Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбид кремния, определение

    В работе [50] упоминается о существовании ковалентной и ионной связей в карбиде кремния, определенных по поглощению остаточного излучения. Спайность в карбиде кремния наблюдается по (001), что говорит о не слишком большой доле ионной связи. Обзор свойств карбида кремния имеется в книгах [67, 68]. Здесь мы приводим только краткие сведения. [c.69]

    При термическом разложении кремнийорганических соединений, в которых кремний соединен с алифатическими радикалами, особенно с радикалами, имеющими двойные связи, легко образуется карбид кремния. Определение углерода и кремния в таких соединениях обычным методом дает неудовлетворительные результаты. Сожжение этих соединений проводят медленно, в течение 20—40 мин., бесцветным пламенем горелки. Пробирка для навески должна иметь длину 60 мм, внутренний диаметр 7 мм. Точность определения углерода 0,1—0,3% кремния 0,8—1,0%. [c.175]


    Если накаливать в электрической печи смесь песка и кокса, взятых в определенном соотнощении, то получается соединение кремния с углеродом — карбид кремния Si , называемый карборундом  [c.416]

    Карбид кремния (карборунд) Si — тугоплавок, химически стоек, по твердости близок к алмазу. В виде алмазоподобной модификации он — диэлектрик, которому определенные примеси придают полупроводниковые свойства. Поэтому Si находит применение в радиотехнике, но, в основном, его используют как абразивный и огнеупорный материал. [c.276]

    Более точное определение толщины пленки производят методом косого шлифа. Для этого из пластины, подлежащей исследованию, вырезают полоску (5 х 10 мм) при помощи линейки и корундовой иглы. Полученный образец приклеивают пицеином к косой площадке 3 оправки 2 приспособления для изготовления косого шлифа,(рис. 91). Угол среза площадки 3 должен быть точно известным. Его величина меняется в пределах 5—10° в зависимости от предполагаемой толщины пленки (чем больше толщина, тем больше должен быть угол среза однако при увеличении угла уменьшается точность определения). Затем оправку с образцом 4 вставляют во втулку 1 и сОшлифовывают необходимое количество материала. Шлифование производят вручную, вращательными движениями приспособления по толстому зеркальному стеклу, на которое предварительно нанесена водная суспензия микропорошка карбида кремния MIO. После из- [c.148]

    Нефтяной электродный кокс считается хорошо прокаленным (в промышленных условиях), если его УЭС, определенное при стандартных условиях, не превышает 600—650 Ом-мм /м. В других случаях применения кокса, наоборот, желательно более высокое значение УЭС (например, для получения карбида кремния и др.). [c.167]

    В настоящее время для получения материалов на основе углерода и карбида кремния существует достаточно большое количество технологий, использующих различные методы образования и спекания карбида кремния. Имеющиеся технологии, как правило, приводят к получению определенного вида материала, состав и свойства которого могут изменяться весьма незначительно в рамках одной технологии. [c.25]

    Испытания проводили на масле АМГ-10, искусственно загрязненном смесью 40 % электрокорунда и 60 % карбида кремния с содержанием твердой фазы 0,0002—0,005 % и размерами частиц от 1 до 100 мкм. Чистоту модельных систем оценивали экспресс-анализом, микроскопическим счетом и весовым методом. Относительная погрешность определения загрязненности модельных систем не превышала 15 %. В результате исследований установлены оптимальные конструктивные параметры гидроциклона, мм диаметр цилиндрической части 10 диаметр входного патрубка 2 диаметр патрубка верхнего слива 3 диаметр патрубка нижнего слива 1,5 длина сливной трубки 10 высота цилиндрической части 10. При скорости жидкости на входе в гидроциклон ПО м/с и производительности 0,33 л/с фактический размер граничного зерна составлял 2,5 мкм. При таком режиме 80—90 % механических загрязнений концентрируется в 15—20 % жидкости нижнего слива. В этом случае воздух из жидкости удаляется полностью. [c.325]


    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]

    Для определения ЗЬ в кремнии, кварце, карбиде кремния, стеклах, тетрахлориде кремния и трихлорсилане наиболее часто применяют методы спектрального анализа (табл. И). Для определения ЗЬ в кремнии и его соединениях высокой чистоты пшроко используются также активационные методы. Особенно удобны те из них, которые позволяют определять ЗЬ без ее выделения [212, 468, 762, 932, 950, 989, 1144, 1361, 1366, 1540). Ме- [c.133]

    Радиоактивационный метод применяют для определения фосфора в горных породах и минералах [569, 760, 1109], в сталях и сплавах 542, 555, 738], в металлах — алюминии, железе, магнии, селене, теллуре, сурьме, никеле, кальции, литии, натрии, боре, меди и др. [310, 427, 466, 470, 471, 490, 503, 665, 698, 706, 707], в кремнии [134, 812, 836], в карбиде кремния [532, 1080], в окиси бериллия [252] и мышьяке [982]. [c.81]

    Спектрографическое определение фосфора в карбиде кремния ведут или химико-спектральным методом в атмосфере воздуха [142, 449, 450] или прямым в атмосфере аргона [964]. Прямой метод определения [964] имеет чувствительность 3-10 %, что достигается значительным снижением уровня фона при сжигании проб в атмосфере аргона. [c.150]

    Химико-спектральное определение фосфора в карбиде кремния на воздухе,ведут на спектрографе средней дисперсии [142, 449,450]. [c.150]

    Si . Карбид кремния образует ряд кристаллических модификаций, из которых термодинамически равновесными являются низкотемпературная кубическая модификация (P-Si ) и высокотемпературная гексагональная (a-Si ). Превращение P-Si в a-Si происходит по различным данным при температурах от 1800 до 2200°С. Теплота превращения при комнатной температуре, определенная по разности теплот сгорания обеих модификаций [2158], составляет 1,1 ккал моль. [c.684]

    Этими затратами определяется полезный, или так называемый теоретический расход энергии теор- Так, например, при получении карбида кремния нужно нагреть исходные материалы —кварцевый песок и кокс —до такой температуры, при которой возможна реакция взаимодействия окиси кремния с углеродом. Реакция восстановления кремния углеродом с образованием карбида кремния относится к числу эндотермических реакций. Поэтому при определенной температуре реагирующих материалов она будет протекать в желательном направлении с поглощением некоторого количества энергии. Заметим, что при экзотермических реакциях в ходе реакции происходит выделение энергии. Очень часто, кроме основной реакции, протекают побочные химические реакции (например, по восстановлению или связыванию нежелательных примесей, которые присутствуют в исходных материалах) и физические процессы (например испарение, расплавление и др.), при которых происходит поглощение или выделение энергии. [c.30]


    Обсудите типы связей, образующихся при кристаллизации. Включите в ваше обсуждение следующие вещества лед, окись магния, хлористый натрий, алмаз, медь, бензол, графит, карбид кремния, четыреххлористый углерод, окись цинка, теллурид цинка. Какие другие факторы, кроме типа связи, важны в определении кристаллической структуры конкретного вещества  [c.49]

    Приборы, применяемые для инфракрасной спектроскопии. В исчерпывающем обзоре Вильямса [481 описан ряд приборов для получения спектров в инфракрасной области, а также изложены общие методические положения. В обзоре Шеппарда [391 содержится описание более поздних усовершенствований. Поэтому здесь приборы подробно не рассматриваются. Обычно инфракрасный спектр получается пзггем пропускания через вещество излучения горячего тела с последующим -изучением прошедшей энергии для определения той ее части, которая поглощается веществом. На рис. 1 приведена простая схема типового однолучевого регистрирующего инфракрасного спектрофотометра. Он состоит из источника радиации, чаще всего раскаленного штифта из окислов металлов или карбида кремния, нагреваемого электрическим током. Сферическим зеркалом излучение фокусируется на входную щель 3 , впереди которой устанавливается кювета, содержащая вещество. Коллиматорное зеркало делает пучок параллельным, после чего он дважды проходит через призму назад на [c.313]

    Для приготовления композиции эпоксидную смолу нафевают до определенной температуры, вносят фталевый ангидрид и тщательно перемешивают. Смесь снова нафевают, вводят аэросил и все тщательно перемешивают, высыпают в раствор предварительно высушенный и нафетый карбид кремния и перемешивают до получения однородной массы без крупинок, затем в раствор вводят белую сажу. Защитное покрытие наносят следующим образом. Все защищаемые поверхности деталей тщательно очищают от зафязнений. песка, ржавчины пескоструйным способом, обезжиривают бензином "калоша", покрывают кремнийорганическим раствором и заливают эпоксидной композицией. [c.204]

    Метод определения спекающей способности по ASTM [56] состоит в смешивании измельченного угля в определенных количествах с карбидом кремния, в уплотнении смеси по заданным усло- [c.56]

    При определении ЖРР кювета с коксом помещается в камеру высокотемпературной установки и нагревается до необходимой температуры со скоростью 20°С/мин. В качестве внутреннего стандарта использован карбид кремния -модиз[)икации, По дифрактограммам, полученным цри различной температуре, определяется угловое положение дифракционных линий и лшши внутреннего стандарта. По изменению межслоевых расстояний при различных температурах методом наименьших квадратов получаются аналитические зависимости  [c.79]

    ПОЛУПРОВОДНИКИ — вещества с электронной проводимостью, величина электропроводности которых лежит между электропроводностью металлов и изоляторов. Характерной особенностью П. является положительный температурный коэффициент электропроводности (в отличие от металлов). Электропроводность П. зависит от температуры, количества и природы примесей, влияния электрического поля, света и других внешних факторов. К П. относятся простые вещества — бор, углерод (алмаз), кремний, германий, олово (серое), селен, теллур, а также соединения — карбид кремния, соединения типа filmen (инднй — сурьма, индий — мышьяк, галлий — сурьма, алюминий — сурьма), соединения двух или трех элементов, в состав которых входит хотя бы один элемент IV—VII групп периодической системы элементов Д. И. Менделеева, некоторые органические вещества — полицены, азоаромати-ческие соединения, фталоцианин, некоторые свободные радикалы и др. К чистоте полупроводниковых материалов предъявляют повышенные требования, например, в германии контролируют примеси 40 элементов, в кремнии — 27 элементов и т. д. Тем не менее некоторые примеси придают П. определенные свойства и тип проводимости, а потому и являются необходимыми. Содержание примесей не должно превышать 10 —Ш %. П. применяются в приборах в виде монокристаллов с точно определенным содержанием примесей. Применение П. в различных отраслях техники, в радиотехнике, автоматике необычайно возросло в связи с большими преимуществами полупроводниковых приборов — они экономичны, надежны, имеют высокий КПД, малые размеры и др. [c.200]

    Химическим индивидом следует назвать наименьшее количество вещества, повторением которого в различном порядке можно воспроизвести данное вещество. Химическими индивидами являются атомы в атомной решетке простого вещества (С в решетке графита) или группы атомов в составе сложного (51С в решетке карбида кремния), молекулы в веществе молекулярного строения (Н2О в воде), ионные пары или более сложные конные комплексы в ионном веществе (НаС в поваренной соли, ЫагСОз-ЮНгО в кристаллической соде) и т. д. При таком определении изменение агрегатного состояния, полимор фный переход, механическое разрушение, образование некоторых растворов (например, газовых) не попадут в химические явления. [c.6]

    Спектры диффузного отражения обычно малоинтенсивны, т.к. удается собрать и направить в спектральный прибор только очень малую часть рассеянного (отраженного) излучения. Поэтому в этом случае необходимо применять ИК фурье-спектрофотометры, обладающие высокими светосилой и соотношением сю-нал шум (ок. 10 ). Получаемые при диффузном отражении спектры часто оказываются подобными спектрам пропускания. Исследуемыми образцами м. б. массивные твердые тела, порошки (иногда содер-жанще разл. наполнители-КВг, КС1, sl, прозрачные в исследуемой области спектра), волокнистые (ткани, войлок) н ячеистые (напр., электроды с раэл. наполнителями) материалы, пены, суспензии и аэрозоли, разрядные промежутки с электронными запалами дл анализа возможных загрязнений и т.д. Перед исследованием твердый образец обычно натирают на наждачную бумагу на основе карбида кремния тонкого помола, спектр к-рого либо не проявляется в спектре исследуемого образца, либо м. б. вычтен из полученного спектра и использоваться как спектр сравнения. Спектры отражения при диффузном рассеянии могут наблюдаться от достаточно малых кол-в в-ва, напр, от пятен на хроматографич. пластине. Метод используют также для определения диэлектрич. св-в образцов. [c.395]

    Металлические пробы готовят путем вытачивания из них дисков. Одну из поверхрюстей диска затем шлифуют абразивом, таким, как оксид алюминия или карбид кремния, и, если необходимо, полируют с алмазной пастой (например, определение меди в алюминии требует, чтобы шероховатость поверхности была меньше 10 мкм). [c.82]

    Крайне низкие пределы обнаружения уже сегодня могут быть достигнуты методом НАА для многих материалов, таких, как алмаз и графит, кремний и другие материалы на его основе, а также органические материалы, используемые в микроэлектронике, например полиимиды. При активами углеродсодержащих материалов не образуется радионуклидов основы с детектируемой активностью. Таким образом, можно определять все индикаторные радионуклиды без каких-либо помех со стороны радионуклидов основы (например, см. рис. 8.4-6). В НАА кремния и кремнийсодержащих материалов радионуклид 81, образуемый в реакции 81(п,7) 81 из основы, благодаря его малому периоду полураспада 1х/2 = 2,6 ч) оказывает влияние только при определении короткоживущих индикаторных радионуклидов. Более того, довольно низкие сгт (0,116) и изотопная распространенность 81(3,1%), а также тот факт, что является почти чистым /3-излучателем, еще больше уменьшают степень влияния 3 81. Поэтому ИНАА можно рассматривать как наиболее мощный метод ультраследового анализа кремния и кремний содержащих материалов, таких, как кварц, нитрид кремния и карбид кремния. В ИНАА, использующем современную 7-спектрометрию, поток нейтронов 10 см -с и оптимальный режим облучения, можно достигнуть крайне низких пределов обнаружения для большого числа примесных элементов в кремнии, как можно видеть из рис. 8.4-9. 42 элемента можно определить при содержаниях < 1млрд . [c.124]

    Недеструктивный активационный метод применяется для определения ЗЬ в алюминии [841, 1688] и его сплавах [945], нитриде алюминия [421], аскорбиновой кислоте [1630], асфальте [982], висмуте [830, 1204, 1239] и его сплавах с сурьмой [48, 313], воздушной пыли [884, 13131, галените [21], германии [633, 1384, 1385], горных породах [230, 427, 541, 949, 1061, 1289], графите [106, 1207], железе, чугуне и стали [135, 884, 1128, 1129, 1556, 1652], индии [12711, карбиде кремния [468], кремнии [212, 762, 932, 950, 989, 1217, 1361], тетрахлориде кремния [1462] и эпитаксиальных слоях кремния [580], меди [1002], морских [642, 1427] и природных водах [4, 1040], нефти и нефтепродуктах [991, 1517], олове [1305], поли-фенолах [983], почвах [1528], растительных материалах [1316, 1528], рудах [466, 1270], свинце [835 -837, 1205, 1505, 1506], стандартных образцах металлов [1316], теллуре [5], титане [68], хроматографической бумаге [1409], циркалое [1099], эммитерных сплавах [625], трифенилах [8771 и фториде лития [331]. Благодаря высокой чувствительности и вследствие того, что для анализа, как правило, требуется небольшое количество анализируемого материала, эти методы часто используются в криминалистической практике [884, 892, 12961. Имеются указания [965] аб использова- [c.74]

    Активационные методы с выделениед и радиохимической очисткой образовавшихся изотопов ЗЬ используются для ее определения в алюминии [639—641, 912, 1235, 1247, 1376, 848] и трехокиси алюминия [639], боре и нитриде бора [426], бериллии [523], ванадии и пятиокиси ванадия [145], висмуте [1204, 1659, 1660], вольфраме [144], галлии [1375] и арсениде галлия [640, 824, 825, 831, 1375], германии [610, 639, 640], горных породах [74, 449, 1276, 1554], железе, стали и чугуне [987, 1033, 1113, ИЗО, 1280, 1590, 1653], железных метеоритах [1539], золоте [1676], индии [828, 829] и арсениде индия [115], каменных метеоритах [1136, 1234, 1236, 1515], кремнии [38, 39,275,282,455,639, 640, 861, 1035, 1144, 1355, 1473, 1492, 1540, 1687], двуокиси кремния и кварце [282—285, 487, 639, 640], карбиде кремния [38, 276, 639, 6401, [c.75]

    Применение предварительного концентрирования Sb путем ее отгонки с целью достижения более низких пределов ее обнаружения методом эмиссионного спектрального анализа рекомендовано для определения Sb в чистой FeaOg [198], карбиде кремния [288, 789, 790], кремнии [252] и кварце [553], двуокиси титана [288], трехокиси вольфрама [195] и вольфраме после его окисления до трехокиси нагреванием при 1800 °С [795], молибдене и трехокиси молибдена [27, 795, 796, 1443], тантале [237], ниобии и тугоплавких сплавах на основе ниобия, вольфрама и молибдена [379]. [c.82]

    Разработан пейтронно-активационный метод определения содержания до 2-10 % Re в трихлорсилане, пригодный и для анализа кремния, карбида кремния и германия. Около 300 мкг трихлорметилсилана подвергают гидролизу, остаток высушивают и облучают в течение 8 час. потоком медленных нейтронов 1,8-10 нейтрон см -сек. После облучения образцы протравливают соляной кислотой, обмывают водой и дальше выделяют группы элементов экстракцией по схеме (стр. 264, приведена часть схемы, относящаяся к выделению рения) [1288]. [c.263]

    Наиболее глубокий анализ ранних методов дал сэр Чарлз Парсонс, кораблестроитель и изобретатель паровой турбины. С 1887 г. синтез алмаза становится хобби Парсонса, и на это он истратил сотни тысяч фунтов стерлингов. Присущее Парсонсу инженерное искусство давало ему определенное преимущество, да к тому же на принадлежащей ему судостроительной верфи были прессы, способные развивать гидростатические давления до 10 000 атм. В обзоре своих работ [15], представленных в Королевское общество в виде Бейкеровской лекции, Парсонс сообщал, что даже давление в 15 ООО атм недостаточно высоко для кристаллизации алмаза. Несмотря на то что он благожелательно относился к работам Муассана, Парсонс утверждал, что метод Муассана не позволяет получать очень высокие давления и что примеси, такие, как кремний, алюминий и хром, сильно увеличивают кристаллический остаток, в то время как очень чистое железо практически не дает остатка. Алмазы , полученные Муассаном, по мнению Парсонса, скорее всего представляют собой шпинели. Более поздними исследованиями М. Сила и А. Бобровского, повторившими опыты Муассана, доказано, что материал остатка представлен кристаллами карбида кремния и глинозема или неидентифицированньгм аморфным материалом. [c.68]

    Для уничтожения избыточного фона и мешающего действия циановых полос можно пользоваться установкой, в которой воздух заменяется другими газами, например смесью аргона и кислорода 1823], чистым кислородом (ли-ни.ч 4172 Д) [974, 1423], чистым аргоном 1134, 1319], или чистым гелием [1147]. Такая замена препятствует эффекту самопоглощения и упрощает технику анализа. В результате достигнутого при этом увеличения чувствительности получены надежные данные при определении галлия в глинах и минералах с применением атмосферы воздуха и аргона 823], в силикатных горных породах с дрименением струи сжатого кислорода [974] или аргона [1319], в карбиде кремния с сжиганием проб в атмосфере аргона [1134], в сплаве 1п—Оа в атмосфере гелия (линия 4172 А) (1147]. Повышение чувствительности спектрального анализа может быть достигнуто созданием у пробы искусственной основы. [c.157]

    ГОСТ 26564.1-85. Материалы и изделия огнеупорные карбидкремниевые. Метод определения карбида кремния. [c.331]

    Дяя определения влияния наполнителя на скорость полю в-1 18ацяя акрилонитрила НАК или акриловой кислоты АК готовили снесь 1<1 акрилонитрила с иейтраяьнш веществом, карбидом кремния, имеющим одинаковую с асфальтитом величину поверхности. Все образцы, а также чистые мююмеры, помещали в [c.226]

    Si (газ.). Руфф и Коншак [3556] исследовали испарение карбида кремния в интервале 2673—2990°Кметодом определения температур кипения. Предполагая,что продуктами испарения являются Si (газ) и Si (газ), они вычислили количество Si (крист.), испаряющегося в виде Si (газ) и с разложением на С (графит) и Si (газ). По этим данным с использованием принятых в Справочнике значений термодинамических свойств было вычислено значение теплоты сублимации Si , равное 143 ккал/моль. [c.694]

    Угольную дугу в атмосфере аргона при испарении пробы из канала электрода использовали для определения примесей ряда элементов (10" —10- %) в закиси-окиси урана [1190], в полупроводниковых Материалах- кремнии [1449] и карбиде кремния [115] (предотвращалось образование молекул 510, дающих интенсивный фон), в кварце высокой чистоты [1431], для обнаружения трудновозбудимых элементов в двуокиси германия [957]. Малые абсолютные содержания многих элементов (10 —10 г) определяли при анализе сухих остатков растворов, помещенных на торцевые поверхности угольных (графитовых) электродов дуги Ьеременного тока [967] и сильноточной импульсной дуги постоянного тока [1428]. В аргоновой атмосфере проводили дуговой анализ растворов, вводимых в разряд с помощью фульгуратора [1317], определение газов в металлах и сплавах в униполярной дуге 773], а также примесей трудновозбудимых элементов Аз, Сд, 2п ( О —Ю %) в окислах никел и кобальта С помощью глобульной дуги [890]. - [c.171]


Библиография для Карбид кремния, определение: [c.79]   
Смотреть страницы где упоминается термин Карбид кремния, определение: [c.95]    [c.509]    [c.136]    [c.201]    [c.201]    [c.13]    [c.89]    [c.139]   
Аналитическая химия молибдена (1962) -- [ c.244 ]

Аналитическая химия молибдена (1962) -- [ c.244 ]




ПОИСК





Смотрите так же термины и статьи:

Кремний определение

Кремния карбид



© 2025 chem21.info Реклама на сайте