Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлорофилл аЬ белок, комплекс

Рис. 7-49. Расположение переносчиков электронов в фотохимическом реакционном центре бактерий, установленное путем рентгеноструктурного анализа. Изображенные молекулы пигмента удерживаются внутри трансмембранного белка и окружены липидным бислоем. От хлорофилла антенного комплекса возбуждение передается электрону специальной пары молекул хлорофилла с помощью резонансного механизма (процесс 2 на рис. 7-47), а затем происходит перенос возбужденного электрона от специальной пары молекул хлорофилла на хинон (через ряд промежуточных Рис. 7-49. Расположение <a href="/info/105793">переносчиков электронов</a> в <a href="/info/97721">фотохимическом реакционном центре</a> бактерий, <a href="/info/1702692">установленное путем</a> <a href="/info/2365">рентгеноструктурного анализа</a>. <a href="/info/496872">Изображенные молекулы</a> пигмента удерживаются внутри <a href="/info/166982">трансмембранного белка</a> и окружены <a href="/info/179541">липидным бислоем</a>. От <a href="/info/1419172">хлорофилла антенного</a> комплекса возбуждение передается <a href="/info/1488188">электрону специальной</a> <a href="/info/729325">пары молекул</a> хлорофилла с <a href="/info/1595550">помощью резонансного</a> механизма (процесс 2 на рис. 7-47), а затем происходит <a href="/info/716597">перенос возбужденного</a> электрона от <a href="/info/1330178">специальной пары</a> <a href="/info/105350">молекул хлорофилла</a> на хинон (через ряд промежуточных

    Проблемы синтеза и распада хромопротеинов привлекают внимание как исследователей, так и практических врачей по двум основным причинам. Во-первых, вследствие широкого разнообразия биологически важных функций гемоглобина, хлорофилла и цитохромов, в молекулах которых центральную роль играет ядро порфирина, обладающее способностью координационно связываться с ионами металлов (см. главу 2). Во-вторых, изменения синтеза или распада порфиринов и соответственно их комплексов с белками приводят к нарушению жизненно важных функций и развитию болезней у человека и животных. [c.503]

    Железо непосредственно участвует в образовании компонентов хлорофилл-белкового комплекса, с одной стороны как катализатор реакций синтеза порфириновой части пигмента, с другой, включаясь в процесс синтеза белка. [c.236]

    Гемоглобин и миоглобин —комплексы железопорфиринов с белками, выполняющие функцию фиксации и транспорта молекулярного кислорода в организмах животных. Цитохромы, имеющие аналогичную принципиальную структуру, выполняющие роль переносчика электрона в схемах фотосинтеза, дыхания, окислительного фосфорилирования и др. окислительно-восстановительных реакциях, найдены у всех животных, растений и микроорганизмов. Хлорофиллы — главные участники процессов фотосинтеза — содержатся в высших растениях, водорослях и фотосинтезирующих бактериях. [c.265]

    Наконец, ионы металлов играют очень важную роль агентов транспорта электронов [37], в особенности в одноэлектронных переносах, где обычно используются окислительно-восстановительные системы типа Fe (И) Fe (П1) и Си (I) 5 Си (И). Окислительно-восстановительный потенциал является чувствительной функцией связывания лигандов. Во многих случаях (гемоглобин, цитохромы, хлорофилл, витамин В,2) металл комплексуется не только с белком, но и с макроциклическими тетрадентатными лигандами (например, порфирин в геме), которые оставляют свободным только одно координационное место с весьма специфическими и тщательно контролируемыми свойствами [42]. [c.476]

    НЫХ гемов некоторых цитохромов и т. д., имеются широкие возможности. Необходимо завершить также структурные исследования этих соединений. Нуждаются в детальных химических исследованиях свободные порфирины, найденные у низших животных. До конца не выяснены взаимодействия между хлорофиллами и белками в специфических комплексах в фотосинтетическом аппарате и ориентация хлорофиллов внутри этих комплексов. Факторы, которые регулируют образование этих комплексов и биосинтез самих молекул хлорофилла (и других порфиринов), — это та область исследований, где биохимиков ждут открытия. [c.220]


    Актуальной проблемой фитохимического производства является комплексная переработка растительного сырья. В пищевой, химикофармацевтической, эфиромасличной промышленности крайне неэффективно используется растительное сырье. Многотоннажные отходы производства после получения соков из плодов и ягод, эфирных масел и биологически активных веществ из лекарственного и эфиромасличного растительного сырья практически выбрасывают в отвал. Рациональное использование этих отходов позволит получить ряд биологически активных и ценных пищевых веществ из одного и того же объекта. При этом предусматривается соответствующая подготовка отходов (сушка, разделение, измельчение) с последующим экстрагированием их растворителями различной полярности вначале - сжиженными газами и лег-кокипящими органическими растворителями, затем спиртами, спиртоводными смесями, водой и водными растворами неорганических веществ. Это позволяет получить несколько групп биологически активных комплексов липофильные, содержащие эфирные и жирные масла, жирорастворимые витамины, стерины, хлорофиллы, жирные кислоты тритерпеновые и стероидные сапонины полифенольные соединения гликозиды высокомолекулярные соединения - полисахариды, белки. Применение технологии комплексной переработки лекарственного и пищевого растительного сырья позволит значительно расширить сырьевую базу для производства новых лекарственных средств, используя при этом отходы производства пищевой и фармацевтической промышленности [8]. [c.481]

    Хлорофиллы образуют комплексы с белками in vivo и могут быть выделены в таком виде [c.178]

    Гемопротеины относятся к сложным белкам, в состав простетической группы которых входят ион металла и порфириновое ядро. Порфиринсодер-жащие соединения занимают центральное положение в различных процессах жизнедеятельности, например, хлорофилл (магниевый комплекс замещенного [c.410]

    Эли [86] составил обзор по электропроводности кристаллических органических веществ. Органическими полупроводниками могут быть или чистые органические соединения или молекулярные комплексы, особенно твердые кристаллические вещества, которые проявляют специфическую проводимость, возрастающую с температурой. В ряде исследований [10, 44, 166], вошедших в этот обзор, предполагается, что такие полупроводниковые вещества могут играть важную роль в некоторых биологических процессах, например хлорофилл-белкоБые комплексы в фотосинтезе и комплексы белков с канцерогенными углеводородами. [c.145]

    Исследуя водные экстракты различных растений, Любименко в больщинстве случаев обнаруживал устойчивый белково-хлорофилльный характер этих растворов. Об этом свидетельствовали качественные реакции с растворами, аналогичные реакциям на белок (осаждение танином, спиртом, ацетоном и т. д.). Обработка раствора хлорофилла кислотами и веществами, вызывающими коагуляцию белков, также вела к потере их стойкости. От кипячения же раствор становился мутным, хотя осадок и не выпадал, а раствор приобретал еще более ярко-зеленый оттенок. Все это привело Любименко к убеждению, что в полученном из листьев водном коллоидальном растворе существует тесная связь между зеленым пигментом и белком и это соединение хлорофилла с белком в живых хлоропластах представляет собой цветной (зеленый) белок типа гемоглобина. Таким образом,— писал он,— связь пигмента с белками пластид более тесного характера, и потому мысль о химическом соединении в данном случае напрашивается сама собой. Если вспомнить, что и сходное с хлорофиллом красящее вещество крови также связано хи1 ически с белками, то мысль, что хлорофилл живых пластид есть цветное белковое соединение, не покажется невероятной 9 . Предполагаемому хлорофилл-белковому комплексу Любименко дал название натур ального, или естественного, хлорофилла в отличие от хлорофилла в молекулярном растворе. [c.183]

    Т. Н. Г о д н е в и О. П. О с и п о в а. О природе связи хлорофилла и белка в хлоропластах. ДАН СССР , 1947, т. 55, № 2, стр. 161—164 их же. О состоянии хлорофилла в пластидах и характере связи пигмента с белково-липоид-ной стромой хлоропласта. Изв. АН БССР , 1948, № 1, стр. 17—26 О. П. О с и-п о в а. О белковом компоненте хлорофилл-белкового комплекса. Труды Ин-та физиологии растений АН СССР , 1953, т. 8, вып. 1, стр. 57—66 е е ж е. К вопросу о состоянии хлорофилла в хлоропластах. Физиология растений . 1957, т. 4, вып. 1, стр. 28—32. [c.186]

    Интересно отметить, что обоим пигментам присущи возрастные изменения. На тот факт, что нормальный гемоглобин взрослых и детей незначительно отличаются друг от друга в свое время обратил внимание Хауровиц а спустя десять лет Годнев и Осипова (1947) высказали мнение о наличии возрастной изменчивости и у хлорофилла. Годнев и Осипова организовали наблюдение за извлекаемостью хлорофилла из листьев растений различных групп в разные фазы их развития разбавленным водой 60-процентным ацетоном. Она оказалась неодинаковой. Так как простетическая группа хлорофилл-белкового комплекса неизменна, то авторы усмотрели причину этих различий в изменении состояния белка, его связи с простетической группой и др. [c.187]


    Искусственно полученные хлорофилл-белковые комплексы (хлорофилл на глиадине) приближаются к свойствам хлорофилла in vivo лучше защищены от выцветания, дают сдвиг в положении максимума поглощения в щелочном растворе с 6566 до 6710 А, но не флуоресцируют. Белки стромы и гранул не тождественны между собой (ДЛИ СССР, 57, 4, 371, 1947 1, 67, 105, 1949 вовая серия, 74, 5, 1950). Прим. ред.).  [c.374]

    Реакция не относится к собственно процессам фотосинтеза и является примером многочисленных фотопревращений в организмах. Затем осуществляется этерификация фитолом в хлорофилл а (комплекс с белком — хлорофилл-голохром). Хлорофилл Ь генерируется окислением метильной группы части реакционноспособных молекул хлорофилла а. Полный синтез хлорофилла а in vitro был описан Вудвордом в 1960 г. [12]. [c.11]

    Идея о связи хлорофилла с белком принадлежит русским ученым. Еще М. С. Цвет указывал на то, что хлорофилл в пластиде не свободен, а адсорбционно связан с белком. Им был предложен довольно удачный термин — хлороглобин, подчеркивающий сходство между гемоглобином и хлорофилл-белковым комплексом. [c.167]

    Свет улавливается своеобразными антенными хлорофилл-белковыми комплексами, и энергия его передается в реакционный центр (Р700) ФС I, представляющий собой особым образом устроенный комплекс хлорофилла а и белка. Здесь происходит разделение заряда, и в результате восстанавливается ферредоксин. Электроны поступают от воды и передаются на Руоо по связующей электрон-транспортной цепи от ФС II. В ходе идущей при участии ФС II реакции из воды образуется О2. [c.44]

    Фотосистемами называют состоящие из множества белков комплексы, которые катализируют преобразование энергии света через энергию возбужденных молекул хлорофилла в биологически полезные формы. Фотосистема содержит два гесно связанных компонента фотохимический реакционный центр и антенный комплекс (рис. 7-48). [c.468]

    Хлорофилл — аналог гема, где вместо железа стоит атом магния. Хлорофилл всегда связан с особым мембранным белком. Хлорофилл-белковый комплекс составляет главный узел фотогенератора. [c.117]

    Оказалось, что нет Свет, вызывающий закисление среды, поглощался особым белком, похожим вовсе не на хлорофилл-белковые комплексы фотосинтезирующих бактерий и растений, а на зрительный пурпур, или родопсин, — белок, содержащийся в сетчатке глаза. Сходство пигмента солелюбивой бактерии и родопсина прежде всего в том, что и тот и другой представляют собой мембранные белки, окраска которых обусловлена остатком ретиналя (производного витамина А), присоединенного альдиминной связью к одной из аминокислот белковой цепи (к лизину). [c.120]

    Прежде всего своей простотой. Такие протонные генераторы, как АТФ-синтетаза, цитохромоксидаза, хлорофилл-белковые комплексы, составлены из нескольких белковых цепей. Их молекулярная масса-колеблется от 120 до 500 килодальтон. По существу, это сложные надмолекулярные агрегаты. Они столь велики, что не умещаются в мембране, далеко выдаваясь из нее в омывающую водную среду. В этой среде, а также в самой мембране есть множество других белков, причем некоторые из них образуют комплексы с белками-генераторами (связаны с ними в общих цепях и системах химических реакций или просто на правах ближайших соседей). [c.121]

    Фотосистемы I и II различаются по своей структуре. При обработке мембран тилакоидов детергентами освобождаются преимущественно частицы, содержащие фотосистему I. Методом центрифугирования в градиенте плотности можно разделить частицы, обладающие только активностью фотосистемы I, и частицы, обогащенные активностью фотосистемы II. Большинство молекул хлорофилла связано со специфическими белками. Из частиц, содержащих фотосистему I, выделен комплекс, состоящий из 14 молекул хлорофилла а, связанных с белком 110 кДа. Второй вид комплекса, образованный частицами фотосистемы II, содержит 3 молекулы хлорофилла а и 3 молекулы хлорофилла Ь, связанные с белком 28 кДа. Наиболее хорошо охарактеризованный хлорофилл-белковый комплекс, выделенный из зеленых бактерий, состоит из трех субъединиц 50 кДа, каждая из которых содержит семь молекул бактериохлорофил-ла (рис. 19.11). Одна из функций белка в этих комплексах заключается в поддержании оптимальной геометрии для переноса энергии между хлорофиллами. [c.188]

    БольшуЕО роль играют хелатные соединения и в природе. Так, гемоглобин состоит из комплекса — гема, связанного с белком — глобином, В геме центральным ионом является ион Fe +, вокруг которого координированы четыре атома азота, принадлежащие к сложному лиганду с циклическими группировками. Гемоглобин обратимо присоединяет кислород и доставляет его из легких по кровеносной системе ко всем тканям. Хлорофилл, участвующий п процессах фотосинтеза в растениях, построен аналогично, но в качестве центрального иона содержит Mg +. [c.588]

    В зеленом листе растения под воздействием солнечной радиации протекает целый комплекс фотохимических процессов, в результате которых из воды, углекислого газа и минеральных солей образуются крахмал, клетчатка, белки, жиры и другие сложные органические вещества. Процесс фотосинтеза о гень сложен. Он осуществляется при непосредственном участии важнейшего природного фотокатализатора — хлорофилла и сопровождается целым циклом химических превращений, не зависящих от солнечной радиации. В этих превращениях участвует большое число разнообразных биокатализаторов— ферментов. Суммарное уравнение фотосинтеза обычно выражают в виде реакции превращения двуокиси углерода и воды в гексозу  [c.176]

    Фотосинтез в растениях. В зеленом листе растения под во действием энергии солнечной радиации протекает целый комплекс фотосинтетических процессов, исходным материалом для которых служат СОа, НаО и минеральные соли. Конечными продуктам.I являются крахмал, клетчатка, белки, жиры и другие сложные оргя-нические вещества. Процесс фотосинтеза осуществляется при непо средственном участии важнейшего природного фотокатализатора — хлорофилла . В этом процессе участвуют также и многие друпк-окислительно-восстановительные ферменты (бнокатализаторы). [c.144]

    Одним из основных факторов, определяющих сродство органических молекул к йонам металла, является хелатный эффект. Под этим термином понимается четко выраженная способность органической моле-4 улы связывать ионы металлов при наличии в ней двух или большего числа групп, способных к комплексообразованию. Природа с успехом использовала хелатный эффект при создании таких важных металлсодержащих молекул, как порфирины (рис. 10-1), хлорофилл (рис. 13-19), энтеробактин (рис. 2-44), кальдий-связывающие белки (разд. В, 8, в) -и т. д. Данные, приведенные в табл. 4-2, показывают, что прочные хе-латные комплексы образуют также многие относительно простые соединения, такие, как а-аминокислоты или лимонная кислота. [c.266]

    В красных водорослях (Rhodophy eae), в основном содержащих только хлорофилл а, присутствуют в больших количествах фикобилины — комплексы между белками и линейными тетрапирролами, подобными фикоэритрину (10.13 гл. 5),— которые эффективно переносят энергию возбуждения на хлорофилл а в фотосистеме П. Фикобилины присутствуют в клетках водорослей в виде белковых комплексов в частицах, называе- [c.352]

    Конъюгированные белки. Здесь следовало бы сказать о всевозможных простетических группах, которые соединяются с белками, образуя белковые конъюгаты. Полипептиды, с которыми соединены простетические группы, называются апопротеи-нами, а если такой комплекс обладает каталитической активностью, его называют голоэнзимом. В качестве примера можно указать на гемопротеины (цитохромы, пероксидазы, каталазы) и порфиропротеины (флавопротеины и металлопротеины). В этом случае, как показали последние исследования, применение различных детергентов приводит к образованию разных комплексов хлорофилла, имеющих неодинаковую подвижность при электрофорезе [97]. [c.44]

    Эти белки характеризуют обычно посредством электрофореза в полиакриламидном геле, проводимого после диссоциации компонентов мембран с помощью додецилсульфата натрия (ДДС-N3). Когда в подходящих условиях происходит диссоциация, на электрофореграммах наблюдается несколько зеленых полос, соответствующих белково-хлорофилловым комплексам (рис. 6.8). Вполне вероятно, что в тилакоидах все хлорофиллы находятся в форме таких комплексов [73]. Некоторые комплексы включают хлорофилл а и хлорофилл б это собирательные антенны для фотонов или ССХБ (светособирающий хлорофилл — белок) [107]. На эти комплексы приходится до 50 % белков и хлорофиллов ла- [c.240]

    Четвертичные структуры белка образуются тогда, когда молекула белка включает в свою структуру химически связанные комплексы хлорофилла, протопорфирина железа (II), или гема, группировки из ионов металлов (Ре, Си, 2п, Со, Мо и др.), углеводы, фосфорную кислоту, жиры и т. д. В этом случае белки являются не простыми, а сложными и называются протеидами. К числу протеидов (сложных белков) относятся хромопротеиды (белок связан с молекулой — хромофором), гликопротеиды (белок связан с углеводами), липопротеиды (белок связан с липидом), фосфопротеиды (белок этерифицирован фосфорной кислотой, как, например, в казеине молока), нуклео-протеиды (белок связан с нуклеиновой кислотой). Небелковая часть молекулы протеида называется простетической группой. [c.722]

    Реакционный центр П. Пигмент реакционного центра П представляет собой также комплекс хлорофилла с белком, содержащий димер хлорофилла а, известный как хлорофилл ац, или Р-680. Хотя иной характер поглощения света этим пигментом указывает на то, что молекулы хлорофилла а находятся здесь в другом молекулярном окружении или по-иному ориентированы, чем в случае пигмента Р-700, процессы поглощения света и окисления, происходящие в реакционном центре П, сходны с аналогичными процессами в реакционном центре I. Здесь также энергия электронного возбуждения передается с хлорофилла антенны на хлорофилл ац, который подвергается возбуждению с последующим окислением до катион-па хикала и делокализацией неспаренного электрона. В этом случае электрон передается на первичный акцептор электрона фотосистемы И р (Х-320). Затем катион-радикал хлорофилла йц восстанавливается, получая электрон от донора Z. Таким образом, фотосистема П эффективно переносит электроны от 2 на Р (рис. 10.10). [c.341]

    Производственное использование хвои и листьев древесных пород имеет большое будущее, но в настоящее время только начинает развиваться. Еще недавно древесную зелень использовали в ничтожном размере. Между тем лист дерева (хвоя тоже является игольчатой разновидностью листа) представляет собой такой же фотосинтетический аппарат, как и зелень трав, причем они имеют много общего в своем составе. Всякая растительная зелень, как травяная, так и древесная, содержит пластические и энергетические пищекормовые вещества — углеводы, белки, жиры, вещества зольные и биологически активные, комплексы витаминов, гормонов, ферментов, а также хлорофилл, стерины, защитные вещества. [c.275]

    Порфирины в природе находятся в виде комплексов с металлами. Комплекс порфирина с магнием является основой молекулы хлорофилла. Комплекс с железом служит простетической группой гемопротеинов, к которым относятся кислородпере-носящие белки, в частности гемоглобин (см. 13.3), цитохромы и некоторые ферменты. Производные порфиринов, содержащие ион двухвалентного железа, называют г е м а-м и. Примером может служить протогем (чаще называемый ге-мом) — простетическая группа гемоглобина. Четыре атома азота пиррольных колец в геме образуют плоский квадрат, в центре которого нахо-дится железо. [c.280]

    Перечисленные выше пути перехода молекулы хлорофилла из возбужденного состояния в основное не исчерпывают всех возможностей. В клетке молекулы хлорофилла в норме достаточно жестко сопряжены друг с другом, поэтому перешедшая в возбужденное состояние молекула пигмента может передавать энергию поглощенного кванта света соседней молекуле, переводя ее в возбужденное состояние. Основная масса хлорофилла и других фотосинтетических пигментов клетки представляет собой антенну, улавливающую световую энергию. Светособираюшие пигменты организованы в виде комплексов, в которых они связаны с молекулами белка. Энергия возбуждения мигрирует в направлении от пигментов, поглощающих свет более коротких длин волн, к более длинноволновым формам и от последних поступает в реакционные центры. Для передачи энергии электронного возбуждения необходимо, чтобы среднее расстояние между молекулами пигментов составляло около 10А. [c.278]

    СЯ в повышении активности различных ферментов. Входя в состав витамина В , весьма активно влияющего на поступление азотистых веществ и увеличение содержания хлорофилла и аскорбиновой кислоты, К. активирует биосинтез и повышает содержание белкового азота в растениях, а также играет значительную роль в ряде процессов, происходящих в живом организме. В повышенных концентрациях К. весьма токсичен, прием внутрь большой дозы К. может вызвать быструю гибель. У лиц, подвергавшихся хроническому воздействию соединений К., снижается артериальное давление, в тканях наблюдается увеличение содержания молочной кислоты, нарушаются функции печени. При этом выраженные, клинические проявления могут быть стертыми или отсутствовать вовсе. Изменения в углеводном обмене связаны с нарушениями в эндокринных отделах поджелудочной и щитовидной желез. Нарушения углеводного обмена изменение формы гликемической кривой (уплощение), нарушение толерантности к глюкозе. Ионы К. вступают в хелатные комплексы с белками, разрушающими последние. Нарушается активность мембранных ферментов, что ведет к увеличению проницаемости клеточньгх мембран, повышению в крови уровня трансаминаз, лактатдегидрогеиазы, альдолазы. Действие К. и его соединений на организм приводит к расстройствам со стороны дыхательных путей и пищеварительного тракта, нервной системы, влияют на кроветворение, а также нарушают многие обменные процессы, избирательно действуют на обмен и структуру сердечной мышцы. Все это позволяет считать К. ядом общетоксического действия. [c.457]

    Применение уравнения (15.2) лучше проиллюстрировать на практическом примере. Лиганды, комплексы которых с магнием были бы более устойчивы, чем с цинком, не известны. Так, белок, который с магнием образует хлорофилл, предпочтительно координируется цинком, т. е. Кгпвгв уравнении (15.2) намного превышает Км.шв%- Количество белка, связанного с цинком в [c.278]


Смотреть страницы где упоминается термин Хлорофилл аЬ белок, комплекс: [c.179]    [c.396]    [c.230]    [c.108]    [c.8]    [c.135]    [c.43]    [c.45]    [c.422]    [c.1056]    [c.207]    [c.340]    [c.166]   
Биохимия природных пигментов (1986) -- [ c.335 , c.338 ]




ПОИСК





Смотрите так же термины и статьи:

Белки комплекс с ДСН

Хлорофилл

Хлорофилл хлорофилл



© 2025 chem21.info Реклама на сайте