Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цистин окисление

    И затем охлаждают до 0°. 25 мл реактива добавляют к пробе белка, которая должна содержать 1—2 мг цистина окисление проводят при 0 в течение 4 час. В конце реакции большую часть реактива удаляют испарением в вакууме (водоструйный насос) в пленочном испарителе при температуре бани 30—40°. Сгущение раствора прекращают (через 10—15 мин), когда на стенках вращающейся колбы появляется сиропообразная лента. Остаток, содержащий окисленный белок, сразу же растворяют в 50 лл 6 н. раствора НС1, кипятят с обратным холодильником в течение 20 час и, если необходимо, фильтруют через стеклян- [c.85]


    Тетраметилтиурамдисульфид Биологические дисульфиды, например, цистин, окисленный глютатион Цистин [c.490]

    Было найдено, например, что при действии разбавленных водных растворов надкислот на шерсть все дисульфидные связи этого белка легко доступны реагенту и окисляются им полностью [63]. Требуемая продолжительность реакции зависит от диаметра волокна, концентрации надкислоты и температуры. Типичные результаты, полученные при проведении этой реакции, представлены в табл. У1-31. Следует отметить, что при взаимодействии с надкислотой шерсть не переходит в раствор, и лишь последующий исчерпывающий гидролиз приводит к растворению продукта. После гидролиза весь цистин, окисленный надкислотой, может быть определен в виде цистеиновой кислоты [259], причем в гидролизате наблю- [c.401]

    Меркаптаны и тиофенолы очень чувствительны к окислителям и переходят при окислении в дисульфиды. Последнее происходит часто уже при соприкосновении с кислородом воздуха. В связи с этим при получении и последующих превращениях меркаптанов чаще всего работают в атмосфере инертного газа или газа-восстановителя (азота, водорода, см. также разд. Г, 2.5.5). Процесс превращения меркаптана (тиофенола) в дисульфид обратим дисульфиды мягкими восстановителями вновь переводятся в меркаптаны (тиофенолы). (О биологическом значении этой реакции на примере системы цистин — цистеин посмотрите в учебнике.) [c.257]

    При работе с пептидами, содержащими цистин и метионин, без предварительного окисления необходимо учитывать дополнительные факторы, например их нерастворимость и склонность к окислению. [c.198]

    Окисление цистеина в цистин возможно и неферментативным путем. [c.453]

    Рога и копыта состоят не из одного кератина, помимо него в них имеется жир (в количестве до 4%) и некоторые белковые вещества иного состава, чем кератин, обладающие иными свойствами, чем последний. Жир не оказывает вредного влияния на технические свойства рогов и копыт. При переработке их в изделия бывает выгодно пропитывать их жиром дополнительно—это улучшает их пластичность. Совсем по-иному действуют белковые примеси, сопутствующие кератинам. Кератины сами по себе весьма ограниченно гидрофильны, набухаемость их в воде очень слабая и ферменты на них не действуют. Сопутствующие же им протеины и гидрофильны и перевариваются ферментами — пепсином и трипсином. При переработке рогов стремятся удалить эти вредные примеси путем длительного вымачивания в теплой воде в противном случае они вызывают образования трещин в роговой пластине вдоль ее слоев. Сам кератин рога является не абсолютно стойким веществом. Помимо легкого распада цистина с выделением сероводорода долгое кипячение в воде, длительное пребывание во влажном состоянии на воздухе ведет к изменению кератина. В первом случае он в некоторой степени гидролизуется, во втором— кислород воздуха, изменяя кератин, делает его доступным действию ферментов. В производстве это нужно учитывать и охранять влажный рог от окисления. [c.37]


    Дисульфидные группы в цистине, окисленном глутатион, денатурированных белках и кислотных белковых гидролизатах можно точно титровать Hg l2 на КРЭ в присутствии N82803 [251]. В полярографическую ячейку наливают 10 мл 0, М раствора буры, 2,5 мл 4 М раствора КС1, 10 мл хлороформа (чтобы покрыть ртутный анод) и добавляют образец до концентрации дисульфида 0,00025—0,003 УИ. Затем приливают 4 мл 1 М раствора НагЗОз и воду до общего объема 20 мл. Раствор титруют 0,01 УИ раствором Hg l2 при потенциале —0,35 в относительно НКЭ. Точность равна 1%. [c.393]

    В животном организме таурин образуется, вероятно, из отбросных веществ, содержащих серу, при прохождении их через печень. Окисление п декарбоксилирование цистина, который считают природным источником [154] таурина, осуществлено в лабораторных условиях [155а,б,е]. На то, что таурин является отброснымпро-дуктом, указывают опыты кормления животных, согласно кото- [c.132]

    Выход таурина при получении его из цистина довольно высок (59%) [155а, б], но эта реакция не может служить для препаративных целей, так как не существует дешевого пути получения цистина. Интересно отметить, что окисление цистина перекисью водорода [1556 дает 40%-ный выход таурина, тогда как при окислении солянокислого цистамина большая часть содержащейся в этом соединении серы превращается в серную кислоту. [c.133]

    Выше указано (стр. 132), что превращение цистина или цистеипа в таурин можно осуществить путем окисления и декарбоксйлиро-вания [154, 155а,б]. Образующаяся в качестве промежуточного, продукта цистеиновая кислота (а-амино-Р-сульфопропионовая кислота) может быть получена различными путями. Цистин окисляется кислородом в присутствии соляной, но не серной кислоты [388]. Медные соли ускоряют реакцию [389]. Перекись водорода является удовлетворительным окислителем, особенно в присутствии ванадиевой, вольфрамовой или молибденовой кислот [390] или сернокислой соли двухвалентного железа [391]. Окисление иодом в кислом растворе протекает практически количественно. [392]  [c.169]

    Надсерная кислота также дает хорошие результаты [393]. Исследование кинетики окисления сернокислым таллием показало, что-эта реакция является бимолекулярным процессом с энергией активации, равной 24,200 кал [394]. При обработке цистина серебряной или медной солями происходит сложная реакция, заключающаяся в том, что цистин частью восстанавливается в цистеин и частью, окисляется в цистеиновую [394,395] или в сульфиновую кислоту. Как показано Оимонсеном [396], при окислении цистина иодом сульфиновая кислота образуется, повидимому, в качестве проме- [c.169]

    Декарбоксилирование цистеиновой кислоты упомянуто выше [155а, б, е]. Исследованы скорость деаминирования [401] и состояние равновесия в среде двуокиси углерода [402]. Скорость абсорбции цистеиновой кислоты в кишечнике собак занимает промежуточное положение между /-метионином и /-цистином [403]. Сера выводится из организма медленнее, чем продукты окисления метионина и цистеина [404]. Окисление цистеиновой кислоты в организме кролика происходит под воздействием микрофлоры кишечника [405]. [c.170]

    Многие пептиды являются гормонами. Так, например, присутствующие в гипофизе гормоны окситоцин и вазопрессин состоят из девяти аминокислотных остатков, т. е. относятся к нанопептидам. Первый влияет на протекание родов у женщин и образование молока, второй контролирует водный обмен в организме. Инсулин, вырабатываемый поджелудочной железой, контролирует метаболизм сахаридов, и его недостаток приводит к диабету. Инсулин состоит из двух цепей, одна из которых содержит 21, а другая — 30 аминокислотных остатков. Цепи соединены серными мостиками —5—5—, которые образуются при окислении групп 5Н двух цистеиновых остатков (при этом получается остаток аминокислоты цистина). Структура инсулина точно известна, и он был синтезирован. Другой пептидный гормон, адренокортикотропный гормон (АКТГ), регулирует синтез стероидных гормонов в коре надпочечников, а соматотропин контролирует рост. Оба этих гормона вырабатываются передней долей гипофиза. К гормонам, образующимся в пищеварительном тракте, относятся, например, секретин и гастрин. Среди пептидов имеются и антибиотики, например бацитрацин (составная часть фрамикоина). [c.191]

    Цистеин HS— Hj HiNHg)—СООН является производным а-аминопропионовой кислоты, в молекуле которой один атом водорода замещен группой —SH. При окислении кислородом воздуха цистеин переходит в цистин  [c.381]

    Поразительно высокая вращательная способность цистина ([AI]d= —662) в сравнении со слабым вращением у восстановленного продукта — цистеина ( [AI]d=—13) привлекла в свое время внимание Вант-Гоффа (1898), который приводит это сравнение в своем труде в разделе Выдающиеся случаи и комментирует его следующим образом Малая вращательная способность цистеина (([аЬ=—8°), характерная для аминокислот, сохраняется при замещении сульфгид-рильного водорода на фенил, бромфенил или ацетил [в последнем случае [а]о= —7°]. После окисления до цистина мы получаем огромное значение [а]о, равное — 214° . В 1950 г. одним из авторов настоящей кииги было выоказаео лредположение, что аномально высокое [c.653]


    Эластические свойства кератина волос и шерсти, ио данным ронтге-ноструктурного анализа, зависят от того, что в нерастянутом белке полипептидная цепь закручена сама на себя. Растягивание развертывает петли и образуег цепь из аминокислотных единиц с периодом идентичности 3,3 А, сравнимым с таковым для фиброина. Кератин богат цистином, который образует дисульфидные поперечные связи между пептидными цепями. Шерсть может быть модифицирована, а волосы завиты путем восстановления меркаптаном для расщепления части поперечных связей и обратного окисления для образования других поперечных связей. Восстановление, которое в случае завивки производится смачиванием раствором тиогликолевой кислоты, приводит к денатурированному белку с менее жесткой структурой, допускающей растяжение и перестройку молекулы. Появление и исчезновение сульф-гидрильных групп можно проследить при помощи нитропрусоидной пробы. [c.668]

    Однако окисление цистина в окситоцине в этих условиях привело к образованию вещества с молекулярным весом того же порядка, что и у окситоцина, т. е. дисульфидпый мостик является частью кольцевой системы. [c.694]

    На этой схеме указаны связи, расщепляемые протеиназой. Две дополнительные амидные группы находятся у карбоксильных групп двухосновных кислот, не участвующих в образовании пептидной связи. Два цистеиновых звена в окисленном пептиде образовались при расщеплении образующей цикл дисульфидной группы цистина. [c.695]

    Рибонуклеаза. — Одна из рибонуклеаз была выделена в кристаллическом виде из бычьей поджелудочной железы Купит-цем (1940). Панкреатическая рибонуклеаза гидролизует рибонуклео-тидные связи, в которых пиримидиновый нуклеозид этерифицирован по З -положению сахара. Этот фермент содержит 124 остатка аминокислот и четыре дисульфидные связи. Установление первичной структуры этого фермента Муром и Штейном (1960) явилось важной вехой в химии белка. Последовательность частично была определена на окисленной рибонуклеазе, которая при энзиматическом расщеплении дает 24 пептида. Их размеры позволяют непосредственно определить последовательность химическими и ферментативными методами. Наконец, ферментативный гидролиз нативного белка, разделение содержащих цистин пептидов, окисление их до цистеиновых пептидов и аминокислотный анализ последних позволили выяснить, каким образом восемь по-луци1стинооых о статков связаны друг с другом (рис. 27, стр. 740). [c.739]

    Рассмотрение принципа действия и особенностей использования аминокислотного анализатора начнем с того, что сформулируем представления об анализируемом препарате. Для наиболее интересного случая — анализа состава белка — им является смесь 20 природных аминокислот. Все компоненты этой смеси представляют одинаковый интерес, подлежат полному разделению и количественной оценке. Интервал. молекулярных масс простирается ог 75 (Gly) до 204 (Тгр), диапазон значений р1 — от 2,97 (Glu) до 10,76 (Arg). Различия в стеиени гидрофобности тоже выражены сильно от гидрофильных дикарбоновых и оксикислот до весьма гидрофобных, несущих довольно протял<енные алифатические и ароматические боковые группы. Заметим сразу, что такие различия должны облегчить задачу хроматографического разделенпя, но вряд лн позволят обойтись без ступенчатой смены элюентов. В обычных условиях хроматографии все алшнокислоты достаточно устойчивы, но следует обратить внимание с этой точки зрения и на предшествующий хроматографии этап исчерпывающего гидролиза белков и пептидов (от него будут зависеть и результаты анализа). Агрегация аминокислот маловероятна, за исключением возможности окисления цистеинов до цистинов. Не-специфическая сорбция за счет гидрофобных взаимодействий с материалом матрицы безусловно возможна, но здесь она будет использоваться в интересах фракционирования. [c.515]

    Снижению потерь большинства аминокислот при кислотном гидролизе способствует проведение его в стеклянных ампулах под вакуумом с большим избытком (200—5000-кратным) тщательно очищенной и перегнанной над Sn b соляной кислоты. Распад тирозина предупреждают добавлением в ампулу фенола. Чтобы избежать превращения серусодержащих аминокислот в продукты различной степени окисления при гидролизе и последующих процессах хроматографии и электрофореза, образцы белка, содержащие цистеин и цистин, до гидролиза обрабатывают надмуравьиной кислотой. При этом образуется стойкое производное — цистеиновая кислота. Гидролиз проводят в течение 24, 48, 72 и 120 ч. Если содержание какой-либо аминокислоты с увеличением времени гидролиза постепенно уменьшается, его находят на графике зависимости содержания этой аминокислоты от длительности гидролиза путем экстраполяции к нулевому времени гидролиза. Если же содержание аминокислоты в ходе гидролиза постепенно увеличивается, истинную величину также определяют графически, ограничивая время гидролиза 96 или 120 ч ". [c.123]

    Ц.- кодируемая заменимая а-аминокислота. Ц. входит в состав белков и нек-рых пептидов (напр., глутатиона). Особенно много Ц. в кератинах. Биосинтез Ц. в растениях и микроорганизмах осуществляется тутем замены ОН на 8Н в серине. В организме животных образуется из метионина, распадается до цистамина. Характерная особенность Д.- его способность подвергаться в составе молекулы белка самопроизвольному окислению с образованием остатков цистина. Ц. участвует в биосинтезе цистина, глутатиона, таурина и кофермента А. [c.388]

    Цистин. Дисульфидная группа цистина легко восстанавливается до цистеина (особенно каталитически), а также окисляется. Характер окисления зависит от выбранных окис.яителей. Особое значение имеет действие брома или надмуравьиной кислоты, окисляющее S—S мостик до сульфогруппы с образованием цистеиновой кислоты. [c.472]

    Так, деградация цистеина происходит через посредство промежуточного радикала тиила, признаки которого обнаружены с помощью электронного парамагнитного резонанса [94]. Далее образуются разные продукты — цистин, различные окислы цистеина и аланина и сероводород. Возникновение дисульфидных мостиков и продуктов окисления можно было наблюдать У пептидов, таких, как глютатион [29] (рис. 7.7). [c.301]

    По другому методу цистиновые межцепочечные мостики окисляются бромом или бромной водой, что также приводит к образованию сульфогрупп. В случае цистина выход цистеи новой кислоты количественный. Однако при попытках окислить цистин инсулина й папаина бромом без предварительного частичного гидролиза продукты окисления были получены с невысокими выходами [316]. Для повышения степени заг вершенности окисления белки предварительно можно подвергать денатурации или восстановлению. Из окситоцина — одного Из низших полипептидов, при окислении бромной водой образуется цистеиновая кислота с хорошим выходом одновременно наблюдается специфическое расщепление тиро-зилизолейциновой связи (см. ниже раздел Бромная вода). [c.171]

    Пролин и оксипролин полностью устойчивы к действию фермента.- Цистеин в продуктах расщепления не был обнаружен. Полуцистин, если он присутствует в продуктах расщепления, мог образоваться за счет разрыва пептидной связи при этом связь с полипептидной цепью дисульфидным мостиком сохраняется. Окисление остатков цистина в цистеиновую кислоту не должно давать способную отщепляться под действием карбоксипептидазы группу, так как она содержит заряженную боковую цепь, но восстановление и алкилирование до --S H2 ONH2-rpynn приводят к образованию нейтрального остатка. Такой остаток был недавно обнаружен [198] в гидроЛизатах, полученных при действии карбоксипептидазы на восстановленный и алкилированный пролактин, что свидетельствует о присутствия С-концевого полуцисти нового остатка. [c.233]

    Разделение й /-цистина-3,3 -С на оптические изомеры через образование нерастворимой в бутиловом спирте соли 8-бензил-Ы-формил- -цистеина-3-С подробно описано Арнштейном и Грантом [4]. Количество примеси С1 - -диастереоизомера в маточном растворе уменьшено до 0,1% с помощью изотопного разбавления носителем — нерадиоактивной -солью. Гидролиз с последующим восстановлением и окислением приводит к образований) сиотиетственно й- и /-цистина-3, З -Сг . Выход в рас- [c.221]

    Структуры всех 20 нормальных аминокислот (компонентов, выделенных из гидролизатов белков) были установлены к 1935 г. самым первым Браконно в 1820 г. был охарактеризован глицин, самым последним — треонин. Хотя цистеин входит в состав многих пептидов и белков как таковой, Однако их функционирующие формы содержат окисленный продукт — цистин, дисульфидные мостики которого могут образовываться как внутри-, так и межмолекулярно. За исключением глицина, все кодируемые аминокислоты белков оптически активны и одинаково хиральны при асимметрическом ос-углеродном атоме. По аналогии, с обычной номенклатурой для углеводов, их обычно рассматривают как соединения, обладающие -конфигурацией, при этом -серин считают родоначальным соединением. За исключением цистеина, конфигурация всех аминокислот соответствует S-конфигурацни по системе Кана-Ингольда-Прелога положение серы в цистеине таково, что -цистеин имеет / -конфигурацию. Изолепцин и треонин имеют по второму центру асимметрии при -углеродных атомах найденные в белках (2S, 35)-2-амино-3-метилвалериановая и (2S, 3/ )-2-амино-3-гидроксимасляная кислоты являются стереоизомерами. [c.227]

    В общем белки построены из 20 аминокислот — см. табл. 23.2.1. В этой таблице представлены только аминокислоты, которые могут кодироваться триплетами оснований матричной рибонуклеиновой кислоты (мРНК). Другие аминокислоты, присутствующие в белках (например, цистин, гидроксипролин), образуются с помощью пост-трансляционной модификации (например, окислением двух остатков цистеина, гидроксилированием пролина). [c.256]

    Восстановленная форма белков, содержащих цистин, имеет конформацию, вероятно, сходную с таковой для окисленных форм, имеющих пары тиольных групп, находящихся в положениях, благоприятных для спаривания. Предйолагалось, что в качестве окис- [c.543]

    Значительное затруднение при расшифровке последовательности аминокислот может возникнуть, если в молекуле анализируемого белка присутствуют остатки цистеина или цистина. При окислении цистеина образуются S—S-мостики, которые не только являются причиной ошибочных выводов, но и препятствуют дальнейшему анализу, так как содержащие их белки и полипептиды весьма устойчивы к ферментативному расщеплению. Поэтому до проведения анализа рекомендуется избавляться от S—5-мостиков и предотвращать спонтанное окисление свободных SH-rpynn. Кроме того, следует иметь в виду возможность SH/S—S-обмена. Если в реакционной смеси одновременно присутствуют свободные SH-группы и S—S-мостики, в ней могут происходить перестройки, при которых связанные S—S-мостиком пары пептидов обмениваются своими партнерами  [c.33]

    SH- и S — S-группы элиминируют с помощью количественной и необратимой реакции окисления белков надмуравьиной кислотой. В результате этой реакции цистеин или цистин превращается в цис-теиновую кислоту [86]. [c.33]

    При окислении надмуравьиной кислотой остатки цистеина или цистина превращаются в стабильную цистеиновую кислоту, остаток метионина — в стабильный метионинсульфон, а тирозин и триптофан полностью разрушаются. [c.165]

    При кислотном гидролизе триптофан разрушается полностью, а серии и треонин — на 5—10% разрушаются также цистин, цистеин и метионин. Из метионина получается главным образом метио-нинсульфоксид, который частично снова превращается в метионин в процессе гидролиза. Серусодержащие аминокислоты могут быть определены только в окисленных образцах (например, окисленных надмуравьиной кислотой). [c.178]


Смотреть страницы где упоминается термин Цистин окисление: [c.316]    [c.170]    [c.351]    [c.74]    [c.694]    [c.694]    [c.135]    [c.364]    [c.343]    [c.388]    [c.170]    [c.171]    [c.67]    [c.454]   
Аминокислоты, пептиды и белки (1976) -- [ c.33 ]

Химия биологически активных природных соединений (1970) -- [ c.77 ]




ПОИСК





Смотрите так же термины и статьи:

Цистин



© 2025 chem21.info Реклама на сайте