Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбамид размеров

    Значения константы скорости сушки кристаллов карбамида размером 1 мм при начальной влажности 2,8 вес. % и толщине слоя 2—3 мм следующие  [c.148]

    I мин. Однако единого мнения о наиболее целесообразных размерах частиц карбамида, используемого для [c.67]

    Наши исследования показали, что при размерах частиц карбамида О,2-0,3 мм процесс комплексообразования в промышленных условиях заканчивается через 10-15 мин. [c.68]


    В реактор 3, снабженная двойной пропеллерной мешалкой, одновременно поступает кристаллический карбамид со средним размером зерен 0,2-0,3 мм, содержащий 2-5% воды. Из реактора суспензия комплекса в смеси с нефтепродуктами проходит в холодильник Ь, в котором эа- [c.140]

    Скорость комплексообразования растет с увеличением концентрации активатора и с уменьшением размера гранул карбамида. [c.151]

    Описанная система комплексообразования и ряд других дополнительных мер (легкая очистка сырья силикагелем и раствора карбамида активированным углем от веществ, которые могут препятствовать комплексообразованию, фильтрация раствора карбамида через бумажные фильтры для удаления из него различных механических примесей, продуктов коррозии, продуктов реакции сырья с карбамидом и др.) позволяют получать однородную сус-, пензию комплекса со строго одинаковыми гранулами размерами 0,1—1,0 мм. Такие гранулы хорошо отделяются на фильтрах 5 и 7, работающих под давлением. Образующийся на фильтре I ступени [c.188]

    Из результатов указанных выше рентгенографических исследований можно сделать вывод о том, что в процессе комплексо-5 " образования обычная тетрагональная кристаллическая решетка карбамида превраш ается в гексагональную решетку с внутренним каналом, в котором заключена связываемая молекула углеводо-N1 рода, чем и объясняется избирательность реакции образования комплекса в отношении размеров и форм связываемых молекул. Очевидно, молекулы карбамида в процессе образования комплекса располагаются по спирали вокруг молекулы углеводорода. Возможность вхождения цепи углеводорода внутрь образовавшегося канала маловероятна. Зерна комплекса (гранулы) имеют вид сот, в ячейках которых расположены прямые углеводородные цепи., [c.17]

    Исследование комплексов карбамида, так же как и других комплексов (гидрохинона, циклодекстрина и др.), сыграло большую роль в изучении соединений включения [7], для которых характерно чисто пространственное образование связей между молекулами-партнерами. При этом одна молекула пространственно включает в себя другую молекулу. Включенная молекула как бы окружена прочной решеткой и не может поэтому покинуть своего места, хотя она и не связана непосредственно с другой, каркасной, молекулой. Необходимая для этого полость может существовать в самой молекуле (что возможно нри наличии молекул относительно больших размеров — молекулярного веса более 1000) или возникать в пространственной решетке в результате совместного расположения многих молекул небольшого размера. Образование комплексов карбамида относится ко второму случаю. [c.185]


    Для образования комплекса с карбамидом важны не химиче- ская природа вещества, а конфигурация и размеры-его молекул. Методом ЯМР доказано, что углеводородные молекулы включения имеют некоторую свободу вращения относительно оси, параллельной оси канала. Следовательно, комплексообразование с карбамидом— физическое явление. При образовании-комплекса карбамида с углеводородами устанавливается равновесие так же, как и в случае химических реакций. Следовательно, этот процесс подчиняется законам протекания обратимых реакций и изменение условий комплексообразования влияет на скорость и полноту извлечения комплексообразующ их углеводородов. В зависимости от агрегатного состояния карбамида и н-алкана возможны три. типа процессов  [c.211]

    Охлажденный карбамид при температуре 60—70"С транспортером 17 подается на рассев, обеспыливание, дополнительное -охлаждение и на упаковку или на склад (эти стадии на схеме не показа[1ы). Товарный карбамид в виде гранул размером 1 — [c.192]

    Производительность, т/ч по аммиачной селитре по карбамиду Размер гранул основной фракции, мм Массовая доля гранул основной фракции, % Площадь рабочей поверхности, м (см ) Максимальная рабочая температура, К (°С) Максимальная площадь зоны орошения, м Высота поступления плава в гранулятор, м Частога колебаний, Гц Частота вращения разбрызгивателя, 1/с Потребляемая мощность, кВт Габаритные размеры, мм высота ширина длина диаметр Масса, кг [c.911]

    Охлажденные гранулы карбамида системой конвейеров подают в бункеры-накопители станции отгрузки и загружают насыпью в железнодорожные вагоны. При отсутствии железнодорожных вагонов карбамид конвейерами направляют на склад. Карбамид, хранящийся на складе, перед отправкой потребителю подают па классификаторы для отсева нс кондиционпога карбамида (размером менее 1 мм и более 4 мм), который растворяется и в виде 50%-ного раствора возвращается на упари-Вйнисси грануляцию. [c.196]

    Различные варианты метода РПК НДО были использованы для разработки способов получения медленно действующих удобрений. Метод, основанный на последовательной полимеризации ММА и ВДХ, позволяет получать на основе выпускаемых промышленностью гранул карбамида размером 1-3 мм капсулированные образцы с временем полурастворения в воде 30 — 60 сут при достаточно низком суммарном содержании полимерного покрытия [4-6% (мае.)]. Такие образцы прошли довольно широкие агрохимические испытания в вегетационных и микрополевых опытах с различными сельскохозяйственными культурами, показавшие [266] их высокую агрохимическую и экологическую эффективность в ряде областей применения (под рис, чай, семенной зеленый горошек и др.). [c.177]

    Комплекс с карбамидом могут образовывать и длинноцепные углеводороды с циклическими структурами. Так, при наличии одной метильной боковой группы для образования комплекса требуется не меиее 10, а в случае этильной — не менее 24 атомов углерода в нормальной цепи. Алкилзамещенпые циклические углеводороды способны образовывать комплекс с карбамидом при наличии в них алкильной цепи из 20 — 25 и более атомов углерода. Следовательно, для образования комплекса важны не химическая природа, а конфигурация и размеры молекул углеводородов. [c.271]

    При использовании кристаллического карбамида без активаторов скорость комплексообразования увеличивается с уменьшением размеров кристаллов карбамида и повышением концентрации нормальных парафиновых углеводородов [17, 29, 33]. Продолжительность конта1ктир01аания реагирующих кампонентов при ис- [c.203]

    Комплексы тиокарбамида менее устойчивы, чем карбамидные. Так же как в случае карбамида, взаимодействие углеводородов с тиокарбамидом определяется соответствием размеров их молекул тгаперечно му сечению каналов в рвшепке тиокарбам ида. Диа,метр поперечного сечения молекул, способных давать комплексы с тиокарбамидом, составляет примерно 5,8—6,8 [41]. Обычно соединения, образующие комплекс с карбамидом, не дают комплекса с тиокарбамидом. Однако некоторые длинноцепные углеводороды при 0°С образуют малоустойчивые комплексы с тиокарбамидом. Это объясняется тем, что при пониженной температуре цепь молекулы парафина нормального строения свертывается в миоговит-ковую спираль, в результате размеры молекул удовлетворяют пространственным требованиям для комплексообразования с тиокарбамидом. [c.205]

    Рентгенографические исследования комплексов тиокарбамида с соединениями, различающимися длиной цепи, показали, что молекулы тиокарбамида расположены в комплексе ромбоэдрически [10, 24, 43], образуя псевдогексагональные ячейки. Больший размер атома серы в молекуле тиокарбамида по сравнению с атомом кислорода в молекуле карбамида способствует образованию канала большего диаметра. [c.205]

    Применение карбамида в виде пульпы имеет ряд преимуществ по сравнению с применением его растворов. Так, скорость комплексообразования в этом случае гораздо выше, так как не ограничивается скоростью охлаждения системы. Этот способ не требует реакторов больших размеров. Одним из условий, обеспечивающих достаточную эффективность процесса, является интенсивное перемешивание пульпы и нефтяного сырья. Таким образом, оптимальная глубина комплексообразования при высокой скорости процесса во многом определяется агрегатным состоянием и расходом карбамида. При этом следует учитывать свойства карбамида, т. е. его активность, размеры кристаллов, наличие примесей. Карбамид в кристаллическом состоянии более активен, чем в микрокристаллическом. Активность карбамида повышается в результате его предварительной обработки, например, ацетоном. Карбамид, применяемый, в процессе депарафинизации, содержит ряд примесей (биурет, нитраты, хроматы, бензоаты и др.), оказывающих как положительное, так и отрицательное влияние на камплексообразование. [c.229]


    Выполненные расчеты [22] позволили представить структуру комплекса цетан - карбамид следующим обоа-30.4 структура гексагональная, имеет размеры (в А) а = 8,2 с = 11,1 число молекул карбамида в [c.31]

    Кинетика и механизм комплексообразования. По вопросу классификации явления комплексообразования мнения исследователей расходятся.>.стинная природа связи между комплексообразующими углеводородами и молекулами карбамида пока не установлена. Одни исследователи [6, 1б]объясняют эту связь силами Ван-дер-Ваалъса, т.е. рассматривают как чисто физическое явление и считают криоталлические комплексы соединениями адсорбционной природы. Эта точка зрения подтверждается рентгенограммой размещения внутри кристаллической решетки карбамида молекулы углеводорода. Возможность такого размещения определяется размерами молекул и каналов в решетке, а не химической природой вааимодействунь щих веществ. [c.36]

    Явления адсорбции в процессе комплексообразования. При приближении к поверхности кристалла карбамида молекулы н-алкана она адсорбируется на этой поверхности при этом кристалл-карбамида получает достаточно энергии для перехода из тетрагональной форумы в гексагональную. Калориметрическим методом была определена [16] теплота адсорбции н-октана арбамидом с размерами частиц 0,1-0,15 мм. Авторы этой работы установили, что теплота адсорбции н-алкана на твердой поверхности карбамида несколько больше вычисленной теплоты образования комплекса, составляющей 6,7 кДж на одну метильную группу. Поэтому они считают, что н-алканы удерживаются в решетке адсорбционными силами. В работе [8]явление адсорбции отрицается. [c.46]

    Гранулометрический состав частиц комплекса и карбамида. Гранулометрический состав комплекса-сырца зависит от условий депарафинизации. Размеры частиц комплекса изменяются в широких пределах. Они сжазывают влияние на качество получаемого иарафина. В процессе Эделеану, где используют водный раствор карбамида,, образуются три различных модификации частиц комплекса зернистые, в виде пульпы и в виде порошка. На образование зернистого комплекса влияют концентрации раствора мочевины, пределы кипения сырья, содержание н-алканов в сырье, качество растворителя, сырья и карбамида, количество раствора карбамида, температура образования комплекса, интенсивность перемеаивания. [c.56]

    Качество и агрегатное состояние капбамит а. ри комшлексообразовании с н-алканами карбамид можно применять в кристаллическом состоянии, в виде насыщенных растворов в спиртах, кетонах, эфирах и воде, а также в виде пульпы. Активность карбамида во многом определяется свойствами и размерами кристаллов, зависящими от способа их получения, наличия примесей и др. [c.67]

    Размеры частиц карба1лида оказывают существенное влияние на скорость комплексообразования. Индукционный период при использовании карбамида, обработанного ацетоном, с размерами частиц 0,01-0,03 мм менее [c.67]

    Некоторые недостатки процесса карбамидной депарафинизации связаны прежде всего с неудовлетворительными показателями работы узлов разделения и промывки комплекса. На установке депарафинизации дизельных топлив водным раствором карбамида фильтры работают удовлетворительно только в случае суспензии с размерами гранул комплекса О,5-0,6 мм. [c.151]

    Циммершид с сотр. [20], а также Домаск и Кобе [41] показали, что молекулярные соотношения между карбамидом и н-парафи-нами непостоянны и изменяются в зависимости от числа атомов углерода в молекуле. Кроме того, эти соотношения представляют собой, как правило, не целые, а дробные числа, поскольку молекулы углеводородов (и других соединений) вступают в комплекс по признаку соответствия размеров молекул. Установлено [7], что для комплексов карбамида с нормальными парафиновыми углеводородами отношение числа молей карбамида к числу молей углеводорода в комплексе можно выразить уравнением  [c.21]

    В пользу физической точки зрения говорит прежде всего доказанное рентгенографическими исследованиями размещение внутри кристаллической решетки карбамида молекулы углеводорода, тем более что возможность такого размещения определяется не химической природой взаимодействующих веществ, а размерами молекул и каналов. Высвобождение из комплекса некоторой части входящих в его состав молекул при дроблении комплекса [45] является также подтверждением физического представления о структуре комплекса и о процессе комплексообразования. Циммершид [20] и Бейли [21] считают, что комплексообразование есть одна из форм адсорбции, в основе которой лежит проникновение молекул одних веществ вглубь кристаллической решетки других веществ и которая определяется формой молекул адсорбируемого компонента. При этом проводится аналогия между взаимодействием нормальных парафинов с карбамидом и взаимодействием их с минералами шабазптом и анальцитом, входящими в группу цеолитов, поскольку эти минералы также соединяются только с парафинами нормального строения и не взаимодействуют ни с изопарафиновыми, ни с нафтеновыми, ни с ароматическими углеводородами. Как известно, при физической адсорбции (в отличие от хемосорбции) молекулы адсорбируемого вещества сохраняют свою индивидуальность с увеличением давления и с понижением температуры количество адсорбируемых молекул увеличивается физическая адсорбция обратима. Эти же закономерности имеют место и при комплексообразованпи — молекулы нормальных парафинов, вступая в комплекс, не претерпевают никаких изменений. Увеличение давления позволяет вовлечь в комплекс нормальные парафины с относительно короткими цепями, Которые при нормальном давлений комплекса Не образуют. Понижение температуры в определенных пределах ведет к усилению комплексообразования обратимость комплексообразования доказана многочисленными экспериментами. [c.25]

    Применяемый в процессе депарафинизации карбамид содержит примеси биурета и некоторых других веществ. Кроме того, биурет образуется в результате гидролиза карбамида при применении водного раствора последнего и при разрушении комплекса водой. Присутствие небольших количеств биурета не оказывает отрицательного действия, а в отдельных случаях его могКпо рассматривать даже как положительный фактор. Так, Шампанья с сотр. [10] показал, что в то время как химически чистый карбамид образует исключительно устойчивые гели, присутствие до 1% биурета ограничивает размеры кристаллов комплекса, что уменьшает опасность закупорки трубопроводов. Повышенное содержание биурета сказывается отрицательно на депарафинизации, уменьшая, в частности, депрессию температуры застывания масла. Так, Б. В. Клименок с сотр. [107] показал, что если при отсутствии биурета в карбамиде удается достичь температуры застывания дизельного топлива —56° С, то при содержании в карбамиде 1, 3 и 5% биурета температура застывания дизельного топлива равна соответственно —51,5, —50 и —49° С. В связи с отрицательным влиянием, которое оказывает повышенное содержание биурета на свойства карбамида (не только при депарафинизации), его содержание в мочевине различных сортов ограничивают следующими предельно допустимыми нормами. [c.61]

    Взаимодействие карбамида с и-парафинами осуществляется в основном в первые минуты контактирования, однако для полноты вовлечения соответствующих углеводородов в комплекс время контакта обычно доводят до 1 ч. А. М. Гранат с сотр. [60] показал, что при депарафинизации фреонового масла из эмбенских нефтей комплексообразование происходит весьма быстро для снижения температуры застывания масел с —5 до —47° С достаточно 15 мин контактирования. Н. И. Черножуков с сотр. [54] считает необходимым при депарафинизации масел устанавливать продолжительность перемешивания порядка 30 мин. Фрейнд и Батори [74] показали, что время реакции и длительность индукционного периода при проведении процесса с водным раствором карбамида во многом определяются размерами кристаллов карбамида с увеличением их время реакции и индукционный период возрастают. Б. В. Клименок и Э. М. Игнатов [138] установили, что с увеличением продолжительности перемешивания температура застывания депарафината сначала проходит через некоторый минимум. Так, при перемешивании в течение 0,5 1 2 и 4 мин температура застывания равна соответственно —65, —77, —66 и —66° С. Значительно ускорить комплексообразование можно применяя коллоидную мельницу [50, 139, 140]. [c.75]

    В. А. Боярской с сотр. [245] проверен вариант получения автолов из парафинистых нефтей жирновского и анастасьевского месторождений комбинированием непрерывной перколяции и карбамидной денарафинизации. Перколяцию дистиллятов проводили в бензиновом растворе при 40—45° С через слой силикагеля размером 0,5 мм, а депарафинизацию с кристаллическим карбамидом в присутствии метанола. Показано, что совмещение этих двух процессов позволяет получить из дистиллятов с температурами застывания 32 и 11° С автолы соответственно с температурами застывания —20 и —27° С, а также парафин с температурами плавления 50 и 55° С. [c.167]

    Сущность карбамидной депарафинизации заключается в следующем. Карбамид в определенных условиях образует кристаллы гексагональной структуры, имеющей между молекулами свободное пространство-(канал) о диаметром около 4,9-6А, Молекула нормального парафина свободно входит в этот канал и образует комплекс. (Лолекулы других углеводородов, имеюсцие большие размеры, не могут входить в этот ковал и не способны к комплексообразованию. Полученные комплексы Карбамида о парафином не растворимы в углеводородах. Их можно отделить фильтрованием и при дальнейшем раэлолении комплекса горячей водой выделить парафины. [c.76]

    Карбамид МНгСОННг, по данным рентгеноструктурного анализа, может существовать в двух кристаллических модификациях тетрагональной и гексагональной. Чистый карбамид имеет тетра-гональнук> структуру, каждая кристаллическая ячейка которой состоит из четырех молекул. Это плотно упакованный кристалл не имеющий свободных пространств, в которых могли бы размес титься молекулы другого вещества. В процессе комплексообразо вания происходит перестройка кристаллической структуры карб амида из тетрагональной в гексагональную. В этом случае кри сталлическая ячейка состоит из. тести молекул карбамида расположенных по спирали и повернутых друг относительно дру га под углом 120°. При таком построении между молекулами карбамида образуется свободное пространство (канал), в котором размещаются молекулы другого вещества. Диаметр канала в узкой части составляет 4,9 А, а в широкой — около 6А, поэтому комплекс с карбамидом могут образовывать те вещества, молекулы которых имеют диаметр поперечного сечения меньше диаметра канала. Из компонентов, содержащихся в нефтяном сырье, только молекулы н-алканов имеют поперечный размер (3,8Х4,2 А) меньше диаметра канала в гексагональной ячейке карбамида. Поэтому необходимым структурным элементом молекул веществ, определяющим их способность образовывать комплекс с карбамидом, является наличие длинной парафиновой цепи нормального строения. [c.210]

    Глубина извлечения комплексообразующих углеводородов зависит от свойств технического карбамида, т. е. размеров его кристаллов, активности, наличия примесей. В кристаллическом состоянии карбамид более активен, чем в микрокристаллическом. Активность карбамида можно повысить, предварительно обрабатывая его активатором, причем для каждого активатора существует оптимальная длительность активации. Свежеприготовленные водные растворы карбамида менее активны, чем растворы, простоявшие несколько дней. При использовании в качестве активаторов спиртов длительность активации ими карбамида увеличивается с ростом молекулярной массы спирта, причем активация спиртами выше -пентанола не влияет на процесс комплексообразования. [c.224]

    Способность цеолитов адсорбировать молекулы определенных размеров широко используют для очистки и разделения нефтепродуктов очистки газов и жидкостей, удаления двуокиси углерода, сероводорода и других сернистых соединений, повышения октанового числа бензинов (на 5—26 пунктов) в результате удаления н-алканов. В настоящее время цеолиты широкр применяют для выделения к-алканов из нефтяных фракций —от бензиновых до газойлевых включительно с содержанием н-алканов около 20% (масс.). Выделенные нормальные парафиновые углеводороды используют при производстве белковых веществ, моющих средств и других продуктов нефтехимического синтеза. Чистота н-алканов, полученных разделением на цеолитах, значительно выше, чем при выделении другими методами (более 98% при разделении цеолитами и 90—96% при разделении карбамидом). Одновременно с н-алканами получают денормализат — смесь изопарафиновых и циклических угл ёводородов. [c.253]

    С уменьшением размера частиц в эвтектических смесях увеличивается биологическая доступность малорастворимых лекарственных веществ. Например, Секитухи и Оба (1961) получили эвтектические смеси тиазола и карбамида с такой высокой дисперсностью, что биологическую активность проявило инертное вещество — мочевина. [c.93]

    Стереорегулярные полимеры всегда получаются при канальной полимеризации мономеров в твердой фазе. Мочевина (карбамид) и тио-мочевина легко образуют кристаллические комплексы (иначе называемые соединениями включений) с веществами, молекулы которых имеют соответствующие размеры и форму. Мочевина и тиомочевина в присутствии подобных соединений кристаллизуются таким образом, что в их кристаллической решетке образуются длинные каналы. Стенки этих каналов построены из свернутых в спираль молекул мочевины, связанных водородными связями. Вдоль этих каналов расположены молекулы веш,ества, с которым мочевина или тиомочевина образует комплекс. Такие комплексы образуют многие мономеры винильного и дивиниль-ного рядов. Так как расположение молекул мономера в кристалле мо-чевины или тиомочевины упорядочено, а движение относительно ограничено, при действии излучений высокой энергии протекает стереоспецифическая полимеризация. Таким методом были получены транс-1,4  [c.126]

    Для карбамида марки Л гранулометрический состав не иор мируется, для марки Б содержание гранул размером от 1 до 4 мм должно быть ПС менсс 94 масс. %, а содержание гранул размером менсс 1 мм — мс более 5 масс. %. Предельное содержание биурета оговорено в связи с вредным его действием на растения. [c.189]


Смотреть страницы где упоминается термин Карбамид размеров: [c.199]    [c.68]    [c.76]    [c.141]    [c.78]    [c.26]    [c.12]    [c.15]    [c.29]    [c.61]    [c.57]    [c.307]    [c.387]   
Технология карбамида (1961) -- [ c.45 , c.46 , c.64 ]




ПОИСК





Смотрите так же термины и статьи:

Карбамид

Карбамид прочность и размер гранул



© 2025 chem21.info Реклама на сайте