Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Значение и роль фотосинтеза

    В этой разновидности фотосинтеза (которую Гаффрон называет фоторедукцией ) световая энергия используется главным образом для временной активации, а не для постоянного превращения в химическую энергию. Энергия органического вещества, образуемого пурпурными бактериями, лишь в незначительной части является преобразованной световой энергией большая же ее часть, если не вся, представляет собой химическую энергию, перенесенную с одного неустойчивого химического соединения к другому. Существование этих бактерий возможно лишь потому, что Земля до сих пор еще не пришла к полному химическому равновесию и высокие химические потенциалы еще встречаются в разных местах (особенно в вулканических районах). Понятно, эти своеобразные формы автотрофной жизни (мы буде м говорить о них подробнее в главе V) могли играть большую роль в ранние геологические эпохи, когда химическая активность на поверхности Земли была более бурной и напряженной. Поэтому они представляют значительный интерес при рассмотрении проблемы о происхождении и развитии жизни на нашей планете. Для современного цикла живого вещества на Земле эти процессы не имеют значения. Только фотосинтез зеленых растений препятствует исчезновению жизни с лица Земли. [c.18]


    Синтез нуклеиновых кислот и их динамика тесно связаны с ходом развития растения и условиями, в которых оно осуществляется. Весьма важное значение для образования нуклеиновых кислот в растении имеет свет. Эта роль связана с тем, что в ходе фотосинтеза имеет место образование активных пентоз, являющихся необходимыми компонентами молекулы нуклеиновой кислоты. Большое значение принадлежит фотосинтезу и как источнику энергии, необходимой для синтеза этих богатых энергией соединений, [c.41]

    В заключение уместно вновь вернуться к вопросу об общебиологическом значении дыхания и сопоставить роль последнего и роль фотосинтеза. [c.305]

    Значение и роль фотосинтеза [c.11]

    Важнейшее значение для питания растений имеют азот, фосфор и калий, от которых зависят обмен веществ в растении и его рост. Азот входит в состав белков и хлорофилла, принимает участие в фотосинтезе. Соединения фосфора играют важную роль в дыхании и размножении растений, участвуя в процессах превращения углеводов и азотсодержащих веществ. Калий регулирует жизненные процессы, происходящие в растении, улучшает водный режим, способствует обмену веществ и образованию углеводов в тканях растений. [c.240]

    Однако за последние 100 лет получены уже удивительные по своему значению как экспериментальные, так и теоретические результаты, по новому осветившие роль как азота, так и фосс юра и железа для фотосинтеза углеводов, а также давшие много очень интересного для теоретического понимания элементарных актов, с ним связанных. [c.350]

    Калий К и натрий Na. Из металлов, имеющих большое значение в агрономии, в первую очередь необходимо указать калий, соли которого применяют в качестве удобрений. Калий — элемент, необходимый для питания растений. Он играет большую роль в фотосинтезе, при его недостатке понижается содержание крахмала и сахара в растениях и т. д. [c.164]

    Важнейшее значение для ряда жизненных процессов имеют тс-электронные сопряженные системы порфириновых соединений -производных порфирина [4]. Порфириновые комплексы играют роль первичных факторов фотосинтеза, ко-ферментов и ферментов, участвуют в процессах дыхания и переносе кислорода. Среди огромного числа фундаментальных биохимических и биофизических процессов, ответственных за создание энергетических запасов в живом организме, много таких реакций, которые протекают самопроизвольно при участии ферментных катализаторов - металлопорфириновых комплексов. Эти соединения, находясь в организме, испытывают со стороны окружения влияние, подобное тому, которое возникает при их растворении [c.6]


    Химия древесины и синтетических полимеров - теоретическая основа технологий химической и химико-механической переработки древесины. Древесина является уникальным сырьем, постоянно возобновляемым в процессе фотосинтеза, и квалифицированное комплексное использование всей ее биомассы представляет собой важнейшую задачу с позиций экономики и экологической безопасности. Возрастание роли древесины в связи с сокращением запасов традиционного сырья химической промышленности угля, нефти и газа - определяет особую перспективность исследовании в области химии и химической технологии древесины и других растительных источников сырья. Несмотря на все более широкое развитие производства различных синтетических полимерных материалов, древесина как промышленное сырье для механической технологии не теряет своего значения. В наши дни нет ни одной области экономики, культуры и быта, где бы ни применялись древесина и продукты ее переработки. [c.5]

    Углеводы являются чрезвычайно важным классом природных соединений. Исследование их химических свойств может дать ценную информацию о механизмах реакций и стереохимии. Значительным достижением в настоящее время является применение углеводов в качестве хиральных синтонов и заготовок для стерео-специфического синтеза таких соединений, как простагландины, аминокислоты, гетероциклические производные, липиды и т. д. Для биолога значение углеводов заключается в доминирующей роли, которая отводится им в живых организмах, и в сложности их функций. Углеводы участвуют в большинстве биохимических процессов в виде макромолекулярных частиц, хотя во многих биологических жидкостях содержатся моно- и дисахариды, а большинство растений содержит глюкозу, фруктозу и сахарозу. Только растения способны осуществлять полный синтез углеводов посредством фотосинтеза, в процессе которого атмосферный диоксид углерода превращается в углеводы, причем в качестве источника энергии используется свет (см. гл. 28.2). В результате этого накапливается огромное количество гомополисахаридов — целлюлозы (структурный материал) и крахмала (запасной питательный материал). Некоторые растения, в особенности сахарный тростник и сахарная свекла, накапливают относительно большие количества уникального дисахарида сахарозы (а-О-глюкопиранозил-р-О-фруктофуранозида), который выделяют в значительных количествах (82-10 т в год). Сахароза — наиболее дешевое, доступное, Чистое органическое вещество, запасы которого (в отличие от запасов нефти и продуктов ее переработки) можно восполнять. -Глюкоза известна уже в течение нескольких веков из-за ее способности кристаллизоваться из засахаривающегося меда и винного сусла. В промышленном масштабе ее получают гидролизом крахмала, причем в настоящее время применяют непрерывную Схему с использованием ферментов, иммобилизованных на твердом полимерном носителе. [c.127]

    Представители растительного царства окрашены преимущественно в зеленый цвет. Зеленый цвет, во всем своем разнообразии оттенков, услаждает глаз человека, но можно не сомневаться, что и он стал бы монотонным, если бы зеленый фон не оживлялся всплесками других ярких и контрастных цветов. Ярко окрашенные цветки и плоды невольно притягивают глаз. Однако значение их окраски, по-видимому, не только в этом, но имеет гораздо более фундаментальную основу. Зеленая окраска растений и хлорофилл, который ее обусловливает, играют чрезвычайно важную роль в процессе фотосинтеза, поддерживающего существование любого растения. Значение же контрастирующей окраски цветков и плодов заключается в том, что она облегчает распространение и выживание вида. [c.292]

    Роль триплетных состояний в фотохимических реакциях. Из сказанного выше можно ожидать, что триплетное состояние будет иметь важное значение в фотохимических реакциях различных типов. Время жизни триплетного состояния обычно порядка 10 сек и, значит, на несколько порядков больше, чем время жизни возбужденных синглетных состояний ( 10 сек). Триплетные состояния химически обычно ведут себя так же, как и бирадикалы, так что можно ожидать для них высокой реакционной способности. Реакции могут сильно отличаться от реакций синглетного состояния фотоокисление антрацена является характерным примером этого (см. ниже). Как видно из предыдущего, энергия может с высокой эффективностью передаваться молекулам в синглетном состоянии это значит, что триплетное состояние может быть важным в биологических системах, подвергаемых облучению, и, в частности, в фотосинтезе (стр. 124). Ниже приведено несколько примеров фотохимических реакций, в которых участвует триплетное состояние. [c.123]

    Каротиноиды присутствуют практически во всех органах и тканях растений и выполняют важные биохимические функции. Эти функции зависят от способности растений поглощать световую энергию в синей области видимого спектра, а также кислород. Роль каротиноидов в растениях полностью еще не раскрыта, но уже очевидно, что они имеют большое значение в процессах фотосинтеза, размножения растений и в окислитель-но-восстановительных системах. [c.82]


    Исключительно важное значение этой группы соединений стало особенно ясным в последние годы. Так, нуклеиновые кислоты, необходимые для биосинтеза белков и для передачи наследственных свойств (с. 410), построены из производных углеводов — нуклеотидов. Многие углеводы играют важную роль в процессах, препятствующих свертыванию крови, проникновению болезнетворных микроорганизмов в макроорганизмы, в явлениях иммунитета и т. д. Производные углеводов имеют большое значение в процессе фотосинтеза. [c.329]

    Однако значение фотосинтеза этим еще не исчерпывается. Роль его гораздо шире. [c.314]

    Изменения концентрации углекислого газа и кислорода в атмосфере оказывают существенное влияние на жизнь в биосфере. Особое значение для фотосинтеза и климата имеет колебание концентрации СОг. Лабораторными и полевыми опытами было установлено, что современное содержание СОг в атмосфере но крайней мере в 10 раз меньше той концентрации, при которой достигается наивысшая продуктивность фотосинтеза. Имеются данные, свидетельствующие о том, что в далеком прошлом концентрация СО2 в атмосфере достигала 0,4% и определялась в основном интепсивной вулканической деягельностью. Именно в этот период и климат был очень теплым. Большую роль в эволюции-атмосферы сыграло и ослабление вулканической деятельности, что привело к уменьшению массы углекислого газа и соответственно к появлению полярных оледенений. [c.612]

    О возможной роли аминокислот в абсорбции двуокиси уг.иерода растениями будет упомянуто далее. Здесь следует указать на случай карбаминации, который мог бы иметь значение для фотосинтеза. [c.189]

    Решающая роль фотосинтеза в формировании урожая ни в коей мере не умаляет значения и других видов питания растений азотного, фосфорного, калийного. Однако при формировании урожая все виды питания в конечном итоге реализуются через основную функцию растений — фотосинтез. Вот почему усилия агронома должны быть направлены на то, чтобы суммарная работа фотосинтети-ческого аппарата растений была наиболее продуктивной. [c.218]

    С каждым днем мы получаем все новые доказательс тва важнейшей роли фотосинтеза. Именно этот процесс поставляет нам пищу и все топливо, как ископаемое, так и биологическое (биомассу). Продукты фотосинтеза привлекают все большее внимание в связи с насущной необходимостью прокормить и обеспечить энергией растущее население Земли, а также в связи с перспективой. получения в будущем химических продуктов и технического волокна с использованием фотосинтетического процесса. Таким образом, в аши дни понимание фундаментальных и прикладных аспектов фотосинтеза приобретает важное значение для широкого круга специалистов, работающих в самых разных областях науки и техники — от сельского хозяйства, лесоводства, экологии и биологии до химии и машиностроения. Именно эта широта проблемы объясняет появление столь многочисленных подходов к изучению фотосинтеза и делает работу в этой области интересной и увлекательной для людей самых различных специальностей. Мы надеемся, что, прочтя нашу книгу, читатель может сам убедиться в этом. [c.9]

    Как известно, уникальная биосферная роль фотосинтеза, определяющая космическую роль зеленого растения и его вклад в создание жпзпепных ресурсов человечества давно привлекает внимание исследователей. Начиная с 40-х годов работы в области физико-химических основ фотосинтеза привели к столь значительным успехам, что они превзошли по значению все ранее известное о природе этого замечательного явления. [c.5]

    Поскольку при переходе в возбужденные состояния (синглетные и триплетные) энергия молекул повышается, последние приобретают химические свойства, которых не было у невозбужденных молекул [67, 67а]. Изменения значений рА а функциональных групп при переходе в возбужденное состояние могут приводить к диссоциации протонов или к их присоединению. Диссоциация на ионы или радикалы иногда сопровождается разрывом связей. Могут протекать реакции фотоприсоединения и фотоотш,епления, а также изомеризация молекул, играюш,ая важную роль в функционировании зрительных рецепторов. Возбужденные молекулы могут стать сильными окислительными агентами, способными принимать атомы водорода или электроны от других молекул. Примером такого рода служит фотоокисление ЭДТА рибофлавином (подвергающимся фотовосстановлению, как показано на рис. 8-15). Более важным с точки зрения биологии процессом является фотосинтез, в ходе которого возбужденные молекулы хлорофилла осуществляют фотовосстановление других молекул, временно оказываясь при этом в окисленном состоянии. К сожалению, ценность исследования фотохимических реакций сильно снижается возможностью протекания множества параллельных реакций, зачастую приводящих к образованию огромного количества разных фотохимических продуктов (достаточно взглянуть на тонкослойную хроматограмму продуктов распада рибофлавина, рис. 2-34). [c.33]

    Важное значение имеет реакция расщепления а-кетолов, в которой используется стадия в (рис. 8-3) с последующим обращением этой же стадии, но с другим акцептором альдегида. Эту реакцию катализирует транскетолаза [уравнение (9-15)] —фермент, необходимый в пентозо-фосфатных путях метаболизма и в фотосинтезе. Родственная реакция (рис, 8-4), которая имеет более сложный механизм, катализируется ферментом фосфокетолазой эта реакция играет важную роль в энергетическом метаболизме некоторых бактерий. Продуктом реакции, ка- [c.206]

    Экстрактивные вещества имеют важное практическое значение. Они играют очень большую роль в жизни дерева участвуют в процессе фотосинтеза (хлорофилл) служат резервными питательными веществами (крахмал, жиры и др.) обладая фунгицидным, бактерицидным и инсектицидным действием, обеспечивают устойчивость к дереворазрушающим фибам, микроорганизмам и насекомым (фенольные соединения) защищают при повреждениях (экссудаты). Экстрактивные вещества в значительной степени определяют цвет и запах древесины. Содержащиеся в некоторых древесных породах красители делают их древесину ценным отделочным материалом (красное дерево и т.п.). При механической переработке древесины экстрактивные вещества могут повлиять на ее обрабатываемость инструментами и привести к их коррозии. Экстрактивные вещества оказывают сильное влияние на проницаемость древесины и тем самым на процессы ее пропитки растворами антисептиков, антипиренов и химических реагентов. [c.501]

    Детали синтеза углеводов и механизмов фотофосфорилирования лежат за пределами настояш,ей книги. Однако мы остановимся здесь на роли в этих процессах пигментов, поскольку они имеют фундаментальное значение в улавливании и утилизации энергии света. Светособирающая роль хлорофилла в фотосинтезе— вероятно, наиболее яркий пример специфических биологических фотофункций природного пигмента. Функционирование каротиноидов и фикобилинов в качестве вспомогательных пигментов также прямо связано с их светопоглощающими свойствами. Другие окрашенные молекулы, в том числе цитохромы и флавопротеины, участвуют в фотосинтезе как часть электронтранспортных систем способность этих соединений поглощать видимый свет не имеет отношения к их функционированию. Ниже будут освещены вопросы о том, как поглощающие свет пигменты расположены в фотосинтетическом аппара- [c.328]

    Химия кетоз представляет собой значительно более сложную и менее изученную область химии моносахаридов, чем химия альдоз. Кетозы в меньшей степени распространены в природе, чем альдозы, а их природные представители менее разнообразны. Из всех кетоз наибольшее значение имеет Л-фруктоза, играюш,ая наряду с глюкозой первостепенную роль в энергетическом обмене углеводов (см. гл. 13). Л-Фрукто-за входит в состав ряда растительных полисахаридов, а также и олигосахаридов, в том числе в состав важнейшего из них — сахарозы. В ограниченном числе природных объектов обнаружены также -сорбоза Д-тагатоза Л-псикоза и Ь-трео-пентулоза . Представитель высших кетоз — седогептулоза и фосфаты пентулоз играют центральную роль в процессе фотосинтеза (см. гл. 13). В полисахаридах бактериальных стенок обнаружены 2-кето-З-дезоксиальдоновые кислоты. К 2-кето-З-дезоксиальдоновым кислотам относятся и сиаловые кислоты — важнейшая группа моносахаридов, входящих в состав смешанных углеводсодержащих биополимеров (см. гл. 12 и 21). Эта глава посвящена общей характеристике химического поведения и методов получения кетоз, главным образом на примере простейших представителэй кетогексоз и кето-пентоз. [c.239]

    Явление аутоокислення имеет большое значение как в биохи мни, так и в органической химии. В биохимических процессах кислород играет большую роль в поддержании жизни, причем его поглощение п утилизация живыми организмами происходит благодаря катализу энзимами. Принято считать, что ассимиляция жирных кислот протекает через промежуточное образование р-кетокислот и их декарбоксилирование. В связи с реакциями фотосинтеза в растительном мире, происходящими в присутствии хлорофилла, следует напомнить о ранее рассмотренных работах Шенка с применением фотосинсибилизаторов для катализа окисления органических соединений при относительно низких температурах. Давно известно, что хранение различных соединений в контакте с воздухом приводит к образованию нежелательных продуктов окисления в результате этих процессов из нефтяных углеводородов образуются продукты окисления и смолы, а пз эфиров ациклических и циклических — взрывчатые вещества. Аутоокисление, часто катализированное, нашло практическое применение в различных промышленных процессах, например, для получения терефталевой кислоты из ксилолов, малеиновой кислоты из бензола и кумилгидроперекиси из кумола в производстве фенола и ацетона. В будущем можно ожидать значительного увеличения числа таких процессов. [c.456]

    Функциональное значение флавоноидных соединений для растений многообразно и не поддается однозначному описанию. Они играют важную роль в регуляции жизненно важных ферментных систем, особенно связанных с фотосинтезом и дыханием растительных клеток. Например, часто встречающийся так называемый кверцитин-глюкозид-кумарат 3.400 действует как антагонист гиббереллинов (см. разд. 2.3.6.1) и регулятор интенсивности фотосинтеза. Велико значение флавоноидов и в экологических взаимоотношениях растений с окружающим миром. Флавоны и флавонолы имеют желтую окраску и участвуют в создании цветовой гаммы цветковых растений. Многие из флавоноидов проявляют антифидантные, противобактериальные и противовирусные свойства. [c.376]

    Однако значение углеводов далеко не исчерпывается их ролью как главных веществ при создании органических соединений в процессе фотосинтеза, как важных пищевых веществ и сырья для многих видов промышленности. Как было показано в последние годы, передача наследственных признаков, а также биосинтез белка — химической основы г изни — происходят при участии так называемых нуклеиновых кислот (см. том II). Структурными компонентами последних являются мононуклеотиды — производные углеводов. Лабильность углеводных компонентов как раз и создает большие трудности при выделении и синтезе нуклеотидов. [c.622]

    Несмотря на такое сравнительно небольшое содержание СО, в воздухе, роль этого газа в биологических процессах очень велика. Так, СО2 — одно из важнейших исходных веществ фотосинтеза в растениях — процесса, имеющего исключительно большое значение для всей жизни на Земле. Даже небольшое повышение содержания СОп в воздухе повышает эффективность фотосинтеза и способствует увеличению урожайности сельскохозяйственных культур. В технике используют СО2, получающийся при обжиге известняка (СаСОз = = СаО + СО2). [c.418]

    Некоторые природные соединения — производные моносахаридов. Фосфорные эфиры. Из фосфатов сахаров, играюш,их важную роль в фотосинтезе, большое значение имеют 1,6-дифосфат фруктозы и 1-фосфат глюкозы  [c.244]

    При реакциях с кислотами моносахариды могут образовывать сложные эфиры. Некоторые из этих эфиров имеют очень большое значение, так как играют важную роль в обмене веществ. Особенно важное значение имеют эфиры сахаров с фосфорной кислотой, так называемые сахарофосфаты, или фосфорные эфиры сахаров. Такие важнейшие процессы обмена веществ, как фотосинтез, дыхание, брожение, синтез сахарозы, крахмала, гликогена, и многие другие процессы протекают при обязательном участии фосфорных эфиров сахаров. В процессах обмена веществ наибольшее значение имеют следующие фосфорные эфиры моносахаридов  [c.107]

    Дискутируется вопрос о месте первого в электрон-транспорт-ной системе фотосинтеза и о месте второго в электрон-транспорт-ной системе дыхания. Как видно из опытов, эти вещества по функциональным группам идентичны п-бензохинону, образующемуся в результате окисления гидрохинона. Не исключено, что гидрохинон в цитохромоксидазной системе и и-бензохинон в реакции Хилла действуют как аналоги естественных веществ. Выше были указаны примеры, когда при применении в системах вместо простых фенолов более сложных фенольных веществ из растений получались аналогичные результаты. Все это свидетельствует о том, что опыты с простыми экзогенными веществами приносят пользу в деле познания окислительно-восстановительных процессов црирод-ных фенольных веществ в организмах. Возникает вопрос, в чем конкретно состоит биологическое значение рассмотренных здесь систем. Еще в начале нашего века Палладии [26] высказал предположение, что фенольные вещества в растениях выполняют функции переноса водорода с субстратов дыхания на молед улярный кислород. Изложенные здесь факты являются экспериментальным подтверждением этого предположения. Обнаружено, в том числе и нами [2], что полифенолоксидаза концентрируется в наружных частях растений. Так как растения дышат поверхностью, то не исключено, что система полифенолоксидаза — фенольное вещество выполняет важную роль в питании растений кислородом. Как сле- [c.144]


Смотреть страницы где упоминается термин Значение и роль фотосинтеза: [c.3]    [c.152]    [c.230]    [c.7]    [c.192]    [c.333]    [c.76]    [c.219]   
Смотреть главы в:

Фотосинтез -> Значение и роль фотосинтеза




ПОИСК





Смотрите так же термины и статьи:

Фотосинтез



© 2025 chem21.info Реклама на сайте