовым раствором СоС12, текст остается практически неразличимым. Но если затем осторожно нагреть над пламенем свечи бумагу, на ней появляется ярко-синяя надпись. После охлаждения надпись постепенно исчезает. Розовая окраска принадлежит октаэдрически гидратированному иону кобальта, Со(Н20) . Нагревание удаляет из него воду и оставляет синий хлоридный комплекс с тетраэдрической геометрией. Безводное соединение гигроскопично это [c.208]

    В качестве активных соединений при нанесении на носители в последнее время используют комплексные соединения переходных металлов, оказавшиеся эффективными при гомогенном катализе в растворах. Синтез комплексов на поверхности носителей позволил получить оригинальные катализаторы, не имеющие аналогов среди растворимых комплексов (рис. 5). Закрепленные кластеры палладия обладают высокой селективностью в процессах гидрирования при производстве гербицидов. [c.56]

    Данная глава представляет собой краткое введение в обширную область химии, которая посвящена комплексным соединениям переходных металлов. Многообразие и трудность интерпретации химических свойств этих соединений обусловлены наличием у них тесно расположенных энергетических уровней, связанных с -орбиталями металла. Путь к пониманию химии переходных металлов заключается в объяснении того, каким образом лиганды возмущают эти энергетические уровни металла. Теория валентных связей и теория кристаллического поля частично объясняют этот эффект, но в настоящее время наиболее плодотворной является теория поля лигандов. [c.246]

    Лев Александрович Чугаев принадлежит к числу наиболее выдающихся советских химиков. Родился в Москве, в 1895 г. окончил Московский университет. В 1904— 1908 г. — профессор Московского высшего технического училища, в 1908—1922 г. — профессор неорганической химии Петербургского университета и одновременно (с 1909 г.) — профессор органической химии Петербургского технологического института. Занимался изучением химии комплексных соединений переходных металлов, в особенности металлов платиновой группы. Открыл много новых комплексных соединений, важных в теоретическом и практическом отношениях. Чугаев впервые обратил внимание на особую устойчивость 5- и 6-членных циклов во внутренней сфере комплексных соединений и охарактеризовал кислотно-основные свойства аммиакатов платины (IV). Он был одним из основоположников применения органических реагентов в аналитической химии. Много внимания уделял организации и развитию промышленности по добыче и переработке платины и платиновых металлов в СССР. Создал большую отечественную школу химиков-неоргаников, работающих в области изучения химии комплексных соединений. [c.588]


    Комплексные соединения переходных металлов в последнее время находят все большее практическое применение. Механизм их каталитического действия представляет интерес для понимания не только гомогенного, но, как будет показано ниже, и гетерогенного катализа. Большое значение комплексы переходных металлов играют в биологических системах. Ограничимся рассмотрением лишь небольшого числа гомогенных каталитических реакций, в которых комплексные соединения металлов являются катализаторами или образуются как промежуточные продукты в ходе химического превращения. [c.385]

    Катализаторы — комплексные соединения переходных металлов. Реакции восстановления, гидрирования, окисления, гидратации ненасыщенных соединений, изомеризации, полимеризации и многие другие в промышленных условиях осуществляются в растворах в присутствии комплексных катализаторов. По типу применяемых катализаторов эти процессы иногда объединяют в группу координационного катализа. В качестве катализаторов в таких процессах применяются комплексные соединения катионов переходных металлов. Сюда относятся металлы УП1 группы Ре, Со, N1, Ни, КЬ, Рс1, Оз, 1г, Р1, а также Си, Ag, Hg, Сг и Мп. Сущность каталитического действия заключается в том, что ионы металлов с -электронной конфигурацией с/ —могут взаимодействовать с другими молекулами, выступая как акцепторы электронов, принимая электроны на свободные /-орбитали, и как доноры электронов. На рис. 200 показано взаимодействие ВЗМО этилена со свободной -орбиталью иона металла (а) и одновременное взаимодействие заполненной -орбитали металла с НСМО этилена (б). Донорно-акцепторное взаимодействие, обусловленное переходом электронов с я-орбитали этилена, уменьшает электронную плотность между атомами углерода и, следовательно, уменьшает энергию связи С=С. Взаимодействие, обусловленное переходами электронов с -орбитали иона металла на разрыхляющую орбиталь молекулы этилена, приводит к ослаблению связей С=С и С—Н. [c.626]

    Резюмируя, можно сказать, что химия неорганических комплексных соединений и ее развитие за последнее время (теория поля лигандов) позволяют построить точные молекулярные модели каталитических реакций в этих моделях реагирующими частицами являются лиганды комплекса, образованного вокруг центрального атома активного центра (обычно атома переходного металла). [c.25]

    Очевидно, что изучение реакции гидрирования в присутствии комплексных соединений переходных металлов ценно тем, что процесс не осложнен явлениями диффузии внутри пор, характером и параметрами поверхности и др., что имеет место в случае гетерогенного катализа. [c.137]

    Почему подавляющая часть комплексных соединений переходных металлов окрашена  [c.88]

    Этим требованиям наиболее полно отвечают комплексные соединения переходных металлов в высокой степени окисления Мо +,  [c.193]

    ХИМИЧЕСКАЯ СВЯЗЬ В КОМПЛЕКСНЫХ СОЕДИНЕНИЯХ ПЕРЕХОДНЫХ МЕТАЛЛОВ [c.169]

    Контур спектральной линии характеризуется определенной формой область частот, соответствующая данной линии (ее ширина) может быть и очень малой и достаточно значительной. Для сложных атомных систем, в том числе комплексных соединений переходных металлов, вместо узких линий получаются сплошные полосы, которые также характеризуются определенным контуром, ширина полосы может достигать порядка Ю см ( -катионы), но может быть и порядка 1 —102 (РЗЭ). [c.240]

    Формулы (7.10) объясняют происхождение символов /-орбиталей. Форма граничных поверхностей /-электронных облаков весьма существенна при объяснении химической связи в комплексных соединениях переходных металлов. На высших энергетических уровнях (и >4) возникают /-орбитали (/=3). Угловая составляющая при этом напоминает рассмотренную только что для /-орбиталей. [c.34]

    Промежуточный продукт реакции Н1 образуется в первой стадии процесса и разлагается во второй. В образовании Н1 участвует катализатор, но к концу взаимодействия он полностью регенерируется. Б качестве гомогенных катализаторов в последние годы все шире применяют комплексные соединения переходных металлов. [c.139]

    Увеличение pH среды можно получить в результате фоторазложения комплексных соединений переходных металлов, имеющих в качестве лигандов аммиак  [c.197]

    Форма облаков З -электро-нов весьма существенна при объяснении химической связи в комплексных соединениях переходных металлов. [c.121]

    Применяя в качестве катализаторов комплексные соединения переходных металлов, они смогли при комнатной температуре в водной среде восстановить азот до аммиака и гидразина. Оказалось, что фиксация азота в этих условиях осуществляется посредством четырехэлектронного механизма. Молекула N3 соединяется сразу с двумя атомами переходного металла, например молибдена, входящего в состав катализатора. При этом каждый атом переходного металла отдает молекуле N3 два 5-электрона, тем самым в ней рвутся сразу две я-связи и оба атома переходного металла вступают с ней в химическую связь. Затем в водной среде атомы металла замещаются протонами и образуется молекула гидразина — ЫН,, которую легко перевести в молекулу амми- [c.122]


    И ИХ свойств. Развитие представлений о химической связи в комплексных соединениях переходных металлов прошло четыре стадии. Оно началось с простейшей электростатической теории, которую сменила теория валентных связей, или локализованных молекулярных орбиталей в дальнейшем появилась теория кристаллического поля и, наконец, теория поля лигандов, или делокализованных молекулярных орбиталей. Каждая из этих теорий стала развитием предьщушей. Их последовательное рассмотрение является хорошим способом проследить за развитием представлений о химической связи и дает возможность показать, что одни и те же физические факты можно объяснить в рамках различных и на первый взгляд противоположных предположений. [c.223]

    ТКП объясняет цвет комплексных соединений переходных металлов. Вследствие сравнительно небольшой разности энергии Д между неэквивалентными 2е- и -орбиталями, возможен переход электрона с низкого на более высокий уровень энергии за счет поглощения выделяемого света, что приводит к окраске комплекса. Например, [Т1(Н20)б] имеет один неспаренный электрон на гг-орбитали, который под влиянием света перехо-дит на е -орбиталь, что сопровождается появлением фиолетового окрашивания. [c.383]

    Подробнее о проделанной работе в данной области читатель может узнать из обзора Н.М. Клименко Квантовохимические расчеты комплексных соединений переходных металлов (Итоги науки и техники. Строение молекул и химическая связь, Т. 6,-М. 1978), Автор дает краткое описание различных расчетных схем метода МО и схем интерпретации результатов. Обсуждаются электронное строение и природа химической связи - Прим. перев. [c.309]

    Мы рассмотрели только несколько примеров, чтобы проиллюстрировать изолобальную аналогию. Хоффман с сотрудниками распространил эту концепцию на другие фрагменты комплексных соединений переходных металлов с различным заполнением -орбиталей. Некоторые из найденных аналогий сведены в табл. 7-5. Несколько таких аналогий обсуждается в Нобелевской лекции Хоффмана [10], а дополнительные примеры можно найти в приводимом автором списке литературы. [c.356]

    КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ ПЕРЕХОДНЫХ МЕТАЛЛОВ С МОСТИКАМИ ИЗ АТОМОВ СЕРЫ И ФОСФОРА [c.269]

    Особый интерес представляют работы по изучению механизма переноса электронов и перераспределения их плотности в комплексных соединениях переходных металлов, являющихся катализаторами процесса жидкофазного окисления углеводородов [140]. [c.40]

    Практическое применение могут найти лишь те соединения, которые сами являются устойчивыми при высоких температурах (до 400°С). Поэтому в качестве возможных стабилизаторов были применены некоторые комплексные соединения переходных металлов класса фталоцианинов, причем оказалось, что на эффективность стабилизации влияет не только природа металлов, но и строение лигандов. Наилучшие результаты достигнуты с фтолоцианинами магния и меди, взятых в небольших количествах (от 0,2 до 1,0% по весу). Интересно, что из всех исследованных фталоцианинов наибольшей стабилизирующей способностью обладает фталоциа-нин магния, в котором нет непарного электрона (так как магний не относится к группе переходных металлов). В связи с этим можно высказать предположение, что эффект стабилизации гетероцепных полиэфиров (в данном случае, полиарилатов) фтало-цианинами связан не только с наличием неспаренных электронов в соединениях-стабилизаторах, но и с их химическим строением .  [c.174]

    Этен-номенклатурное название С2Н4 его тривиальное название-этилен.) Соединения с циклическим расположением атомов, имеющие делокализованные, бензолоподобные кратные связи, называют ароматическими. Дакрон, нафталин, ДДТ, аденин и рибофлавин (см. рис. 21-1 и 21-3) содержат ароматические группы. На примере аденина и рибофлавина видно также, что углерод способен образовывать двойные связи с азотом и что азот может принимать участие в образовании ароматических циклов с делокализованными кратными связями. Многие разделы органической химии связаны с особыми свойствами систем, включающих ароматические циклы. Ароматические молекулы и комплексные соединения переходных металлов являются двумя важнейшими классами соединений, в которых энергия, необходимая для возбуждения электрона, приходится на видимую часть спектра. Поэтому практически все красители представляют собой такие соединения и принимают участие в механизмах захвата и переноса энергии фотонов. [c.270]

    Яцомнрский K. Б. Энергетика комплексных соединений переходных металлов с позиций теории поля лигандов.— Журн. неорган. хпмии, 1966, т. 11, N И, с. 2429—2436. [c.187]

    Новым направлением в фиксации атмосферного азота является так называемый ферментативный метод с использованием комплексных соединений переходных металлов (железа, хрома, молибдена), в котором используется принцип естественной фиксации азота растениями в прирбдных условиях  [c.186]

    Теория кристаллического поля. В основе теории лежат фундаментальные труды Бете (1929) и Ван Флека (1932). Первоначально теория рассматривала расщепление ато1У1ных термов в кристалле и применялась для объяснения магнитных свойств кристаллов. Впоследствии она была использована также для объяснения спектров поглощения и ряда других свойств комплексных соединений переходных металлов и лантаноидов. Основные идеи теории  [c.237]

    Теория кристаллического поля позволяет объяснить и относительную стабильность комплексных соединений переходных металлов. Для объяснения воспользуемся такой характеристикой комплексных соединений, как константа устойчивости, представляющая собой обратную величину константы диссоциации комплексов типа [МЬб] + (где М — двухвалентные ионы элементов периодической системы с порядковым номером от 20 (Са) до 31 (Си)) можно было ожидать монотонного увеличения константы стойкости (как показано пунктиром на рис. 16.3), так как ионы-комплексообразовате-ли имеют одинаковые заряды 2+, а ионные радиусы монотонно уменьшаются при переходе от a + к Zn +. Экспериментально найденная кривая зависимости (см. рис. 16.3) [c.383]

    Наметкин Н. С., Кукина М. А., Лунанднн В. С. и др. Новые методы очистки и стабилизации иефти и продуктов нефтепереработки комплексными соединениями переходных металлов высшей валентности //XI Менделеевский съезд по общей и прикладной химии,— М, Наука, 1976,— № 2,— С, 321—322, [c.206]

    Сотрудниками кафедры неорганической химии ведется систематическое изучение комплексных соединений переходных металлов с moho- (МЭА), ди- (ДЭА) и триэтаноламином (ТЭА), которые представляют собой весьма интересные в комплексохимическом отношении бифункциональные полидентатные лиганды. [c.164]

    В настоящее время известно небольшое количество комплексных соединений переходных металлов с политиа- и тиаазамакроцикличе-скими лигандами Такие комплексы исследованы недостаточно В литературе отсутствуют систематические данные о синтезе таких веществ, их идентификации и физико-химических характеристиках. Между тем координационная химия комплексов с политиа- и тиаазамакроцикли-ческими лигандами представляет значительный интерес для моделирования некоторых природных серосодержащих металлопротеинов. [c.137]

    Металлоорганические соединения — это или соединения со связью С-М (с локализованной о-связью между единичным атомом углерода и металлом М), или же со связями С - -М- -С (с химическими связями металла с целой группой атомов углерода С , где и может изменяться от 2 до 6 и более атомов). Соединения с функциональной группой С-М составляют основной тип металлоорганических соединений, включающий больщинство металлов периодической системы. Переходные /-металлы образуют такие соединения с больщим трудом или вовсе их не образуют (платиновые металлы). Для них характерны металлорганические соединения с делокализованной ст,я-связью С ---М. Такая связь во многом напоминает донорно-акцепторные связи комплексных соединений, поэтому эти соединения часто относят к комплексным (координационным) соединениям и рассматривают в курсах химии комплексных соединений. [c.573]

    Комплексные соединения переходных металлов обладают быми свойствами, удобными для их экспериментального исс дования. Этими свойствами являются наличие полос поглощения в длинноволновой — видимой — области спектра, парамагнетизм и наличие спектров ЭПР (за немногими исключениями, такими как МЪОг и НЬОа). Как уже сказано, симметричные комплексы характеризуются выразительными спектрами магнитного вращения и магнитного кругового дихроизма. [c.218]

    Электронная конфигурация и координационное число центрального атома, а также лигандное окружение определяют геометрию комплексного соединения. Переходным металлам с координационным числом шесть отвечают комплексы с октаэдрической конфигурацией, четыре - с плоско-квадратной и тетраэдрической конфигуратщей. Плоско-квадратная конфигурация наиболее характерна для комплексов Р1(Ц), Р(1(П), Аи(Ш), КЬ(1), 1г(1), тетраэдрическая - для N1(11), Си(П), Со(П), а октаэдрическая - для Сг(П1), Со(Ш), Р1(1У), КЩХП), 1г(Ш). Среди перечисленных комплексов следует отметить комплексы NiiII) с координационным числом четыре, которые могут существовать в рав- [c.505]


Смотреть страницы где упоминается термин Комплексные соединения с переходными металлами и их соединениями: [c.570]    [c.26]    [c.309]    [c.277]    [c.44]    [c.339]   
Смотреть главы в:

Аллен -> Комплексные соединения с переходными металлами и их соединениями




ПОИСК





Смотрите так же термины и статьи:

Металлы переходные

Металлы соединения

Переходное соединение



© 2025 chem21.info Реклама на сайте