Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий, осаждение эфиром

    Оксихинолинат алюминия хорошо растворим во многих органических растворителях, например в спирте, ацетоне, эфире, амиловом и этиловом спирте и др. Между тем оксихинолин очень мало растворяется в холодной воде и в некоторых случаях применяется в виде спиртового раствора. Ввиду способности оксихинолината алюминия растворяться в спирте для осаждения алюминия следует брать раствор оксихинолина в уксусной кислоте. [c.184]


    Железо, никель, кобальт, хром, цинк, галлий, медь, олово и некоторые другие элементы успешно отделяются от алюминия электролизом с ртутным катодом (стр. 165) разбавленного сернокислого раствора Железо можно также отделить от алюминия экстракцией эфиром холодного разбавленного солянокислого раствора (стр. 161). Очень хороший метод отделения алюминия от хрома основан на окислении хрома до хромата нагреванием с хлорной кислотой до появления обильных паров, разбавлении охлажденного раствора и осаждении алюминия аммиаком. [c.564]

    Осаждение галлия купфероном после отделения от алюминия экстрагированием эфиром из солянокислого раствора с последующим прокаливанием осадка до аа Оз [c.202]

    Дегидратация диэтилового эфира в этилен температура 200° Силикат алюминия хуже окись алюминия (полученная гидролизом амальгамы алюминия вдвое активнее, чем приготовленная из пропи-лата алюминия, осажденного на пемзе) 3049, 32 [c.138]

    Метод заключается в предварительном осаждении петролейным эфиром асфальтенов из растворенного в бензоле битума, адсорбции смолистых веществ окисью алюминия и выделении парафинов из десорбированной фракции вымораживанием. [c.396]

    В качестве эффективных средств для удаления перекисей из растворителей предлагались также твердое едкое кали гидрат окиси кальция, полученный осаждением хлористого кальция едким натром и медь с цинком Некоторые растворители могут быть очищены от перекисей путем пропускания через колонку с окисью алюминия. Этот метод, оказавшийся особенно хорошим для диоксана и ди-н-бутилового эфира, ие дал положительного результата при очистке диэтилового эфира [c.442]

    При алкилировании фенолов спиртами в паровой фазе в качестве катализаторов используют природные глины, алюмосиликаты, цеолиты, а также окислы алюминия, магния, титана, тория и их смеси. Обладает каталитической активностью также поли-фосфорная кислота, осажденная на термостойком носителе. Реакцию проводят при 250—500 °С, главным образом с низкомолекулярными спиртами С1—С4. Состав продуктов реакции зависит от условий процесса и селективности катализатора. Большинство известных катализаторов ориентируют алкильные заместители в орто-положение. Однако на многих из них при повышенной температуре также хорошо образуются м- и л-изомеры. Жесткие условия алкилирования способствуют протеканию побочных процессов. Так, при изучении превращений л-н-пропилфенола на алюмосиликатном катализаторе [98] при 300—350 °С отмечено образование фенола, ж-н-пропилфенола, ди- и триалкилфенолов ге-крезола и л-этилфенола, т. е. одновременно протекают деалкилирование, изомеризация, диспропорционирование и расщепление. При низких температурах основные продукты алкилирования— алкилфениловые эфиры, которые являются, по-видимому, промежуточными продуктами при образовании алкилфенолов. Выходы последних при парофазном алкилировании довольно высоки и при соответствующем подборе катализатора и оптимальных условий могут достигать 80—95%. [c.232]


    Для отделения цезия от калия и рубидия рекомендуется [333] использовать избирательное соосаждение цезия с дипикриламина-том одновалентного таллия. С этой целью фильтрат после осаждения гидроокисей и карбонатов железа, алюминия и редкоземельных металлов обрабатывают 105%-ным избытком 3%-ного водного раствора дипикриламината натрия, после чего к полученной смеси добавляют при непрерывном перемешивании и охлаждении до 0 С 0,1 и. раствор ТШОз. Осадок дипикриламината таллия промывают ледяной водой и эфиром и растворяют в метилизобутил-кетоне. Органическая фаза затем реэкстрагируется 2 н. соляной кислотой, содержащей хлор водную фазу упаривают досуха. Извлечение цезия в этом случае достигает 90%. [c.328]

    Имеются и другие факты в пользу применимости теории растворимости для объяснения силикоза. Наименее растворимые типы кремнезема оказываются и наименее вредными. Так, осаждение ионов растворимого алюминия на поверхности кремнезема понижает растворимость, а также токсичность последнего [337—340]. К тому же алюмосиликатные минералы, такие, как глины, которые еще менее растворимы, чем кварц, не вызывают силикоза. Сообщение о том, что пораженные силикозом. ткани легких содержат сложные эфиры кремневой кислоты, например холестерин [341], по-видимому, также поддерживает идею об участии в подобных системах растворимого кремнезема. [c.1078]

    Наиболее поздний обзор препаративных методов получения чистой окиси скандия приведен в статье Массонне [ ], где сделан вывод о том, что эта задача может быть решена лишь комбинацией методов разделения. Используя двукратное осаждение тартрата аммония-скандия, четырехкратную экстракцию роданида скандия диэтиловым эфиром, осаждение гидроокиси и очистку солянокислого раствора, содержащего скандий, с помощью селективного осаждения хлоридов редкоземельных элементов и алюминия и абсорбции примесей анионитами, Массонне получил окись скандия чистотой 99.99%. Однако содержание элементов-примесей в очищаемых им образцах не является характерным для окиси скандия, получаемой из типичного сырья, а некоторые из примененных методов очистки (эфирнороданидная экстракция, ионный обмен) характеризуются либо повышенным расходом реагентов, либо низкой производительностью, а также рядом других недостатков, препятствующих использованию их в больших масштабах. [c.300]

    Для выделения холекальциферола (Од) из жира печени тунца или палтуса применяют следующие операции [20] омыление и отделение неомыляемой фракции жира, частичное отделение витамина В от витамина А путем разделения между углеводородом и спиртом (на основании их различной растворимости), хроматографическую адсорбцию на окиси алюминия, удаление стеринов кристаллизацией из метанола и осаждение дигитонином, этерифи-кацию хлорангидридом 3,5-динитробензойной кислоты, хроматографическую очистку сырого эфира, гидролиз очищенного эфира и кристаллизацию свободного витамина. [c.109]

    Ион сульфата при содержании до 2 жг жл не оказывает заметного влияния на полноту извлечения урана. В случае больших количеств его мешающее влияние может быть устранено предварительным осаждением урана (VI) аммиаком или применением в качестве высаливателя нитрата кальция. Органические комплексообразующие вещества мешают только при экстрагировании из растворов с очень малым содержанием свободной кислоты. Повышением кислотности их влияние может быть устранено полностью. При одновременном присутствии фторидов, фосфатов и сульфатов целесообразно применять высаливатель, состоящий из смеси нитратов алюминия и кальция или железа и кальция. Хлориды уменьшают специфичность экстракционного отделения урана вследствие того, что в их присутствии некоторые элементы, как например железо (III), также экстрагируются диэтиловым эфиром в виде хлоридных комплексов. [c.292]

    С целью снижения токсичности, а также облегчения условий введения и смешения с полимером двуокись свинца применяют обычно в виде пасты, диспергированной в пластификаторах (дибутилфталате, дифениловом эфире и др.) или органических растворителях. В состав вулканизующих паст входят также поверхностно-активные вещества, препятствующие осаждению вулканизующего агента в диспергаторе и являющиеся, помимо этого, замедлителями процесса вулканизации. Это — жирные кислоты — стеариновая и олеиновая или их соли — стеараты свинца, цинка, алюминия и др. Эффективность жирных кислот в большой степени зависит от влажности окружающей среды и при ее увеличении снижается. Соли жирных кислот менее чувствительны к изменению влажности, но применяются в несколько больших количествах, чем жирные кислоты. [c.149]

    При дегидрогенизации предельных углеводородов в олефины при темпе-Й>атуре 500 --700° применялась смесь окиси алюминия и окиси хрома, приготовленная осаждением окиси хрома из раствора в присутствии порошкообразной или гранулированной окиси алюминия. Предельные углеводороды превращались непосредственно в олефины этилен, пропилен или изобутилен. Рекомендуется разбавление инертным газом или олефином, соединяющимся. С выделенным водородом. В частности, это относится к этилену, если производится дегидрогенизация высших углеводородов [47]. Дегидрогенизация спиртов, эфиров, альдегидов и кетонов успешно проходит на катализаторе, содер- жащем окиси кадмия и цинка, частично соединившиеся с окисью хрома в хромит. При приготовлении этого катализатора 62 г азотнокислого кадмия растворяют в 150 сзи воды и добавляют 574 г сернокислого цинка, растворенного в 2 л воды. В эту смесь добавляют 2,2 л раствора, содержащего 305 г хромово-/кислого аммония, нейтрализованного гидратом окиси аммония. Полученный осадок промывают, высушивают и нагревают в муфельной печи до 400° в течение 4 часов, при этом смесь превращается в черный порошкообразный продукт выделением аммиака и азота. Потеря в весе равна 25% [ИЗ]. [c.289]


    Основность среды в эфирных электролитах обычно обеспечивается введением депротонирующих компонентов — гидридов, органических оснований и др. [702, 24, 284, 970]. В эфирных расплавах основным компонентом, ответственным за электрокристаллизацию алюминия, являются комплексные катионы эфирата А1Х2- эфир+. При соотношениях галогенид алюминия — диэтиловый эфир, исключающих присутствие свободного эфира, уже в отсутствие депротонизирующих компонентов только под действием тока поддерживается необходимая степень основности (количественно выражаемая быстрым понижением предельного тока водородной волны кривой поляризации), обеспечивающая осаждение высококачественного кристаллического алюминия. Побочные процессы при электролизе не возникают. [c.150]

    Вторичные и третичные амины могут быть получены восстановительным алкилированием нитробензола альдегидами в присутствии ледяной уксусной кислоты и катализатора Адамса (окись платины). 7 Алкилирование ароматических аминов проис.ходит при пропускании смеси паров амина и соответствующего спирта над окисью алюминия при 250—400°. Этот методуспешно применялся в течение войны и только недавно был подвергнут экспериментальному исследованию. Для получения диметиланилина из анилина и метанола в паровой фазе при 200—230° применяется твердый дегидрирующий катализатор, например окись алюминия, осажденная на боксите. В дальнейше.м будут приведены примеры каталитических методов алкилирования с использованием эфиров. Хлорбензол может быть превращен во вторичный а.мин при использовании алкила.минов вместо аммиака. [c.121]

    В литературе имеются сведения о получении алюминия из формамидного и аминоэфирного электролитов (раствор хлорида алюминия в смеси бутиламина с диэтиловым эфиром). Результаты по осаждению алюминия из этих растворов противоречивы. [c.111]

    Исследование процесса дегидратации метанола проводили в присутствии кристаллического и аморфного алюмофосфагоп Кристаллический алюмофосфат получали мегодом мокрого смешения золя гидроксида алюминия и фосфорной кислоты с последующей кристаллизацией в течение 10 ч при 90 С. Аморфный алюмофосфат синтезировали осаждением из распвора нитрата алюминия и фосфорной кислоты аммиаком. Показано, что селективгюсть по диметшювому эфиру (ДМЭ) гфи температуре 250 400°С достигает 100% при производительности по ДМЭ 520 г/л в час. [c.60]

    При определении алюминия в стали Рэй и др. [1102] основную массу железа удаляют экстрагированием эфиром из раствора, 6М по НС1. Остатки железа и некоторые другие элементы удерживают в растворе смесью тиогликолевой кислоты и роданида аммония. Титан и цирконий предварительно отделяют гипофосфитом натрия и бромной водой Сг, V, Мо, 5п, Мп, 2п, N1 и Со в тех количествах, в которых присутствуют в углеродистых сталях, не мешают. По данным авторов, при осаждении А1РО4 при pH 3,7—3,9 не мешают 500-кратные количества Сг, V, Мп, N1 и Со. Отделение от Ре, Сг, V, 5п, Мп, 2п, Мо, N1 и Со настолько полное, что, как правило, переосаждение не требуется. Для получения правильных результатов необходим строгий контроль pH. Лучшие результаты получаются при pH [c.60]

    Из НИХ чаще всего применяют первую реакцию. Анализируемый образец вместе с эталонами облучают в реакторе тепловыми нейтронами (поток 2-10 — 3-10 нейтрон/см -сек) в течение 1—5 мин. Затем в течение 1—2 мин. измеряют активность А1 по 7-пику (Еч = 1,78 мэв) при помощи сцинтилляционного 7-спектрометра. Чувствительность метода 10 %, относительная ошибка 6—20%. Этим методом определяют алюминий в горных породах [594, 1112], в каолиновых глинах[235], алмазе 1112], графите[1026] и в растворах [859]. При определении алюминия в металлических 2г, Ре и Си по этой реакции предварительно отделяют цирконий осаждением в виде миндалята, железо — экстрагированием его хлорида эфиром, [c.146]

    Согласно ГОСТ 11658—65, алюминий в чугуне и нелегированной стали определяется алюминоном без отделения. Железо восстанавливают аскорбиновой кислотой до Fe (И), которое не мешает определению алюминия. В сталях при наличии в них титана и ванадия этот ГОСТ предусматривает предварительное удаление железа экстракцией эфиром и отделение титана и ванадия осаждением в виде купферонатов, т. е. также, как и в методе Шорта [11621. [c.212]

    В большинстве случаев при отделении алюминия от бериллия 8-оксихинолином требуется переосаждение 8-оксихинолината алюминия вследствие адсорбции последним бериллия. При наличии больше 0,1 г окиси алюминия ее предварительно отделяют другим методом, например в виде А1С1з-6Н20 из смеси равных объемов эфира и соляной кислоты действием газообразного хлористого водорода [676]. Щавелевая кислота препятствует полному осаждению алюминия 8-оксихинолином [668. [c.158]

    Аналогичный метод взвешиванием роданид-фенантролиново-го комплекса [ o( l2H8N2)2](S N)2 [1183] позволяет определять от 0,1 до 1,8 мг Со в присутствии катионов натрия, калия, кальция, стронция, бария, скандия, алюминия и хрома, не применяя маскирующих средств. Осаждение ведут из раствора с pH 3—4 (в присутствии посторонних элементов или с pH 3—б для растворов, содержащих только кобальт), прибавляя 0,05—0,1 г роданида аммония и 0,5—2 мл 2%-ного раствора хлористоводородного о-фенантролина. Выделившийся осадок промывают на фильтре теплым раствором смеси роданида аммония и хлористоводородного фенантролина, затем несколько раз небольшими порциями воды (по 0,5 мл), 3 раза порциями по 0,5 мл смеси этанола с эфиром (1 3) и 3 раза (порциями по 0,5 мл) диэтиловым эфиром. После 5—10-минутного высушивания в вакуум-эксикаторе осадок взвешивают. Фактор пересчета на кобальт— 0,1101. [c.97]

    Эфирноаминовые электролиты представляют собой раствор следующих компонентов галогенид алюминия (10—15%) алкила-мин, содержащий до трех алкильных групп и до двенадцати атомов углерода в молекуле (10—40%) алифатический простой эфир, содержащий до шести атомов углерода (30—80 %). Готовят электролиты добавлением эфирного раствора галогенида алюминия к охлажденному разбавленному эфиром амину при перемешивании [702, 282, 641, 1087, 1088, 1063 . Оптимальными компонентами являются хлорид алюминия, п-бутиламин, этилгексиламин, диэтиловый, этилбутиловый, дипропиловый эфиры, ТГФ. Практически электролит удовлетворительно работает во всем интервале температур от комнатной до температуры кипения, рабочая температура в основном 20—30 °С. Необходима предварительная проработка током. В таких условиях чистый электролитический алюминий осаждается в широком диапазоне катодной плотности тока (приблизительно до 0,140 А/см ) с выходом по току 50—80 % Возможно скоростное осаждение при катодной плотности тока 8— 9 А/дм . Основным недостатком эфирноаминовых электролитов является их высокая чувствительность к чистоте компонентов. Толь- [c.148]

    Образующийся гидрид алюминия медленно полимеризуется при низких температурах в нерастворимый в эфире высокополимерный гидрид алюминии (А1Нз)1 и остается вместе с образующимся иодидом лития в растворе. Путем тщательного центрифугирования после осаждения осадок гидрида кадмия легко отделяют от других продуктов реакции. После двукратной промывки при —70° С охлажденной смесью эфира с тетрагидрофураном осадок соответствует точному аналитическо.чу составу СёНа. [c.59]

    В присутствии А1, 1п, РЬ, Сс1, Мп, а также небольших количеств 8Ь и осаждение галлия дибромоксихинолином и последующее ванадатометрическое его определение можно вести без предварительного отделения галлия [121]. Если же одновременно присутствуют Ре, Си, 2п, 8п и Мо, то предварительное отделение галлия обязательно. Галлий осаждают в виде гидроокиси пиридином с алюминием в качестве коллектора либо отделяют экстракцией в виде трихлорида эфиром. [c.91]

    СНд-ПАР [276], ПАН-2 [8, 87, 91, 596, 626], комплексонат меди с ПАН-2 [625], МАР [2]. При определении 3,4—6,8 м.г галлия 50-кратные количества индия, висмута и кадмия предложено маскировать N-метилглициндитиокарбаминатом [57]. При анализе полупроводниковых сплавов и смесей для холодной пайки [127] золото и медь восстанавливают тиосульфатом, сурьму(П1) маскируют винной кислотой, алюминий — борофторидом. В глицериновых ваннах, содержащих галлий и индий, галлий экстрагируют диэтиловым эфиром из среды 6 М НС1, затем реэкстрагируют и определяют комплексонометрически [596]. Селективность определения резко увеличивается после отделения галлия осаждением диантипирил-пропилметаном в кислой среде [91] или экстракции комплекса хлороформом с последующей реэкстракцией галлия [8]. В последнем случае определению 9,3 м.г галлия не мешают (в мг) А1 — 131 Th — 127 Mg — 118 Со — 105 d — 100 Pb — 60 Мп — 37 и Ni — 36 мешают Bi, In и Tl [8]. [c.170]

    Алюмосиликатный гидрогель обычно получают соосаждением обоих компонентов или осаждением гидрогеля окиси алюминия в присутствии свежеприготовленного гидрогеля двуокиси кремния. Кроме того, лабораторные образцы готовят путем гидролиза сложных эфиров. Некоторые характерные особенности приготовления и обзор литературы по этому вопросу дан Риландом и др. [112]. Морфология алюмосиликатных гелей весьма сходна с морфологией силикагелей, и, как показывают рентгенографические данные, вещество аморфно, если температура нагревания не превышает 1070 К. Как правило, первичные сферические частицы имеют средний диаметр 3—5 нм и такой же средний размер пор. Удельная поверхность колеблется в интервале 200—700 м /г. Содержание окиси алюминия в промышленных образцах составляет 10—30 мол. %. Характер распределения алюминия в структуре геля зависит от условий получения в ряде случаев наблюдалось в основном равномерное распределение [112—114], что, вероятно, является типичным. Вообще соосаждение дает более равномерное распределение компонентов. Возможность образования дискретных агрегатов окиси алюминия при ее содержании менее 30 мол. % незначительна. [c.78]


Смотреть страницы где упоминается термин Алюминий, осаждение эфиром: [c.173]    [c.53]    [c.353]    [c.247]    [c.217]    [c.55]    [c.210]    [c.178]    [c.160]    [c.120]    [c.133]    [c.250]    [c.250]    [c.69]    [c.160]    [c.178]    [c.16]   
Полумикрометод качественного анализа (1947) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте